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Abstract. The tip position control of a single-link flexible manipulator
is considered in this paper. The cross-sectional dimension of the ma-
nipulator is tuned by genetic algorithms such that the first vibration
mode dominates the higher order vibrations. A sliding mode controller
of reduced dimension is employed to control the manipulator using the
rigid and vibration measurements as feedback. Control effort is shared
dynamically between the rigid mode tracking and vibration suppression.
Performance and effectiveness of the proposed reduced dimension sliding
mode controller in vibration suppression and against payload variations
are demonstrated with simulations.

1 Introduction

Flexible manipulators are robotic manipulators made of light-weight materials,
e.g. aluminium. Because of the reduction in weight, lower power consumption
and faster movement can be realised. Other advantages include the ease of set-
ting up and transportation, as well as reduced impact destruction should the
manipulator system went faulty. Light-weight manipulators can be applied in
general industrial processes, e.g. pick and place, other applications could include
the space shuttle on-board robotic arm. However, due to its light-weight, vibra-
tions are inherent in the flexible manipulator that hinders its wide application.

Earlier research on the control of flexible manipulators could be found in
[1] where a state-space model of the manipulator was proposed and the linear
quadratic gaussian approach was used. Other research work included the use of
an H∞ controller in [2], the manipulator considered allow movements in both
the horizontal and vertical planes. The use of deterministic control was found in
[3], where a sliding mode controller was applied. The control effort was switched
between the vibration mode errors, however, in an ad-hoc weighting basis. Re-
cently, in [4], a sliding mode controller with reduced controller dimension, using
only the rigid mode and first vibration mode as feedback, was demonstrated.
The sliding surfaces were made adaptive to enhance the controller performance.
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However, a relatively large number of switching in controller gains had to be
incorporated in the controller. Apart from these advanced controller designs, in-
telligent controllers were also reported in [5], where a model-free fuzzy controller
was used to control the flexible manipulator. In [6], a flexible manipulator was
controlled by a neural network controller, trained with genetic learning. Genetic
tuning of a Lyapunov based controller was also reported in [7], where stability
was guaranteed by the Lyapunov design. Moreover, the controller performance
was enhanced by genetic algorithm tuning. The work in [8] also showed that a
sliding mode controller retaining only the rigid mode and first vibration mode
as feedback was feasible. The approach adopted was that the control on the
tip position and vibrations were dynamically weighted in a fuzzy-like manner.
Diverging from the focus on controller designs, structural dimensions of the flex-
ible manipulator was considered in [9], where a tapered beam resulted and the
vibration frequency was increased for faster manoeuvre.

In this work, we consider the tip angular positional control of a single-link
flexible manipulator. The manipulator is constructed in the form of a narrow
beam of rectangular cross-section. At the hub is driven by a dc motor and the
tip carries a payload. We use a sliding mode controller for its robustness against
model uncertainties and parameter variations, e.g. payload variations. An inspec-
tion on the manipulator mathematical model will reflect that the manipulator is
of infinite dimension, and the design and implementation of an infinite dimen-
sion controller is challenging. Here, we follow the work of [4] and [8], that only
the rigid mode and first vibration mode are used as feedback and the controller
dimension is therefore reduced. When using only the first vibration mode as one
of the feedback, we need to ensure that it dominates all other higher order vi-
brations. Motivated by the work in [9], we propose to adjust the cross sectional
dimension of the manipulator. In addition to the above requirement, we also
aim to increase the vibration frequency for reduced vibration magnitude, while
rejecting a large cross section area that increases the weight of the manipulator.
We also see from the manipulator model that vibrations are proportional to the
slope of the mode shapes at the hub. Therefore, in order to reduce vibration as
a whole, we penalise large mode shape slopes. The above arguments lead to the
formulation of a multi-objective optimisation problem. From [10], we propose to
use the genetic algorithm to search for the optimal manipulator cross sectional
dimension. The resultant manipulator characteristics will facilitate the design
and implementation of a sliding mode controller of reduced dimension.

This paper is arranged as follows. The manipulator model will be developed
in Section 2. Section 3 will present the sliding mode controller design. The genetic
tuning of manipulator dimensions will be treated in Section 4. Simulation results
will be presented in Section 5 and a conclusion will be drawn in Section 6.

