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Abstract. The rapid advances of genome-scale sequencing have brought
out the necessity of developing new data processing techniques for enor-
mous genomic data. Microarrays, for example, can generate such a large
number of gene expression data that we usually analyze them with some
clustering algorithms. However, the clustering algorithms have been in-
effective for visualization in that they are not concerned about the order
of genes in each cluster. In this paper, a hybrid genetic algorithm for
finding the optimal order of microarray data, or gene expression profiles,
is proposed. We formulate our problem as a new type of traveling sales-
man problem and apply a hybrid genetic algorithm to the problem. To
use the 2D natural crossover, we apply the Sammon’s mapping to the
microarray data. Experimental results showed that our algorithm found
improved gene orders for visualizing the gene expression profiles.

1 Introduction

The recent marvelous advances of genome-scale sequencing have provided us
with a huge amount of genomic data. Microarrays [36,37], for example, have been
used for revealing gene expression profiles for more than thousands of genes. In
general, microarray data can be represented by a real-valued matrix; each row
represents a gene and each column represents a condition, or experiment. If we
let the matrix be X, the element Xij represents the expression level of gene i
for a given condition j. The microarray data are usually preprocessed with a
clustering algorithm. The clustered microarray data, then, can be analyzed by
biologists.

A number of algorithms for clustering gene expression profiles were proposed.
Eisen et al. [10] applied hierarchical clustering [38] which has been a widely used
tool [1,22,24,35]. It also has some variants [2,17]. Self-organizing maps (SOMs)
[42,44] and k-means clustering [43] were also used for the same purpose. Ben-Dor
et al. [3] developed an algorithm, cluster affinity search technique (CAST), which
has a good theoretical basis. Merz and Zell [28] proposed a memetic algorithm
for the problem formulated as finding the minimum sum-of-squares clustering
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[48,9]. However, all the proposed algorithms were ineffective in visualizing the
microarray data since they were not concerned about aligning genes within each
cluster in a meaningful way. This raises the problem of finding the optimal order
of genes for visualization.

Although there is no standard optimal criterion for evaluating which order is
better than the others for visualization, placing genes with similar or the same
expression profiles next to each other is considered to be natural and intuitive.
Since finding the optimal order of microarray data is known to be NP-hard [5],
evolutionary approaches such as genetic algorithms [18,13], memetic algorithms
[29] are considered to be well suited for solving the problem.

Recently Tsai et al. [46] formulated the problem as the traveling salesman
problem (TSP) and applied family competition genetic algorithm (FCGA). In
the FCGA, the edge assembly crossover [30] was combined with the family com-
petition concept [45] and neighbor-join mutation [47]. Using this consolidation,
they showed that their formulation was effective in finding attractive gene orders
for visualizing microarray data. However, they implicitly tried to minimize the
distance between distant genes as well, which is less important for visualization.

In this paper, we propose a hybrid genetic algorithm for finding the optimal
gene order of microarray data. We suggest a new variation of TSP formulation
for this purpose. We use the 2D natural crossover [20,21], which is one of the
state-of-the-art crossovers in the TSP literature. To use the 2D natural crossover,
we need a 2D mapping of the data, which are virtually real-valued vectors, from a
high-dimensional space into a two-dimensional Euclidean space. This mapping is
necessary since the crossover exploits two-dimensional geographical information.
We choose the Sammon’s mapping [34] among several candidates.

Another important contribution of this paper is that we used a new formu-
lation of TSP for the problem. In this model of TSP, relatively long edges in
a tour are ignored for fitness evaluation. This is because reducing the length of
long edges, which represents distant genes in relation, is not very meaningful for
visualizing microarray data. We tested this idea on a spectrum of different rates
of excluded edges.

The remainder of the paper is organized as follows. In Section 2, we sum-
marize the traveling salesman problem and the Sammon’s mapping. In Section
3, we describe our variation of TSP formulation for finding the optimal gene
order in displaying microarray data. In Section 4, we explain our hybrid genetic
algorithm in detail and present the experimental results in Section 5. Finally, we
make our conclusions in Section 6.

2 Preliminaries

2.1 Traveling Salesman Problem

Given n cities and a distance matrix D = [dij ] where dij is the distance between
city i and city j, the traveling salesman problem (TSP) is the problem of finding a
permutation π that minimizes

∑n−1
i=1 dπi,πi+1+dπn,π1 . In metric TSP the cities lie

in a metric space (i.e., the distances satisfy the triangle inequality). In Euclidean
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TSP, the cities lie in �d for some d; the most popular version is 2D Euclidean
TSP where the cities lie in �2. Euclidean TSP is a sub-case of metric TSP.

