
Optimizing the Order of Taxon Addition in
Phylogenetic Tree Construction Using Genetic

Algorithm

Yong-Hyuk Kim1, Seung-Kyu Lee2, and Byung-Ro Moon1

1 School of Computer Science & Engineering, Seoul National University
Shilim-dong, Kwanak-gu, Seoul, 151-742 Korea

{yhdfly, moon}@soar.snu.ac.kr
2 NHN Corp., 7th floor, Startower,

737 Yoksam-dong, Kangnam-gu, Seoul, Korea
spin30@soar.snu.ac.kr

Abstract. Phylogenetics has gained in public favor for the analysis of
DNA sequence data as molecular biology has advanced. Among a num-
ber of algorithms for phylogenetics, the fastDNAml is considered to have
reasonable computational cost and performance. However, it has a defect
that its performance is likely to be significantly affected by the order of
taxon addition. In this paper, we propose a genetic algorithm for optimiz-
ing the order of taxon addition in the fastDNAml. Experimental results
show that the fastDNAml with the optimized order of taxon addition
constructs more probable evolutionary trees in terms of the maximum
likelihood.

1 Introduction

As the revolutions in molecular biology have produced a huge amount of DNA
sequence data, extracting useful information from them has been considered to
be of paramount importance. One of the most important issues includes phylo-
genetics.

Phylogenetics [27] [18] [24] is to infer the most probable evolutionary relation-
ships among species from DNA sequence data. The inferred relationships among
species are typically represented by a tree, also called phylogeny, which consists
of nodes and branches connecting nodes; each node represents a species and
each branch represents the amount of genetic variation between two species. It
is known that constructing the most probable phylogenetic tree is NP-complete
[5] [12]. We are usually interested in the most probable tree in terms of both tree
topology and branch lengths.

A number of algorithms for constructing evolutionary trees have been pro-
posed. Parsimony [6] [7] [1] is one of the most popular methods. However, it has
a severe problem in that it constructs an inconsistent evolutionary tree when the
amounts of genetic changes in different lineages are sufficiently unequal [8].

In contrast to the parsimony which make full use of the information available
in the DNA sequence, there have been simpler approaches that exploit only the

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 2168–2178, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Optimizing the Order of Taxon Addition in Phylogenetic Tree Construction 2169

pairwise similarity between DNA sequences. The least-squares [3] is a popular
method among them. While the least-squares has explicit statistical justification,
it also constructs an inconsistent tree if the rates of evolution are sufficiently
unequal in different lineages [4] [8], as in the parsimony.

To estimate more consistent and probable trees, statistical methods using a
probabilistic model of evolution are proposed. One of the most robust method is
considered to be the maximum likelihood [8], motivated from the earlier proba-
bilistic models of evolution [25]. The approaches using the maximum likelihood
can be classified into two categories: constructive approach and non-constructive
one.

The constructive approach, which is more popular, builds an evolutionary
tree by adding one taxon at a time, starting at an empty tree, with some heuristic
information. DNAml [9] and its improved variant, fastDNAml [26], are the rep-
resentative of them. Although fastDNAml is one of the most widely used method
in the phylogenetics literature, its performance is limited due to its incremen-
tal nature in constructing trees. In particular, the performance of fastDNAml is
notably affected by the order of taxon addition.

As an alternative, non-constructive approaches have also been applied for
phylogeny reconstruction. They include all the algorithms without the explicit
taxon addition. Recently, evolutionary algorithms such as genetic algorithms
[15] [11] [23] have been proposed for constructing evolutionary trees [20] [17] [16]
[21]. However, most of them conducted experiments with limited data sets and
required considerably high computational cost compared with the constructive
approach. They need to be more elaborate to be useful as practical algorithms
with reasonable performance.

In this paper, we propose a genetic algorithm for optimizing the order of
taxon addition in fastDNAml. The rest of the paper is organized as follows. In
Section 2, we describe the maximum likelihood and the fastDNAml. In Section 3,
we explain our genetic algorithm in detail and present our experimental results
in Section 4. Finally, we make our conclusions in Section 5.