2 System Modelling

The flexible manipulator considered here is a uniform aluminium beam with
rectangular cross section and moves in the horizontal plane. One end of the
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beam is fixed to the hub consisting of a dc motor and associated mounting
fixtures. At the other end, the tip, is mounted a gribber for pick and place
operation. The gribber and the load together form the payload. Angular sensors,
e.g. accelerometers and angular encoders, are mounted at the tip and the motor
shaft respectively. The manipulator set-up is shown in Fig. 1. The definitions of
the manipulator parameters are shown in Fig. 2. Using the Eular-Bernoulli beam
theory, we assume that shear and rotary inertia are negligible and vibrations
being small as compared to the length of the manipulator, the equation of motion
of the manipulator can be given as [2]

EI
∂4y

∂x4 + ρ
∂2y

∂t2
= 0 (1)

where E=Young’s modulus, I=cross sectional moment of inertia, ρ=mass per
unit length, y=displacement from reference
The boundary conditions are

y(0) = 0, EIy′′(0) = τ + Jhθ̈h, EIy
′′′(L) = mtÿ(L), EIy′′(L) = −Jtÿ

′(L)
(2)

where τ=motor torque, Jh=hub inertia, θh=hub angle, mt=payload mass,
Jt=payload inertia, L=manipulator length, prime stands for differentiation
against x, dot stands for differentiation against time t
Using separation of variables, put

y(x, t) = φ(x)ϕ(t) (3)

then we have

ϕ̈+ ω2ϕ = 0, φ′′′′ − β4φ = 0, ω2 = β4EI

ρ
(4)

The general solution to Equ.4 is the mode shape given by

φ(x) = Asinβx+Bcosβx+ Csinhβx+Dcoshβx (5)

where β is the solution of the characteristic equation formed from the boundary
conditions
Equ.5 can be expressed with coefficient A only, giving

φ(x) = A(sinβx+ γ(cosβx− coshβx) + ξsinhβx) (6)
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where γ and ξ are functions of β and system parameters, and A is yet to be
determined by normalisation
Using the assumed mode method, put

y(x, t) =
∞∑

i=0

φi(t)ϕi(t) = xθh +
∞∑

i=1

φi(x)ϕi(t) (7)

The normalization coefficient Ai of the general solution is

Ai =

√
Jtotal∫ L

0 ρψ2
i (x)dx+mtψ2

i (L) + Jtψ
′2
i (L) + Jhψ

′2
i (0)

(8)

where ψi is the expression inside the bracket in Equ.6
After normalisation using the orthogonal property and keeping consistence with
the rigid mode, we have

ϕ̈i + 2ζωiϕ̇i + ω2ϕi =
τ

Jtotal
φ

′
i(0) (9)

where ζ is the material damping of small value, φ
′
i0) is the slope of the ith

vibration mode shape at the hub, Jtotal is the total inertia making up of the
hub, beam and the tip
With further manipulations, a state space system equation can now be written
as





θ̇h

θ̈h

ϕ̇1
ϕ̈1
...
ϕ̇n

ϕ̈n





=





0 1 . . . . .
0 0 . . . . .
. . 0 1 . . .
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1 . . .

. . .
. . . . . .
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. . . . . −2ζωn −ω2
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θh

θ̇h

ϕ1
ϕ̇1
...
ϕn

ϕ̇n





+





0
1
0

φ
′
1(0)
...
0

φ
′
n(0)





τ

Jtotal
(10)

The motor dynamic equation is

Jhθ̈h = τ =
1
R
kt(V − kbθ̇h), V =

1
kt
Rτ + kbθ̇h (11)

where Jh is the hub inertia, τ is the torque generated by the motor, kt is the
torque constant, V is the voltage applied to the motor, kb is the back-emf con-
stant, R is the armature resistance
Let the controller generate the required driving torque τ , then we will use inverse
dynamics to compute the motor voltage V . It is because the dc motor model
has been well studied and its identification in real practice is not difficult. Fi-
nally, we will apply the derived control voltage to the motor to drive the flexible
manipulator.
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3 Controller Design

We will design the controller using only the rigid mode and first vibration mode
as feedback signals. From the state space equation, Equ.10, we re-write the
system differential equations

