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Abstract. In this paper, we present a novel evolutionary algorithm,
called NOCEA, which is suitable for Data Mining (DM) clustering ap-
plications. NOCEA evolves individuals that consist of a variable number
of non-overlapping clustering rules, where each rule includes d intervals,
one for each feature. The encoding scheme is non-binary as the values for
the boundaries of the intervals are drawn from discrete domains, which
reflect the automatic quantization of the feature space. NOCEA uses a
simple fitness function, which is radically different from any distance-
based criterion function suggested so far. A density-based merging oper-
ator combines adjacent rules forming the genuine clusters in data. NO-
CEA has been evaluated on challenging datasets and we present results
showing that it meets many of the requirements for DM clustering, such
as ability to discover clusters of different shapes, sizes, and densities.
Moreover, NOCEA is independent of the order of input data and insen-
sitive to the presence of outliers, and to initialization phase. Finally, the
discovered knowledge is presented as a set of non-overlapping clustering
rules, contributing to the interpretability of the results.

1 Introduction

Clustering is a common data analysis task that aims to partition a collection
of objects into homogeneous groups, called clusters [9]. Objects assigned to the
same cluster exhibit high similarity among themselves and are dissimilar to ob-
jects belonging to other clusters. The challenging field of DM clustering led to the
emergence of various clustering algorithms [7]. Evolutionary Algorithms (EAs)
are optimization techniques that have been inspired from the biological evolution
of species [4], [11]. NOCEA (Non-Overlapping Clustering with an Evolutionary
Algorithm) employs the powerful search mechanism of EAs to meet some of
the requirements for DM clustering such as discovery of clusters with different
shapes, sizes, and densities, independency of the order of input data, insensitiv-
ity to the presence of outliers and to initialization phase and interpretability of
the results [7].
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2 Related Work

There are four basic types of clustering algorithms: partitioning algorithms, hi-
erarchical algorithms, density-based algorithms and grid-based algorithms. Parti-
tioning algorithms construct a partition of N objects into a set of k clusters [9].
Hierarchical algorithms create a hierarchical decomposition of the database that
can be presented as dendrogram [13]. Density-based algorithms search for re-
gions in the data space that are denser than a threshold and form clusters from
these dense regions [8]. Grid-based algorithms quantize the search space into a
finite number of cells and then operate on the quantized space [1]. EAs have been
proposed for clustering, because they avoid local optima and are insensitive to
the initialization [3], [6], [12].

3 NOCEA Clustering Algorithm

3.1 Bin Quantization

Let A = {A1, ..., Ad} be a set of bounded domains and S = A1 × ... × Ad is
a d-dimensional numerical space. The input consists of a set of d-dimensional
patterns P = {p1, ..., pk}, where each pi is a vector containing d numerical val-
ues, pi = [α1, ..., αd]. The jth component of vector pi is drawn from domain Aj .
NOCEA’s clustering mechanism based on a statistical decomposition of the fea-
ture space into a multi-dimensional grid. Each dimension is divided into a finite
number of intervals, called bins. The number of bins mj and the bin width hj

for jth dimension are dynamically computed by projecting the patterns in this
dimension and then applying the statistical analysis described below. Initially,
each dimension is divided into four segments, namely A, B, C and D. Segments
A, B, C and D represent the intervals [a, Q1), [Q1, median), [median, Q3) and
[Q3, b], respectively. Note that, a, b are the left and right bounds of Aj , while
median, Q1 and Q3 are the median, first and third quartiles of patterns in jth
dimension, respectively. The bin width h for each segment is then computed
using the following formula [2]:

h = 3.729 ∗ σ ∗ n− 1
3 (1)

where, n is the number of patterns inside this segment, while σ denotes the
standard deviation of patterns lying in this segment. The number of bins for each
segment is derived by dividing the length of the segment by the corresponding
bin width h. The total number of bins mj for the jth dimension is computed by
forming the sum of bins from the four segments. Finally, the bin width hj for
the entire jth dimension is obtained by dividing the length of Aj domain by mj .
Of course it would be more realistic if each segment keeps the corresponding bin
width leading to non-uniform grids. Despite the robustness of non-uniform grids
we adopt the uniform approach because of the extra complexity introduced by
the first and the way that infeasible solutions are repaired (see section 3.6).
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3.2 Individual Encoding