2.2 Sammon’s Mapping

Sammon’s mapping [34] is a mapping technique for transforming a dataset from a
high-dimensional (say, m-dimensional) input space onto a low-dimensional (say,
d-dimensional) output space (with d < m). The basic idea is to arrange all the
data points on a d-dimensional output space in such a way that minimizes the
distortion of the relationships among data points.

Sammon’s mapping tries to preserve distances. This is achieved by minimiz-
ing an error criterion which penalizes the differences of distances between the
points in the input space and the output space. Consider a dataset of n objects.
If we denote the distance between two points xi and xj in the input space by δij

and the distances between x′
i and x′

j in the output space by δ′
ij , then Sammon’s

stress measure E is defined as follows:

E =
1∑n−1

i=1
∑n

j=i+1 δij

n−1∑
i=1

n∑
j=i+1

(δij − δ′
ij)

2

δij .

The stress range is [0,1] with 0 indicating a lossless mapping. This stress measure
can be minimized using any minimization technique. Sammon [34] proposed a
technique called pseudo-Newton minimization, a steepest-descent method. The
complexity of Sammon’s mapping is O(n2m). There were many studies about
Sammon’s mapping [8,33,31].

3 A New TSP Formulation

To visualize the microarray data, or gene expression profiles, in a meaningful
way, it is natural and intuitive to align genes with similar expression profiles, or
within the same group, close together. For genes with similar expression profiles
to be aligned next to each other, it is useful to formulate the problem as the
TSP.

For the TSP formulation, a distance measure is needed to quantify the simi-
larity between gene expression profiles, which then defines the similarity between
the genes themselves. Several distance measures were proposed to define the dis-
tance. They include Pearson correlation 1, absolute correlation 2, Spearman rank
correlation [39], Kendall rank correlation [23], and Euclidean distance. In this
paper, we choose the Pearson correlation as the distance measure.

Let X = x1, x2, . . . , xk and Y = y1, y2, . . . , yk be the expression levels of two
genes X and Y , which were observed over a series of k conditions. The Pearson
1 Karl Pearson (1857-1936) is considered to be the first to call the quantity a corre-
lation efficient in 1896 [7]. It first appeared as a published form by Harris [16]. It is
also referred to as Pearson product-moment correlation coefficient.

2 absolute value of correlation
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(a) with the naive TSP formulation (b) with our new TSP formulation

Fig. 1. A comparison of good tours between the naive and our new TSP formulation.

correlation of the two genes X and Y is

s
X,Y

=
1
k

k∑
i=1

(
xi − X

σX
)(

yi − Y

σY
)

where X and σX are the mean and the standard deviation of the expression
levels, respectively. Then we define the distance between the genes X and Y by

D(X, Y ) = 1− s
X,Y

where s
X,Y

is the Pearson correlation.
Once the distance measure is defined, it is possible to formulate finding the

optimal gene order for visualization with the TSP model. Each gene corresponds
to a city in TSP, and the distance between two genes corresponds to the length of
the edge between the two cities. Tsai et al. [46] reduced the problem of finding
the optimal order of genes to the problem of finding the shortest tour of the
corresponding TSP.

In the model, the fitness function is naturally defined to be

n∑
i=1

D(gπi
, gπi+1)

where gπn+1 = gπ1 , gi denotes a gene, π denotes a gene order, n is the number
of genes, and D(gi, gj) is the distance between two genes gi and gj .

The above TSP formulation [46] aims at aligning genes with similar profiles
close together. However, it also tries to minimize the distances between pairs
of genes with not-very-similar profiles. When two genes are adjacent in a TSP
tour, they are placed next to each other. If they have distant profiles, replacing
a gene by a third one with a less distant profile has little meaning, as long as
they are not considerably similar. Tsai et al.’s TSP formulation implicitly tries
to reduce this type of edges as well.

To alleviate the problem, we propose a new fitness function. Our key idea is
that we can improve the visualization results by excluding less meaningful edges
in a tour from the fitness function. Figure 1 illustrates the motivation of our new
TSP formulation. The length of the tour in Fig. 1(a) is shorter than that of the
tour in Fig. 1(b), thus it is preferred in the naive TSP formulation. However, the
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tour in Fig. 1(b) can be a better tour in that it reflects the natural grouping,
denoted by ellipses. Since an edge between two genes means that the two genes
are placed next to each other in visualization, we can make the naturally-grouped
genes placed next to each other if a meaningful tour like Fig. 1(b), possibly
including long edges, is preferred. For such tours to be preferred, relatively long
edges are excluded from the fitness function. The dotted edges in Fig. 1(b)
represent the relatively long edges, thus they are not counted in our new TSP
formulation. By excluding them, meaningful tours like Fig. 1(b) can be favored.