2 Preliminaries

2.1 Maximum Likelihood

Maximum likelihood method [8] is a method for reconstructing phylogenetic
trees, or evolutionary trees. Its distinctive feature is that it requires a model of
sequence evolution which designates how the sequence evolves. The maximum
likelihood method consists of three elements: an evolutionary model, a tree, and
the observed sequence.

The maximum likelihood method computes the likelihood of obtaining the
observed sequence with a given tree topology, assigned branch lengths, and a
given evolutionary model. Since the likelihood is mostly very small, we usually
work with log-likelihood rather than the likelihood itself. The log likelihood of
obtaining the observed sequence is defined by:

2170 Y.-H. Kim, S.-K. Lee, and B.-R. Moon

lnL =
k∑

i=1

lnLi

where k is the number of sites and Li is the likelihood of obtaining the nucleotide,
one of {A, C, G, T}, at site i. Based on the maximum likelihood, trees with higher
log-likelihoods are considered better.

2.2 fastDNAml

The fastDNAml [26] is one of the most popular programs with reasonable per-
formance and running time. It is an improved version of its predecessor, DNAml
[9], in terms of both performance and running time.

The main motivation for the fastDNAml was to reduce the computational
cost of DNAml. The DNAml was effective in reconstructing phylogenetic trees
with high likelihoods but it required considerably long time to find the trees.
To alleviate the cost, fastDNAml uses Newton-Raphson method for finding op-
timal branch lengths and limits the effort concerning to the branch length opti-
mization. With the two alterations, fastDNAml considerably outperformed the
DNAml in terms of both performance and running time.

Figure 1 shows the outline of tree construction in fastDNAml. Note that the
phylogenetic tree with three taxa has only one topology. Details for partial tree
check and full tree check are described in [26].

The fastDNAml is the representative of the constructive approaches, which
build an evolutionary tree by adding one taxon at a time, starting at an empty
tree. The performance of fastDNAml is greatly affected by the order of taxon
addition. Figure 2 shows two example phylogenetic trees with different orders of
taxon addition for an instance with eight taxa (instance algae). It suggests that
the order of taxon addition can greatly affect the qualities of the resultant trees.

3 A Genetic Algorithm

We propose a genetic algorithm (GA) for finding an optimal order of taxa ad-
dition. It conducts a search using an evaluation function related with distance
between taxa. The order can be found by enumerating and testing all possi-
bilities. The search space with n taxa has n! elements if all possibilities are
considered. Our GA provides an alternative search method to find a good order
of taxa addition.

A genetic algorithm hybridized with local optimizations is called a hybrid
GA. A considerable number of studies about hybridization of GAs [30] [29] [19]
have been proposed. Figure 3 shows a typical steady-state hybrid genetic algo-
rithm. In the next subsection, we describe each part of the hybrid GA that we
used for this work.

Optimizing the Order of Taxon Addition in Phylogenetic Tree Construction 2171

fastDNAml()
// n : the final number of taxa
// i : the number of taxa in the current tree
// A : the next taxon to be inserted
// Ti : the current estimate of the best tree size i
// Tp : the tree after partial tree check (minor changes)
// Tf : the tree after full tree check (greater changes)
// Pi : the set of all the possible tree topologies by adding A to Ti

Compute the optimal tree T3;
i← 3;
do {

Pick the next taxon A;
Construct the set Pi;
for each tree in Pi

{ Compute the optimal branch lengths and corresponding likelihood; }
Set Ti+1 to be the best tree in Pi;
i← i + 1;
do

Generate a modified tree Tp from Ti (partial tree check);
until (none of Tp’s is better than Ti);
Ti ← the best among Tp’s;

} until (i = n);
do

Generate a modified tree Tf from Tn (full tree check);
until (none of Tf ’s is better than Tn);
Tn ← the best among Tf ’s;
return Tn;

Fig. 1. The outline of tree construction in fastDNAml

3.1 Genetic Operators

– Encoding: A chromosome corresponds to an order of taxon addition. The
number of genes in the chromosome is equal to the number of taxa. Each
gene corresponds to a taxon.