θ̈ =
τ1

Jtotal
, ϕ̈ = −2ζωϕ̇− ω2ϕ+

τ2
Jtotal

φ′ (12)

Note that we have dropped all subscripts for clarity. The control objective is to
make

θ → θd and ϕ → 0 for t → ∞
where θd is the desired hub angle
We then define the error variables as

θe = θd − θ, ϕe = −ϕ (13)

The system differential equations become

θ̈e = θ̈d − τ1
Jtotal

, ϕ̈e = −2ζωϕ̇e − ω2ϕe − τ2
Jtotal

φ′ (14)

Following the sliding mode design methods, we define the sliding surface as

s1 = c1θe + θ̇e (15)

where c1 is the slope of the sliding surface
When sliding mode is attained, we have

θe(t) = θe(ts)e−c1t for t > ts

where ts is the time that sliding mode firstly occurred and c1 > 0 then

θe(t) → 0 as t → ∞
The sliding surface time derivative is

ṡ1 = c1θ̇e + θ̈e = c1θ̇e + θ̈d − τ1
Jtotal

(16)

Put

τ1 = (c1θ̇e + θ̈d + j1sign(s1))Jtotal (17)

where sign(x) = 1 for x > 0 and sign(x) = −1 otherwise, and the sliding surface
s1 can be reached for j1 > 0
Similarly, define the sliding surface s2 as

s2 = c2ϕe + ϕ̇e (18)
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The time derivative is

ṡ2 = c2ϕ̇e + ϕ̈e = (c2 − 2ζω)ϕ̇e − ω2ϕe − τ2
Jtotal

φ′ (19)

Put

τ2 = ((c2 − 2ζω)ϕ̇e − ω2ϕe + j2sign(s2))
Jtotal

φ′ (20)

where sliding surfaces2 can also be reached when j2 > 0
Let the sliding mode controller output be

u1 = γ1 + k1sign(s1), u2 = γ2 + k2sign(s2) (21)

where

γ1 = (c1θ̇e + θ̈d)Jtotal, k1 = j1Jtotal

γ2 = ((c2 − 2ζω)ϕ̇e − ω2ϕe)Jtotal

φ′ , k2 = j2
Jtotal

τ2

(22)

Note that there is only one control torque from the motor but there are two
control objectives; namely, θ → θd and ϕ → 0. We have to assign weighting
factors n1 and n2 applying to u1 and u2 respectively.

u = n1u1 + n2u2 = n1γ1 + n1k1sign(s1) + n2γ2 + n2k2sign(s2) (23)

In order to ensure that sliding surfaces are reached, that is, to make s1 → 0,
s2 → 0; we also have to assign the values of k1 and k2. In so doing, we define a
Lyapunov function

V =
1
2
(s21 + s22) > 0 for all s1 �= 0, s2 �= 0 (24)

The time derivative is required to be negative for reachability, that is

V̇ = s1ṡ1 + s2ṡ2 < 0 (25)

When we apply the weighted and aggregated control, Equ.23, to the plant,
Equ.25 becomes

V̇ = s1(n2(γ1 − γ2) − n1k1sign(s1) − n2k2sign(s2))+
s2(n1(γ2 − γ1) − n1k1sign(s1) − n2k2sign(s2))

(26)

From Equ.26, we see that there are two sliding surfaces s1 and s2 being inter-
related to each other. Their combination will affect the Lyapunov function
derivative. It was shown in [8] that the effect will be reduced if the values of
k1 and k2 are given by
for s1 > 0 and s2 > 0
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k1 = max(γ2 − γ1, 0) + ε1, k2 = max(γ1 − γ2, 0) + ε2 (27)

for s1 < 0 and s2 < 0

k1 = max(γ1 − γ2, 0) + ε1, k2 = max(γ2 − γ1, 0) + ε2 (28)

for s1 > 0 and s2 < 0

k1 = max(
n2(γ1 − γ2)

n1
, 0) + ε1, k2 = 0 (29)

for s1 < 0 and s2 > 0

k1 = max(
n2(γ2 − γ1)

n1
, 0) + ε1, k2 = 0 (30)

where ε1 and ε2 are small positive constants to compensate for model uncer-
tainties and parameter variations
Regarding the sharing of control effort between regulation and vibration
suppression, we state our control strategy in the following rule.