More formally, our variation of the TSP formulation defines the fitness func-
tion by

n∑
i=1

D(gπi
, gπi+1)δ(gπi

, gπi+1)

where

δ(i, j) =
{
0 if (i, j) ∈ L
1 otherwise

in which (i, j) is the edge connecting gene i and gene j, and L is the set of
excluded edges.

We use the new fitness function only in selection and replacement. In other
words, the other stages of GA except them still use the common TSP formulation
which considers all the edges in a tour. This setting was settled down after some
experiments.

4 A Hybrid Genetic Algorithm

A genetic algorithm hybridized with local optimizations is called a hybrid GA.
A great many studies about hybridization of GAs were proposed [49,32].

– Sammon’s Mapping
Since the microarray data are virtually real-valued vectors in a high-
dimensional space, we map them into the two-dimensional space in order
to use the 2D natural crossover, which operates on chromosomes encoded
by 2D graphic images. We chose the Sammon’s mapping described in Sec-
tion 2.2. Figure 2(a) shows a Sammon-mapped image from a small subset of
real-field microarray data.

– Encoding
Using the Sammon’s mapping, we obtain a 2D Euclidean TSP instance using
the distance information. We use the graphic image itself of a tour as a
chromosome. This encoding was used in [20,21] and showed successful results
on most TSP benchmarks.

– Initialization
All the chromosomes are created at random. We set the population size to
be 50 in our algorithm.

– Selection
We use the tournament selection [14]. The tournament size is 2.
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(a) Sammon-mapped genes (b) tour A (c) tour B

(d) partitioned (e) intermediate (f) new offspring
genes sub-tours

Fig. 2. A Sammon-mapped image and an example crossover on it

– Crossover
We use the natural crossover [20,21]. The natural crossover draws free curves
on the 2D space where genes are located. The curves divide the chromosomal
positions into two disjoint partitions. Then we copy the genes in one partition
from one parent to the offspring and those in the other partition from the
other parent. Figures 2(b) through (f) show an example operation of the
natural crossover on a Sammon-mapped chromosome.

– Mutation
The double-bridge kick move, which is known to be effective from the liter-
ature [19,27], is used.

– Local Optimization
We use the Lin-Kernighan (LK) algorithm [26], which is one of the most
effective heuristics for TSP. The LK used here is an advanced version in-
corporating the techniques of don’t-look bit [4] and segment tree [12] which
cause dramatic speed-up.

– Replacement
The replacement scheme proposed in [6] is used. The offspring tries to first
replace the more similar parent, measured by Hamming distance [15], if it
fails, then it tries to replace the other parent (replacement is done only when
the offspring is better than one of the parents). If the offspring is worse than
both parents, we replace the worst member of the population (GENITOR-
style replacement [50]).

– Stopping Criterion
The GA stops when one of the three conditions is satisfied: i) 80% of the pop-
ulation is occupied by solutions with the same quality, whose chromosomes
are not necessarily the same, ii) the number of consecutive fails to replace
the best solution reaches 200, or iii) the number of generations reaches 2000.
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Table 1. Data Set

Data Set Number of Number of
Name Genes Experiments

Cell cycle cdc15 782 24
Cell cycle 803 59

Yeast complexes 979 79

5 Experimental Results

5.1 Test Beds and Test Environment

We tested the proposed algorithm on three data sets, Cell Cycle cdc15, Cell
Cycle, and Yeast Complexes. The first two data sets consist of about 800 genes
each, which are cell cycle regulated in saccharomyces cerevisia with different
numbers of experiments [40]. They are classified into five groups termed G1, S,
S/G2, G2/M, and M/G1 by Spellman et al. [40]. Although it is controversial
whether the group assignment does reflect the real grouping, it is known to be
meaningful to some degree [46]. The final data set, Yeast Complexes, is from
MIPS yeast complexes database [10]. All these three data sets can be found in
[2] and downloaded at a web site.3 Table 1 shows a brief description of each data
set.

All programs were written in C++ language and run on Pentium III 866
MHz with Linux 2.2.14. They were compiled using GNU’s g++ compiler. We
performed 100 runs for each experiment.