– Initialization: All the chromosomes are created at random. Any valid per-
mutation of order is allowed. We set the population size to be 50 in our
algorithm.

– Selection: The roulette-wheel-based proportional selection is used. The fitness
value Fi of a chromosome i is calculated as follows:

Fi = (Ow − Oi) + (Ow − Ob)/3

where Ow is object value of the worst chromosome in the population, Ob is
object value of the best chromosome in the population, Oi is object value of
chromosome i. Each chromosome is selected as a parent with a probability
proportional to its fitness value.

2172 Y.-H. Kim, S.-K. Lee, and B.-R. Moon

lnL = −3166.91330

lnL = −3158.20339

Fig. 2. Two example phylogenetic trees with different orders of taxon addition for algae

Create initial population of fixed size;
do {

Choose parent1 and parent2 from population;
offspring ← crossover(parent1, parent2);
mutation(offspring);
local-optimization(offspring);
if suited(offspring) then replace(population, offspring);

}until (stopping condition);
return the best answer;

Fig. 3. A typical steady-state hybrid genetic algorithm

Optimizing the Order of Taxon Addition in Phylogenetic Tree Construction 2173

iterative-improvement()
// ci : ith gene of chromosome C
// fC : fitness of chromosome C

prev ← fC ;
do {

flag ← false;
for all i, j pairs (i < j)
{

Swap ci and cj ;
current← fC ;
gain← prev − current;
if (gain < 0) then Swap ci and cj ; // undo swapping
else {

flag ← true;
prev ← current;

}
}

} until (flag = false);

Fig. 4. An iterative improvement heuristic

– Crossover: Since a chromosome designates an order, an order-based crossover
is a natural choice. We use the PMX (Partially Matched Crossover) [10],
one of the most popular order-based crossovers. PMX proceeds as follows.
1) Two chromosomes are aligned. 2) Two crossing points are selected at
random along the chromosomes, defining a matching section. 3) The genes
in the matching section are exchanged. 4) Repair for a valid permutation is
performed.

– Mutation: Two genes are randomly chosen and swapped. The swaps are
repeated for a predetermined times.

– Local Optimization: Hybrid genetic algorithms have been considered natural
in solving a difficult problem to get desirable performance since genetic algo-
rithms are not so good at fine tuning near local optima. In this study, we use
an iterative improvement heuristic for local minimization and it is applied
to the offspring after mutation. Figure 4 shows the iterative heuristic.

– Replacement: The preselection [2] is used. The offspring replaces the worse
parent. The preselection is advantageous in maintaining the diversity of the
population.

– Stopping Criterion: Our GA stops when one of the two conditions is satisfied:
i) the number of generations reaches 5,000, ii) when the fitness of the worst
chromosome is equal to the fitness of the best one.

2174 Y.-H. Kim, S.-K. Lee, and B.-R. Moon

Table 1. Comparison of Two Addition Orders

Max-relation order Min-relation order
HIVenvSweden −1159.93528 −1159.68256

algae −3159.07438 −3158.20339
hasegawa5 −2682.76961 −2682.75376

exampleTipDate −3869.25646 −3869.25645

3.2 Evaluation Function

It is ideal to use fastDNAml itself for the fitness evaluation of the GA. However,
because of the serious time requirement of fastDNAml, we use a heuristic method
for the fitness evaluation of a taxon order.

