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Abstract. When using a Genetic Algorithm (GA) to optimize the feature space 
of pattern classification problems, the performance improvement is not only de-
termined by the data set used, but also depends on the classifier.  This work 
compares the improvements achieved by GA-optimized feature transformations 
on several simple classifiers. Some traditional feature transformation tech-
niques, such as Principal Components Analysis (PCA) and Linear Discriminant 
Analysis (LDA) are also tested to see their effects on the GA optimization.  The 
results based on some real-world data and five benchmark data sets from the 
UCI repository show that the improvements after GA-optimized feature trans-
formation are in reverse ratio with the original classification rate if the classifier 
is used alone.  It is also shown that performing the PCA and LDA transforma-
tions on the feature space prior to the GA optimization improved the final re-
sult. 

1   Introduction 

The genetic algorithm (GA) has been tested as an effective search method for high-
dimensional complex problems, taking advantage of its capability for sometimes 
escaping local optima to find optimal or near optimal solutions.  In pattern classifica-
tion, GA is widely used for parameter tuning, feature weighting [1] and prototype 
selection [2]. 

Feature extraction and selection is a very important phase for a classification sys-
tem, because the selection of a feature subset will greatly affect the classification 
result.  GA has recently also been used in the area of feature extraction.  The optimi-
zation of feature space using GA can be linear [3], or non-linear [4], where in both 
cases, the GA stochastically, but efficiently, searches in a very high-dimensional data 
space that makes traditional deterministic search methods run out of time.  The GA 
approach can also be combined with other traditional feature transformation methods.  
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Prakash presented the combination of GA with Principal Components Analysis 
(PCA), where instead of the few largest Principal Components (PCs), a subset of PCs 
from the whole spectrum was chosen by the GA to get the best performance [5]. 

In this work, three classifiers – a kNN classifier, a Bayes classifier and a Linear 
Regression classifier – are tested, together with the PCA and LDA transformations.  
One new, real-world dataset, the Electrocardiogram (ECG) data, and five benchmark 
datasets from the UCI Machine Learning Repository [6] are used to test the approach. 

The paper starts with an introduction to GA approaches in the area of pattern clas-
sification in Section 2, followed by our solution designed in Section 3.  Section 4 
presents the results on ECG data with detailed comparison with regard to both classi-
fier choice and the use of PCA/LDA transformations.  Section 5 extends the tests to 
five benchmark pattern classification test sets, by using the best solution on 
PCA/LDA combination found in Section 4.  Section 6 concludes the paper and Sec-
tion 7 proposes some possible future work. 

2   GA in Pattern Classification 

Generally, the GA-based approaches to pattern classification can be divided into two 
groups:  
• Those directly applying GA as part of the classifier.  
• Those optimizing parameters in pattern classification. 

2.1   Direct Application of GA as Part of the Classifier 

When the GA is directly applied as part of the classifier, the main difficulty is how to 
represent the classifier using the GA chromosome.  Bandyopadhyay and Murthy 
proposed an idea using a GA to perform a direct search on the partitions of an N-
dimensional feature space, where each partition represents a possible classification 
rule [7].  In this approach, the decision boundary of the N-dimensional feature space 
is represented by H lines.  The genetic algorithm is used to find those lines that mini-
mize the misclassification rate of the decision boundary.  The number of lines, H, 
turns out to be a parameter similar to the k in the kNN classifier.  More lines (higher 
H) do not necessarily improve the classification rate, due to the effect of over-fitting.   

In addition to using lines as space separators, Srikanth et al [8] also gave a novel 
method clustering and classifying the feature space by ellipsoids. 

2.2   Optimizing Parameters in Pattern Classification by GA 

However, most of the approaches using GA in pattern classification do not design the 
classifier using GA.  Instead, GA is used to estimate the parameters of the pattern 
classification system, which can be categorized into the following four classes: 
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GA-Optimized Feature Selection and Extraction. Feature selection and extraction 
are the most widely used applications of GA in pattern classification.  The classifica-
tion rate is affected indirectly when different weights are applied to the features. A 
genetic algorithm is used to find a set of optimal feature weights that can improve the 
classification performance on training samples.  Before GA-optimized feature extrac-
tion and selection, traditional feature extraction techniques such as the Principal Com-
ponents Analysis (PCA) can be applied [5], while after that, a classifier should be 
used to calculate the fitness function for the GA.  The most commonly used classifier 
is the k-Nearest Neighbor classifier [9], [1]. 

GA-Optimized Prototype Selection. In supervised pattern classification, the refer-
ence set or training samples are critical for the classification of testing samples.  A 
genetic algorithm can be also used in the selection of prototypes in case-based classi-
fication [2], [10].  In this approach, a subset of the most typical samples is chosen to 
form a prototype, on which the classification for testing and validation samples is 
based. 

GA-Optimized Classifier. GA can be used to optimize the input weight or topology 
of a Neural Network (NN) [4].  It is intuitive to give weights for each connection in a 
NN.  By evolving the weights using GA, it is possible to throw away some connec-
tions of the neural network if their weights are too small, thus improving the topology 
of the NN, too. 