The proposed encoding scheme is a non-binary, rule-based representation, con-
taining a variable number of non overlapping rules. Each rule comprises d genes,
where each gene corresponds to an interval involving one feature. Each ith gene,
where i=1,..,d of a rule, is subdivided into two fields:left boundary (lbi) and right
boundary (rbi), where lbi and rbi denotes the lower and upper value of the ith
feature in this rule. The boundaries are drawn from discrete domains, reflecting
the grid-based decomposition of the feature space. Note that two rules are non-
overlapping if there exists at least one dimension where there is no intersection
between the corresponding genes.

3.3 Fitness Function

In our clustering context, the fitness function is greedy with respect to the
number of patterns that are covered by the rules of individuals. In particular,
NOCEA aims to maximize the coverage C, which is defined to be the fraction
of total patterns Ntotal that are covered by the rules of the individuals:

C = max

(∑k
i=1 Ni

Ntotal

)
(2)

where, k denotes the number of rules and Ni the number of patterns in ith
rule. The above fitness function is suitable for comparing individuals that have
different number of rules. Two individuals can have exactly the same perfor-
mance with radically different genetic material (e.g. number, shape and size of
rules). Thus, the fitness landscape may have multiple optima and as long as
there is no any kind of bias towards a certain type of solution(s) (e.g. solution(s)
with a particular number of rules, size or shape) equation 2 contributes to the
diversity among the population members. Another important characteristic of
the above fitness function is the fact that its theoretical lowest and highest val-
ues are always known, that is, the fitness of an individual can be between zero
and one. Theoretically, as the level of noise increases the distance between the
performance of the best individual(s) and one increases.

3.4 Recombination Operator

In a typical EA the recombination operator is used to exploit known solutions by
exchanging genetic material between good individuals. Taking into consideration
the requirement for evolving individuals without overlapping rules elaborate one
and two point crossover operators have been developed. The crossover operator
is applied to two parents generating two offsprings, from which only one can
survive. Firstly, a number j is randomly drawn from the domain [1..d]. Recall,
that d denotes the dimensionality of the feature space. If mj is the number of bins
corresponding to jth dimension, the crossover points cp1 and cp2 are determined
by randomly picking one bin from the interval [0, (mj − 1)]. Two offsprings are
generated by exchanging the rules lying in the region from cp1 to cp2, between
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Rule 1
PARENT 2

cp1

cp2

Rule 2

OFFSPRING 1
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cp2
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Rule 2

Rule 1

Rule 4

Rule 1 Rule 2
PARENT 1
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cp2

Rule 3

OFFSPRING 2

Rule 1

Rule 2

Rule 3

Rule 4

Fig. 1. An example of two-point crossover operation

the parents. An example of two-point crossover is depicted in Fig. 1. Note that
if the number of crossover points is one then the above mentioned crossover
operation reduces to one-point recombination. The proposed crossover operator
can lead to the generation of offsprings that are not of the same length as their
parents. This is because the offsprings must contain no overlapping rules, which
in turn requires the splitting of any rule that intersects with the d-dimensional
region between cp1 and cp2. Clearly, for very low dimensional datasets and high
recombination rates, two or even one point crossover can be disruptive in terms
of breaking a relatively large rule into a number of smaller rules. Obviously,
the greater the number of rules the greater the computational complexity as
far as the application of genetic operators is concerned. Moreover, for the gain
of simplicity in describing the clusters, fewer rules are always preferable. On
the other hand, the length-changing characteristic of the crossover operator can
contribute to increased diversity among the population members and this can
be useful especially in cases with arbitrary-shaped clusters. To merely cope with
the disruptive effect of crossover operator, we apply the following heuristic in
the reported experiments. Instead of arbitrarily selecting the crossover points in
jth dimension from the interval [0, (mj − 1)], these points are now fixed and
they correspond to the bins containing Q1, Q3 or median in jth dimension.
Theoretically, the disruptive effect of crossover is reduced as the dimensionality
of the dataset increases, because the probability of intersection between the
crossover points and rules decreases. As a consequence, for very low dimensional
datasets (2D or 3D) it is reasonable to set the ratio of crossover in relatively
small values or even to deactivate the recombination operator.