5.2 Performance

We denote by NNGA our proposed hybrid GA using the natural crossover and
the new TSP formulation. The performances of the visualization results are
evaluated by a score described in [46], which is defined by

Score =
n∑

i=1

G(gπi , gπi+1)

where gπn+1 = gπ1 , and

G(gπi , gπj ) =
{
1, if gπi

and gπj
are in the same group

0, if gπi
and gπj

are not in the same group .

It is clear that a solution gets a higher score, under this scoring system, when
more genes with the same group are aligned next to each other.

Figure 3 shows the scores found by NNGA when the percent of the excluded
edges varies from 0% to 90% at intervals of 10%. The NNGA improved the
3 http://www.psrg.lcs.mit.edu/clustering/ismb01/optimal.html
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(a) Cell Cycle cdc15
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(c) Yeast Complexes

Fig. 3. Scores on a spectrum of different rates of excluded edges

results for most of the tested percents. In particular, for the Yeast Complexes
data set, it showed improvement for all of the tested percents.

It is interesting that two peaks, not necessarily the highest ones, were ob-
served at around 10% and 70% for all data sets. They imply that it is more
favorable to exclude either a small or a large number of edges than do an inter-
mediate number of edges in our experimental settings.

Table 2 compares the performance of our NNGA with state-of-the art algo-
rithms for clustering gene expression profiles in terms of the score. The Single-,
Complete-, and Average-linkage represent different versions of hierarchical clus-
tering [10] and SOM [42] is a self-organizing map. We used the CLUSTER pack-
age 4 for the three versions of hierarchical clustering and the SOM. The NNGA
with the new TSP formulation dominated the others.

It is more intuitive to inspect the visualized results than to just compare the
scores between the algorithms for clustering gene expression profiles. To visualize
them, we should assign a color to each expression level. We follow the typical
red/green coloring scheme [41,10], while other schemes using different colors are
available [41]. The red/green coloring scheme is as follows:

– Expression levels of zero are colored black, increasingly positive levels with
reds of increasing intensity, and increasingly negative levels with greens of
increasing intensity.

– Missing expression levels are usually colored gray.
4 http://genome-www.stanford.edu/clustering
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Table 2. Comparisons of NNGA with other algorithms in terms of best score

Cell cycle cdc15 Cell cycle Yeast Complexes
NNGA 539 634 384
FCGA 521 627 N.A.

Single-linkage 251 336 300
Complete-linkage 498 598 340
Average-linkage 500 581 331

SOM 461 578 306

N.A. : Not Available

(a) Random (b) FCGA (c) NNGA

Fig. 4. Visualization results for Cell cycle cdc15

Figure 4 shows the visualization results for Cell cycle cdc15. In particular,
Fig. 4(a) shows a random order, which is the original order and Fig. 4(b) and
4(c) show the best orders found by FCGA and NNGA, respectively. The NNGA
shows a notable feature that clusters gene expression profiles with many missing
data. One can find the clustered gray rows in Fig. 4(c).

6 Conclusions

We proposed a hybrid genetic algorithm for finding the optimal gene order in
displaying the microarray data. To use the natural crossover, which exploits two-
dimensional geographical information, we applied the Sammon’s mapping to the
data.

Furthermore, we improved the visualization results using our new TSP for-
mulation. Our key idea is that reducing relatively long edges in a tour is less
meaningful for visualization and it is thus advantageous to exclude the long
edges from the fitness function. Experimental results showed that our idea im-
proved the visualization results. Using the new fitness function, we could align
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more genes with the same group next to each other compared to state-of-the-art
algorithms.

However, there is still a lot of work to give insight into the visualization of
the microarray data. Since there have been no official criterion for evaluating vi-
sualization results, it is controversial to claim which one is better than the others
in terms of a measure. We think that it is because most biologists analyze the
results based on their limited visual intuition. We believe that examining what
visualization is more meaningful to biologists is one of the most fundamental
and demanding study.

The distance measure itself is also an interesting issue. While the Pearson
correlation has been extensively used in the literature, it is not clear that the
Pearson correlation is the best measure for defining the similarity between gene
expression profiles. More elaborate distance measures such as an information-
theoretic measure [11,25] are left for future studies.

Acknowledgments. The authors would like to thank Soonchul Jung and Huai-
Kuang Tsai for invaluable discussions on this paper. This work was partly sup-
ported by Optus Inc. and Brain Korea 21 Project. The RIACT at Seoul National
University provided research facilities for this study.
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