We performed some experiments to get insights on good orders of taxon ad-
dition. Firstly, we tried to iteratively add a taxon that highly relates with previ-
ously added taxa. We call this order “Max-relation order.” On the other hand,
we also tried the opposite. In this heuristic, we prefer a taxon most unrelated
with previously added taxa, the order is called “Min-relation order.” Table 1
shows the lnL scores for some instances by the two addition orders. The results
of “Min-relation order” were better than those of “Max-relation order.” This
result is contrary to our expectation. The performance of “Max-relation order”
seems to be limited in that it is likely to form too strong a shape in the early
stage of tree construction.

We attempt to find a Min-relation order. We suspect that such an order first
makes a global sketch of the tree topology and then adjusts the details. Our GA
minimizes the following formula:

object function =
∑

i>j

(Dij − w · ((n − 1) − (i − j)))2

where Dij is the gene distance between taxa i and j, n is the number of taxa,
and the balancing factor w =

∑
i>j Dij/

∑
i>j(i − j).

4 Experimental Results

4.1 Data Sets

Nine instances were tested. Table 2 shows the number of taxa and the number
of sites for each instance. The number of taxa ranges from 7 to 55. The number
of sites ranges from 232 up through 1,485. Brief descriptions about the instances
are in the following.

– HIVenvSweden: HIV-1 sample of 136 patients from Sweden envelope glyco-
protein (env) gene, V3 region. Thirteen HIV env genes used by Yang et al.
[35] in developing models of variable selective pressures among sites (the
NSsites models).

Optimizing the Order of Taxon Addition in Phylogenetic Tree Construction 2175

Table 2. Test Sets

of taxa # of sites
HIVenvSweden 13 273

algae 8 900
hummt25 25 601

green 12 1314
rbcl55 55 1314

hasegawa5 14 232
mtprim9 9 888

exampleTipDate 17 1485
lysozymeSmall 7 390

– algae: 16s rDNA data.
– hummt25: Twenty five human D-loop sequences used in [34].
– rbcl55: Large subunit of RuBisCO gene from chloroplasts. Sequences of the

chloroplast gene rbcL from a diversity of green plants, used in [17]. green
extracted from rbcl55 consists of first 12 taxa of rbcl55.

– hasegawa5: Used by Hasegawa et al. [13].
– mtprim9: mtDNA primate dataset. A mitochondrial segment consisting 888

aligned sites from nine primate species [14], used by Yang [31] to test the
discrete-gamma model and Yang [32] to test the auto-discrete-gamma mod-
els.

– exampleTipDate: Data set of 17 dengo viral strains sequenced at different
dates from Andrew Rambaut’s TipDate program. This was used for testing
the TipDate models of [28].

– lysozymeSmall: Primate lysozyme genes of [22], used by Yang [33] in devel-
oping tests of positive selection along lineages. This is the “small data set”
analyzed in that paper.

4.2 Performance

The main results are given in Table 3. The column “Basic order” shows the lnL
scores by the usual random addition order, and the column “New order” shows
the lnL scores by the addition order obtained by our GA. One can see that the
results by “New order” significantly better than those of “Basic order.”

Finally, we examine the effectiveness of the object function of Section 3.2.
Since the fastDNAml itself requires rather high computational cost, it is imprac-
tical to use fastDNAml for fitness evaluation in GA. Although impractical, we
replaced the object function by the lnL score of fastDNAml. This means that we
run fastDNAml for evaluation whenever an offspring is created. Table 4 shows the
lnL scores by the best and worst addition orders found by GA. Although some
instances were independent of the addition orders (mtprim9 and lysozymeSmall),
the results overall shows that the order of addition greatly affects the qualities

2176 Y.-H. Kim, S.-K. Lee, and B.-R. Moon

Table 3. Comparison of Results

Basic order New order
HIVenvSweden −1160.40239 −1159.27680

algae −3159.07438 −3158.20339
hummt25 −1710.83504 −1706.99035

green −8808.40925 −8800.40369
rbcl55 −28586.07304 −28575.65960

hasegawa5 −2682.91642 −2682.67452
mtprim9 −5243.41821 −5243.41821

exampleTipDate −3869.32158 −3869.25645
lysozymeSmall −924.97205 −924.97205

- The figures in the table are the lnL scores with HKY evolutionary
model [13].