3.5 Mutation Operator

The evolutionary search in our system is mainly based on an elaborate mutation
operator, which although alters the genetic material randomly, the generated
individuals do not contain overlapping rules. The mutation operator has two
functionalities: a) to grow and b) to shrink an existing rule.

Growing-Mutation. The growing-mutation aims to increase the size of existing
rules in an attempt to cover as many patterns as possible but with a minimum
number of rules. It is particularly useful in cases where there are large and convex
clusters that can be easily captured by a relatively small number of large rules.
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These large rules can be generated starting from smaller ones and by applying
the growing-mutation operator over the generations. It is reasonable to focus on
the discovery of as few and as large rules as possible, because these kind of rules
contribute to the high interpretability of the clustering output. Additionally, the
combined functionalities of the growing-mutation and the repair operator (see
section 3.6) can lead to the discovery of new interesting regions (isolated clusters)
within the d-dimensional feature space. Lets assume that the jth dimension
of a d-dimensional rule R undergoes growing-mutation. We can compute the
maximum value rbj(max) that rbj can be extended to the right without causing
overlapping as follows:

1. Sort in ascending order all the rules that their left bound is greater than the
right bound of rule R in jth dimension.

2. If the sorted list is empty, set rbj(max) to (mj − 1) and exit. Otherwise,
proceed to step 3.

3. Pick the next element RN of the list. If there is intersection in at least one
dimension (excluding the jth) between the rules R and RN, set rbj(max)
equal to the left bound of RN in jth dimension minus one and terminate the
loop. If there is no intersection, proceed to the next element.

The derivation of the minimum value lbj(min) that lbj can be extended to
the left without causing overlapping is the dual of computing rbj(max). Ob-
viously, the allowable range of modification in the boundaries of rules due to
growing mutation is solely determined by the relative position of rules within
the d-dimensional feature space. The left and right bounds of each rule in
jth dimension are randomly mutated within the intervals [lbj(min), lbj) and
(rbj , rbj(max)], respectively.

Shrinking-Mutation. This type of mutation as its name implies shrinks an
existing rule. Each time, the bound of a rule undergoes shrinking-mutation,
the corresponding bound shrinks by one bin. The intuition behind this small
modification is that for high dimensional datasets where the existence of
isolated rules is increased, an arbitrary shrinking-mutation operation can cause
the elimination of these rules and as a consequence additional generations may
be required to re-discover these promising regions of the feature space. The
shrinking-mutation operator is particularly useful to perform local fine-tuning
and to facilitate the precise capturing of non-convex clusters. This is done by
allowing adjacent rules to be re-arranged within the d-dimensional grid in order
to cover as many patterns as possible.

Balancing Shrinking and Growing. The ratio of shrinking to growing oper-
ations rsg should be set to relatively small values (e.g. 0.05). This is mainly done
to bias the evolutionary search to discover new interesting regions in the large
d-dimensional feature space, rather than trying to perform fine local tunning.
Furthermore, due to the replacement strategy (see section 3.8) that allows the
surviving of individuals for only a certain number of generations, high values for
rsg may be an obstacle for NOCEA to converge in an optimal solution.
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3.6 Repair Operator

Often the search space S consists of two disjoint subsets of feasible and infeasible
solutions, F and U, respectively [11]. Infeasible solutions are those that violate
at least one constraint of the problem and we have to deal with them very
carefully, because their presence in the population influence other parts of the
evolutionary search [11]. In the following we introduce some basic definitions
in order to formalize the notion of feasibility in our clustering context. The
selectivity sij of ith bin in jth dimension is defined to be the number of patterns
lying inside this bin over the total number of patterns covered by this rule. We
define as Selectivity Control Chart (SCC) in jth dimension a diagram that has
a centerline CL, and an upper (UCL) and a lower (LCL) control limits that are
symmetric about the centerline. Additionally, measurements corresponding to
selectivity of bins in jth dimension are plotted on the chart. CL, UCL and LCL
are given by equation 3.