A larger control effect is to be applied for hub angle regulation when the hub
angle error is large; when the hub angle is near the set point (small error), apply
larger control effort to suppress the vibration mode.

We also observe from Equ.29 and Equ.30; that k1 may go unbounded if
n1 → 0. Therefore, we put

n1 > n2 with n1 + n2 = 1 (31)

We also assign n1 according to the control strategy in the rule stated above. Put

n1 =
1
2



1 +
1

1 + exp(−a(
∣∣∣ θe

θd

∣∣∣ − b))



 , n2 = 1 − n1 (32)

where θe is the hub angle error, θd is the desired set point, a determines the slope
of weight crossover, b determines the point where crossover in control weighting
is to occur

4 Manipulator Dimension Tuning by Genetic Algorithm

The reduced dimension sliding mode controller developed in Section 3 depends
critically on the fact that the first vibration mode magnitude dominates the
higher order vibrations. When the tip displacement is given by Equ.7, what we
can do to make y1 dominates yi, i > 1, is to make φ1 and ϕ1 to dominate the
corresponding higher order variables. Referring to Equ.6, we see that the value
of φi depends on the value of Ai and βi. Also from Equ.10, the vibrations will be
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excited according to the gain φ
′
i(0). We also see that in normalising the variable

Ai in Equ.8, it is a function of the variable βi. To sum up, the variable βi plays
a critical role in satisfying our requirements in making the first vibration mode
dominate.

From a practical point of view, the hub parameters and the tip parameters are
relatively fixed by the motor torque required and the task assigned. The length
of the manipulator is also fixed by the workspace. A relatively free parameter,
which bears an effect on βi is the cross sectional area of the manipulator. Adjust-
ing the height and width of the manipulator, we change the value of mass per
unit length, cross sectional moment of inertia as well as the beam inertia. The
effect of the manipulator dimension on βi and in turn on φi is very non-linear.
From the equation of motion in Equ.1 and boundary conditions in Equ.2, the
determination of βi in closed form analytical solution is very involved. Therefore,
we turn to the use of genetic algorithms to search for the manipulator dimension
that best satisfies our requirements.

Genetic algorithms are stochastic search methods based on the theory of
evolution, the survival of the fittest, and the theory of schema [10]. When im-
plementing the genetic algorithm, variables to be searched are coded in binary
strings. For two such strings, parents, the binary bit patterns are exchanged in
some bit position selected randomly. The resultant pair of strings, off-springs,
become members of the population in the next generation. The exchange of bi-
nary bits, crossover, is conducted according to a crossover probability pc. The
parents with higher fitness have a higher chance for crossover. The above process
exploits the search space but diversity should be explored. This is made possible
by applying mutation to the off-springs. Mutation flips one of the bit in the
string according to the probability pm.

For every string in the population, fitness is evaluated and then the process
repeats in the next generation. Termination criteria may be selected from track-
ing the improvement over the average fitness of a generation or according to the
count of number of generations being processed.

Variations from the standard genetic algorithms are adopted here in tuning
the manipulator dimensions. We will apply elitism, such that the string with
the highest fitness value is stored irrespective of the processing of generations.
It is because the last generation before termination of the algorithm may or
may not contain the best string. We also adjust the crossover and mutation
probability dynamically according to the improvement on the average fitness of
a generation. If found improving, then pc and pm are reduced by a scale factor.
While the average fitness is not improving, we increase pc and pm to gain more
chances in finding a string of higher fitness. Our algorithm terminates when
the average fitness is improving for several consecutive generations. The genetic
algorithm becomes that described below.

initialise the population randomly
evaluate fitness and average
while not end of algorithm
select parents by fitness
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apply crossover and mutation
evaluate fitness and average
if improving then decrease pc and pm
else increase pc and pm
store the fittest string

end on fitness improved or generations count

The fitness function is defined as

fitness = fr + f1 + f2 − f3 − f4 − f5 + f6 (33)

where fr =reference datum keeping fitness> 0, f1 = 1 when φi(L) are in descend-
ing order f1 = 0 otherwise, f2 =

∑
(φi(L) − φi+1(L)) reward greater dominance

of lower order vibrations, f3 =
∑ |i× φi(L)| penalise weighted magnitude of vi-

brations at tip, f4 =
∑
φ

′
i(0) penalise mode shape slopes at the hub, f5 = HbWb

penalise for large cross-sectional beam area, f6 =
∑
ωi reward higher vibration

frequencies

5 Simulation

Simulations will be described in this section as well as the presentation of simu-
lation results. Cases for comparisons include responses from open-loop and from
the use of the proposed sliding mode controller. We will also present cases for ini-
tially un-tuned and the resulting tuned manipulator responses. The parameters
used in the simulations are given below in Table 1.