Table 4. Results of the Best and Worst Addition Orders

Worst order Best order
HIVenvSweden −1164.16258 −1159.27680

algae −3166.91330 −3158.20339
hummt25 −1754.03450 −1706.99035

green −8840.43147 −8800.40369
rbcl55 −28662.63835 −28571.70704

hasegawa5 −2692.47175 −2682.67452
mtprim9 −5243.41821 −5243.41821

exampleTipDate −3869.52773 −3869.25645
lysozymeSmall −924.97205 −924.97205

of the resultant trees. It is surprising that except for one instance, rbcl55, the
lnL scores by the “Best order” are the same as those by the “New Order” in
Table 3. This supports the effectiveness of the Min-relation order; we suggest to
use it practically. The results of fastDNAml could be improved in this way by
the proposed GA.

5 Conclusions

We proposed a hybrid genetic algorithm for optimizing the order of taxon addi-
tion in the fastDNAml. Since the performance of the fastDNAml is dependent on
the order of taxon addition, we attempted to optimize the order using a genetic
algorithm.

Although we improved the fastDNAml with attractive orders, there is still
room for improvements. First of all, we need to study more about the relation
between the distance among taxa and the taxon addition order.

It is also necessary to incorporate more problem-specific information into
the local optimizations. Since a phylogenetic tree with high lnL score often re-

Optimizing the Order of Taxon Addition in Phylogenetic Tree Construction 2177

veals new relationship between taxa, it is practically valuable to improve the
algorithm. It is left for further study.

Acknowledgments. This work was partly supported by Optus Inc. and Brain
Korea 21 Project. The RIACT at Seoul National University provided research
facilities for this study.

References

1. J. H. Camin and R. R. Sokal. A method for deducing branching sequences in
phylogeny. Evolution, 19:311–326, 1965.

2. D. Cavicchio. Adaptive Search Using Simulated Evolution. PhD thesis, University
of Michigan, Ann Arbor, MI, 1970.

3. R. Chakraborty. Estimation of time of divergence from phylogenetic studies. Cana-
dian Journal of Genetics and Cytology, 19:217–223, 1977.

4. D. H. Colless. The phylogenetic fallacy. Systematic Zoology, 16:289–295, 1967.
5. W. H. E. Day. Computational complexity of inferring phylogenies from dissimilarity

matrices. Bulletin of Mathematical Biology, 49(4):461–467, 1987.
6. A. W. F. Edwards. The reconstruction of evolution. Heredity, 18:553, 1963.
7. A. W. F. Edwards and L. L. Cavalli-Sforza. Reconstruction of evolutionary trees.

Phenetic and Phylogenetic Classification, pages 67–76, 1964.
8. J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood

approach. Journal of Molecular Evolution, 17:368–376, 1981.
9. J. Felsenstein. PHYLIP - phylogeny inference package (version 3.2). Cladstics,

5:164–166, 1989.
10. D. Goldberg and R. Lingle. Alleles, loci and the traveling salesman problem. In

International Conference on Genetic Algorithms, pages 154–159, 1985.
11. D. E. Goldberg. Genetic algorithms in search, optimization and machine learning.

Addison-Wesley, Reading, MA, 1989.
12. R. L. Graham and L. R. Foulds. Unlikelihood that minimal phylogenetics for

a realistic biological study can be constructed in reasonable computational time.
Mathematical Biosciences, 60:133–142, 1982.

13. M. Hasegawa, H. Kishino, and T. Yano. Dating the human-ape splitting by a
molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22:160–
174, 1985.

14. K. Hayasaka, T. Gojobori, and S. Horai. Molecular phylogeny and evolution of
primate mitochondrial DNA. Molecular Biology and Evolution, 5:626–644, 1988.