UCL = CL ∗ (1 + t)
CL = 1

bj

LCL = CL ∗ (1 − t)
(3)

where, bj denotes the number of bins in jth dimension covered by the rule and
t is a tolerance threshold that controls the sensitivity of SCC chart in detecting
shifts in the selectivity of bins. Consider the two dimensional feature space shown
in Fig. 2a, where each dimension has been partitioned into a number of bins.
Figures 2c and 2d illustrate the SCC charts for dimensions x and y of a rule
R1 shown in Fig. 2a, respectively. If the patterns covered by R1 are projected
to x-axis, there are two distinct and well separated regions. These regions can
be easily detected by examining the corresponding SCC chart shown in Fig. 2c,
where the selectivity of the third bin is below LCL. In contrast, the selectivity
for each bin in the y-axis is within the control limits and as a consequence
NOCEA detects a single region in y-axis. In our approach, for each dimension
of a rule R we construct a SCC diagram. If there exist points below LCL, then
the corresponding bins are relatively sparse with respect to the rest and can be
discarded. On the other hand, if there are no points below LCL but there exists at
least one bin with selectivity greater than UCL, then NOCEA reduces t gradually
by subtracting a small constant number, until at least one point falls below LCL.
If neither of the above conditions are true, the distribution of patterns across
this dimension can be considered as uniform and as a consequence all bins are
kept. The removal of sparse bins described above creates a set of intervals for
each dimension. The original rule is replaced by a set of new rules, which are
formed by combining one interval from each dimension. A rule R is said to be
solid, if the selectivity of all bins for each dimension is between the corresponding
LCL and UCL. An individual that contains only solid rules is a feasible solution
in our clustering context. Finally, if the selectivity of a rule, that is the fraction
of total patterns covered by this rule, is below a user-defined threshold tsparse,
then this rule is said to be sparse and is eliminated. Theoretically, for relatively
large values of t, regardless the underlying distribution of patterns, each rule will
be solid. In such a case, NOCEA can not produce homogeneous rules because
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Selectivity

SCC chart for Y−axis

LCL
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Fig. 2. Visualization of SCC charts

in essence there is no mechanism to stop rules from growing arbitrarily. On the
other hand, relatively small values for t can cause over-triggering of the repair
operator resulting in the generation of many small rules, which in turn add extra
complexity to the application of the genetic operators. To merely cope with
the problem of fine tunning the parameter t, we suggest a step-size adaptation
mechanism that increases t over the generations according to:

ti = tmin + (tmax − tmin) ∗
(

1 −
(

i

T

)b
)

(4)

where, b is a user-defined parameter, ti denotes the value of t in ith generation,
T is the total number of generations, while tmin and tmax are input parameters
determining the minimum and maximum values of t, respectively.
A major drawback of SCC charts is the fact that consider each dimension in-
dependently. Thus, a SCC chart can only detect discontinuities occurring in a
particular dimension as long as there is at least one bin in this dimension that is
entirely very sparse. For instance, consider the rule R2 that is shown in Fig. 2b.
Assuming relatively large values for t the corresponding SCC charts, which are
not shown here, can not detect the very sparse regions located in the bottom-left
and top-right of rule R2. To merely cope with partially sparse bins we apply the
following heuristic to each rule, periodically (e.g. every 40 generations). Initially,
a dimension that contains at least six bins is randomly selected. Then the parent
rule R is split in that dimension in the middle and forms two touching rules R′

and R′′. Both these rules undergo the repairing procedure described above. If
these rules remain intact as far as their size is concerned, another dimension
which has not previously been examined and which contains at least six bins is
randomly chosen. However, if the repair operator modifies at least one of these
rules, the parent rule R is replaced with the set of rules that has been produced
after repairing both rules, R′ and R′′. Note that we only consider dimensions
containing at least six bins to avoid local abnormalities in the derived rules R′

and R′′. For the same reason the repair operator is invoked using tmax as the
value for the tolerance threshold t.