Table 1. Simulation Parameters

beam initial height/width/length 0.04m/0.002m/0.8m
hub inertia 1.06−4kgm2

payload mass/inertia 0.38kg/1.78−4kgm2

no. of population/generation 10/20
probability pc/pm (initial) 0.9/0.02
scaling factor for pc and pm 1.1
termination on improvement 3 generations

5.1 Response with Un-tuned Dimensions

Using the initial manipulator parameters, an open-loop simulation was con-
ducted for subsequent performance comparisons. The motor was fed with a
voltage pulse, by some trial and error that brings the response to 0.2rad as
the set-point for close-loop control. The result is shown in Fig. 3. The close-loop
response using the sliding mode controller is shown in Fig. 4, where initial un-
tuned dimensions were used. Comparing Figs. 3 and 4, we see that vibrations are
effectively suppressed in the steady state with the close-loop control. However,
vibration during the transient period is still observed.
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Fig. 4. Close-loop response, dimensions
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5.2 Genetic Algorithm Tuning

Tuning of the manipulator height and width was conducted according to the
genetic algorithm described in Section 4. It is noted that the algorithm termi-
nated before reaching the maximum number of generations with a relatively
small number of populations. This observation shows the modification on the
standard genetic algorithms with dynamic adjustment of the crossover and mu-
tation probabilities were effective. Figures 5 and 6 shows the value of fitness
function and the average fitness over the generations. It is also observed from
the plots that the maximum fitness function though not increasing explicitly,
the occurrences of low fitness were decreasing.

Results of mode shapes at tip, φi(L), mode shape slopes at the hub, φ
′
i, and

the vibration frequencies, ωi, are tabulated in Table 2 for comparison between
the initially un-tuned and the resulting tuned values. From the results, we see
that the mode shape at the tip is arranged in descending order as required. The
vibration frequency shows an increase from the tuned dimensions. An overall
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Fig. 5. Fitness Function

0 20 40 60 80 100 120 140 160 180 200
9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

A
ve

ra
ge

 F
itn

es
s

Fig. 6. Average fitness function
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Table 2. Comparison of design variables resulted from initially un-tuned and tuned
manipulator dimension

Results from un-tuned dimensions
mode .φi(L) .φ

′
i .ωi

1 -0.228 6.983 45.985
2 0.118 17.242 164.929
3 0.012 23.389 320.977

Results from tuned dimensions
mode .φi(L) .φ

′
i .ωi

1 -0.211 7.421 68.366
2 0.102 18.074 243.026
3 0.000 24.191 465.226

optimal manipulator dimension results irrespective of the slight increase in mode
shape slopes.

5.3 Responses with Tuned Dimensions

The tip responses with the use of tuned dimensions are shown in Figs. 7 and 8
below. The tuning of manipulator dimension using genetic algorithms is effective
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Fig. 7. Open-loop response, dimensions
tuned
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Fig. 8. Close-loop response, dimensions
tuned
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Fig. 9. Close-loop response, dimensions
tuned, payload increased by 50%
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Fig. 10. Close-loop response, dimensions
tuned, payload increased by 100%
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in reducing the vibration magnitudes even in the open-loop response. Figures 9
and 10 show the close-loop response when the payload is increased by 50% and
100% respectively. No significant degrade in response is observed.

6 Conclusion

A sliding mode controller was used to control the position of a single-link flexible
manipulator. Only the rigid mode and first vibration mode were used as feed-
back signals that reduced the controller dimension. The manipulator dimensions
were tuned using a genetic algorithm routine, with the application of elitism
and adaptive crossover and mutation probabilities, had made the first vibration
mode dominating the higher order vibrations and reduced the complexity in the
implementation of the controller. Simulation results had demonstrated that the
controller was effective in suppressing vibrations and achieving set-point regula-
tion.
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