15. J. Holland. Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor, 1975.

16. K. Katoh, K. Kuma, and T. Miyata. Genetic algorithm-based maximum-likelihood
analysis for molecular phylogeny. Journal of Molecular Evolution, 53:477–484,
2001.

17. P. O. Lewis. A genetic algorithm for maximum likelihood phylogeny inference
using nucleotide sequence data. Molecular Biology and Evolution, 15(3):277–283,
1998.

18. W. H. Li. Molecular Evolution. Sinauer Associates, Sunderland MA, 1997.
19. F. G. Lobo and D. E. Goldberg. Decision making in a hybrid genetic algorithm.

In IEEE International Conference on Evolutionary Computation, pages 121–125,
1997.

2178 Y.-H. Kim, S.-K. Lee, and B.-R. Moon

20. H. Matsuda. Protein phylogenetic inference using maximum likelihood with a
genetic algorithm. In Pacific Symposium on Biocomputing ’96, pages 512–523,
1996.

21. A. Meade, D. Corne, M. Pagel, and R. Sibly. Using evolutionary algorithms to es-
timate transition rates of discrete characteristics in phylogenetic trees. In Congress
on Evolutionary Computation, pages 1170–1177, 2001.

22. W. Messier and C.-B. Stewart. Episodic adaptive evolution of primate lysozymes.
Nature, 385:151–154, 1997.

23. M. Mitchell. An introduction to genetic algorithms. MIT Press, London, 1996.
24. M. Nei and S. Kumar. Molecular Evolution and Phylogenetics. Oxford University

Press, New York, 2000.
25. J. Neyman. Molecular studies of evolution: a source of novel statistical problems.

In Statistical Decision Theory and Related Topics, ed. S. S. Gupta and J. Yackel.
New York: Academic Press, pages 1–27, 1971.

26. G. J. Olsen, H. Matsuda, R. Hagstrom, and R. Overbeek. fastDNAml: a tool for
construction of phylogenetic trees of DNA sequences using maximum likelihood.
Computer Applications in the Biosciences, 10(1):41–48, 1994.

27. R. D. M. Page and E. C. Holmes. Molecular Evolution: A Phylogenetic Approach.
Blackwell Science, 1998.

28. A. Rambaut. Estimating the rate of molecular evolution: incorporating non-
contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics,
16(4):395–399, 2000.

29. J. M. Renders and H. Bersini. Hybridizing genetic algorithms with hill-climbing
methods for global optimization: two possible ways. In Proceedings of the First
IEEE Conference on Evolutionary Computation, pages 312–317, 1994.

30. D. Whitley, V. Gordon, and K. Mathias. Larmarckian evolution, the Baldwin
effect and function optimization. In International Conference on Evolutionary
Computation, Oct. 1994. Lecture Notes in Computer Science, 866:6-15, Springer-
Verlag.

31. Z. Yang. Maximum likelihood phylogenetic estimation from DNA sequences with
variable rates over sites: approximate methods. Journal of Molecular Evolution,
39:306–314, 1994.

32. Z. Yang. A space-time process model for the evolution of DNA sequences. Genetics,
139:993–1005, 1995.

33. Z. Yang. Likelihood ratio tests for detecting positive selection and application to
primate lysozyme evolution. Molecular Biology and Evolution, 15:568–573, 1998.

34. Z. Yang and S. Kumar. New parsimony-based methods for estimating the pattern
of nucleotide substitution and the variation of substitution rates among sites and
comparison with likelihood methods. Molecular Biology and Evolution, 13:650–659,
1996.

35. Z. Yang, R. Nielsen, N. Goldman, and A.-M. K. Pedersen. Codon-substitution
models for variable selection pressure at amino acid sites. Genetics, 155:431–449,
2000.

	Introduction
	Preliminaries
	Maximum Likelihood
	fastDNAml

	A Genetic Algorithm
	 Genetic Operators
	 Evaluation Function

	Experimental Results
	Data Sets
	Performance

	Conclusions