3.7 Merging Rules

As soon as NOCEA converges, a merging procedure that combines adjacent rules
in order to form the genuine clusters in data, is activated. The merging procedure
is based on the concept of density and it is different from other distance-based
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x

y R1

R2

C1

B1
C2

B2

Fig. 3. An example of adjacent rules (R1 and R2).

merging approaches [5], [10]. Two rules are adjacent if they have a common face,
i.e there are d-1 dimensions where there is an intersection in at least one bin
between the corresponding genes and there is one dimension where the left bound
of one rule is adjacent to the right bound of the other one. For instance, rules
R1 and R2 shown in Fig. 3 are adjacent because there is an intersection between
their corresponding genes in y-axis while in x-axis the right and left bound of
rules R1 and R2, respectively, are touching. For each pair of adjacent rules R1
and R2 we compute three density metrics, namely, dC1, dC2, dB1 and dB2. These
density metrics correspond to the density of patterns within the d-dimensional
regions C1, C2, B1 and B2, respectively, which are shown in Fig. 3. C1 and C2
represents the central regions while B1 and B2 the border regions within the
rules R1 and R2, respectively. NOCEA assigns a pair of adjacent rules R1 and
R2 to the same cluster as long as all the following conditions are satisfied:(

min(dC1,dB1)
max(dC1,dB1)

≥ td

)
(1),

(
min(dB1,dB2)
max(dB1,dB2)

≥ td

)
(2),

(
min(dC2,dB2)
max(dC2,dB2)

≥ td

)
(3) (5)

where td is a user-defined parameter. In essence, conditions (1), (2) and (3)
ensure that the variation in the density across the path (shadowed region in
Fig. 3) which connect the central regions of the two rules is not very high and
as a consequence these two rules belong to the same cluster.

3.8 Setting Parameters

The mutation ratio is set to 1.0, while the probability of mutating the bound-
aries of rules is 0.05. The shrinking to growing ratio rsg is set to 0.05. We
used one-point crossover with ratio 0.1. The selection strategy that is used in
our experiments is a k-fold tournament selection with tournament size k=4.
The replacement strategy implements best of all scheme by merging the current
and offspring populations and selecting the best individuals. However, to avoid
premature convergence in infeasible optima, each individual is allowed to sur-
vive only for a certain number of generations (e.g. 5). Moreover, for every 40
generations all parents are replaced by the offsprings in order to eliminate all
individuals containing partially sparse bins. Usually, the repairing of such rules
cause a small reduction in the coverage of the entire individual, which can be
easily observed from the fitness diagrams shown in Fig. 5b, 5d, and 5f. The only



Mining Comprehensible Clustering Rules 2309

stopping criterion used in the reported experiments is the maximum number
of generations 200, while the population size is 50. Each population member is
randomly initialized with a single d-dimensional rule. The parameters tmin and
tmax and b, which control the adaptation of the tolerance threshold t are set to
0.4, 0.65 and 1.5, respectively. The threshold tsparse for eliminating sparse rules
is 0.05.

4 Experimental Results

In this section we report the experimental results derived by running NO-
CEA against three synthetically generated datasets that contain patterns in
2-dimensional feature space as depicted in Fig. 4. These datasets are particu-
larly challenging because they contain clusters of different sizes, shapes, den-
sities and orientations. Furthermore, there are special artifacts such as streaks
running across clusters and outliers that are randomly scattered in the fea-
tures space. The first (DS1) and second (DS2) datasets consist of 8000 and
10000 patterns respectively and were used to evaluate the performance of a well-
known clustering algorithm, called CHAMELEON [10]. The third dataset, DS3
has 100000 2-dimensional patterns and was used by another popular cluster-
ing algorithm called CURE [5]. These datasets are public available under the
URL: http://www.macs.hw.ac.uk/�ceeis/gecco03/ds.htm. Figure 5 illustrates
the rules and clusters that NOCEA found for the three datasets. Rules belonging
to the same cluster are assigned the same number. Furthermore, for each dataset
there is a fitness diagram where the coverage of the best and worst individuals
as well as the mean coverage of the entire population in each generation are
plotted. The experiments were conducted in a workstation running Windows
2000 with a 600MHz Intel Pentium III processor, 256MB of DRAM and 17GB
of IDE disk. The evaluation time per generation for DS1, DS2 and DS3 is 1.5,
1.8 and 16 seconds, respectively. It is not guaranteed that NOCEA converges to
the same set of rules using the same seeds. However, the union (or merging) of
the derived rules always produces the same set of clusters, regardless the seeds
used to initialize the individuals. It can be observed from Fig. 5 that NOCEA
has the following desirable properties:

a) Discovery of Non-convex Clusters. NOCEA has the ability to discover
arbitrary-shaped clusters, with different sizes and densities. The density-based
merging procedure combines correctly adjacent rules forming the genuine clusters
in data.

b) No a priori Provision of the Number of Clusters. Unlike other clus-
tering algorithms such as k-means [9], NOCEA does not require the provision
of the number of clusters a-priory, because the merging procedure discover the
correct number of clusters on the fly.

c) Simplicity of Fitness Function. NOCEA has a simple fitness function
which differs radically from distance-based criterion functions used in partition-
ing and hierarchical clustering algorithms [9]. Unlike other hierarchical and par-
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DS1: 8000 patterns DS2: 10000 patterns DS3: 100000 patterns

Fig. 4. The three datasets used in our experiments

titioning algorithms, NOCEA is not biased on splitting large clusters into smaller
ones in order to minimize some distance criterion function [5].

d) Handling Outliers. Although NOCEA is greedy with respect to the number
of patterns that are covered by the rules of the individuals, the fitness diagrams
shown in Fig. 5 indicate that the maximum theoretical value of coverage 1.0,
was never reached (assuming an amount of noise). This is due to the combined
functionalities of the repair operator which do not allow a sparse region to be a
member of a rule and to the procedure that eliminates very sparse rules. Thus,
NOCEA is relatively insensitive to the presence of noise.

e) Data Order and Initialization Independency. The form of fitness func-
tion which is not distance-based and the randomized search of NOCEA ensures
independency to the order of input data and to the initialization phase.

f) Interpretability of the Results. Whereas other clustering techniques de-
scribe the derived partitions by labeling the patterns with an identifier corre-
sponding to the cluster that they have been assigned [7], NOCEA presents the
discovered knowledge in the form of non-overlapping IF-THEN clustering rules,
which have the advantage of being high-level, symbolic knowledge representa-
tion.

5 Conclusions and Future Work

In this paper, we have presented a novel evolutionary algorithm called NOCEA,
which is suitable for DM clustering applications. NOCEA evolves individuals
that consist of a variable number of non-overlapping clustering rules, where each
rule includes d intervals, one for each feature. The encoding scheme is non-
binary as the values for the boundaries of the intervals are drawn from discrete
domains. These discrete domains reflect the dynamic quantization of the feature
space, which is based on information derived by analyzing the distribution of
patterns in each dimension. We use a simple fitness function, which is radically
different from any distance-based criterion function suggested so far. A density-
based merging procedure combines adjacent rules forming the correct number
of clusters on the fly. Experimental results reported in section 4 indicate that
the specific fitness function, together with, the elaborate genetic operators allow
NOCEA to meet some of the requirements for DM clustering. NOCEA is an
evolutionary algorithm and as a consequence does not easily scale up comparing
to other hill-climbing clustering techniques [7]. However, EA are highly parallel
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Fig. 5. NOCEA’s experimental results
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procedures and ongoing work attempts to investigate the improvements in the
efficiency of NOCEA using various schemes of parallelism. Additionally, ongoing
work attempts to overcome the problem of splitting large rules into smaller ones
when the crossover points intersect with rules, by extending the functionality of
the recombination operator. Another possible extension can be the development
of a generalization operator that can be used to reduce the complexity of the
cluster descriptors. In particular this procedure will take as argument a set of
clustering rules corresponding to a particular cluster and will produce a more
general descriptor for it.
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