GA-Optimized Classifier Combination. The combination of classifiers, sometimes 
called Bagging and Boosting [11], may also be optimized by Genetic Algorithm.  
Kuncheva and Jain [12], in their design of the Classifier Fusion system, not only 
selected the features, but also selected the types of the individual classifiers using a 
genetic algorithm. 

3   GA-Optimized Feature Transformation Algorithm 

This section first reviews the two models for feature extraction and feature selection 
in pattern classification.  Then a GA-optimized feature weighting and selection algo-
rithm based on the wrapper model [13] is proposed, outlining the structure of the 
experiment in this paper. 

3.1   The Filter Model and the Wrapper Model 

For the problem of feature extraction and selection in pattern classification, two mod-
els play important roles.  The filter model chooses features by heuristically deter-
mined “goodness”, or knowledge, while the wrapper model does this by the feedback 
of the classifier evaluation, or experience. Fig. 1 illustrates the differences between 
these two models. 
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Fig. 1. Comparison of filter model and wrapper model 

Research has shown that the wrapper model performs better than the filter model, 
comparing the predictive power on unseen data [14].  Some widely used feature ex-
traction approaches, such as Principal Components Analysis (PCA), belong to the 
Filter model because they rank the features by their intrinsic properties: the eigenval-
ues of the covariance matrix.  Most recently developed feature selection or extraction 
techniques are categorized to be Wrapper models, taking into consideration the classi-
fication results of a particular classifier.  For example, the GFNC (Genetically Found, 
Neurally Computed) approach by Firpi [4] uses a GA and a Neural Network to per-
form non-linear feature extraction with the feedback from a kNN classifier as the 
fitness function for the Genetic Algorithm.  A modified PCA approach proposed by 
Prakash also uses genetic algorithms to search for the optimal feature subset with the 
feedback result of the classifier [5]. 

 

 

Fig. 2. Classification system with feature weighting 

3.2   GA-Optimized Pattern Classification with Feature Weighting 

Consider the wrapper model introduced above; in any of the pattern classification 
systems with weighted features, there are five components that need to be determined 
as illustrated in Fig. 2. 
• The dataset used. 
• The feature space transformation to be applied on the original feature space, 

known as the feature extraction phase in traditional pattern classification systems. 
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• The optimization algorithm which searches for the best weighting for the fea-
tures;  

• The classifier used to get the feedback, or fitness, for the GA, of the feature 
weighting. (The Induction Algorithm in the Wrapper Model [13]) 

• The classifier to calculate the final result for the classification problem based on 
the newly weighted features (the classifier for the result). 

From Fig. 2, we can see that among these components, the feature space transfor-
mation, the optimization and the classifier are the plug-in procedures for feature 
weighting optimization.  The feature-weighting framework is the plug-in procedure in 
traditional classification systems that transforms the feature space, weights each fea-
ture, evaluates and optimizes the weight attached to each feature. 

In this paper, we can replace each of the components listed above by the specific 
choices we made, as follows: 
• Data: ECG data and five other data sets from UCI repository. 
• Feature Space Transformation: PCA, LDA and their combinations.  
• Optimization Algorithm: Genetic algorithm or none. When implemented with 

different classifiers: feature weighting for kNN classifier, and feature selection 
for other classifiers.  The reason for using feature weighting for the kNN classi-
fier is because of its distance metric, that will affect the classification result by 
changing its weight [1], while for the Bayes classifier and the linear regression 
classifier, feature weighting has no further effect on the training error when com-
pared with feature selection [15]. 

• Classifier (induction algorithm): A kNN classifier, a Bayes classifier and a linear 
regression classifier. 

• Classifier for Result:  Same classifier as used for the induction algorithm. 

4 Test Results for ECG Data 

The test results for ECG data, with various settings regarding the feature space trans-
formation, using the GA or not, and using various classifiers, are presented and com-
pared in this section.  We will first discuss the experimental settings, and then move 
on to the results. 

4.1   Experimental Settings 

The ECG data used in this paper is directly extracted from the 12-lead, 10-second 
digital signal acquired from Shanghai Zhongshan Hospital, containing 618 normal 
ECG cases and 618 abnormal cases.  The abnormal cases contain three different kinds 
of diseases with roughly the same number of cases of each.  Altogether, 23 features, 
including 21 morphological features and 2 frequency domain features, are extracted 
from the original signal. 

For a non-GA-optimized classifier, the data is partitioned into training samples and 
validation samples; for a GA-optimized algorithm, the data is partitioned into training 
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data, testing data and validation data, in an n-fold cross-validation manner.  If not 
specifically indicated, here the n is set to be 10.  Table 1 lists the details of the data 
partitioning. 

A simple genetic algorithm (SGA) is used here to do the optimization.  The cross-
over rate is 30% and the mutation rate is set to 0.03 per bit.  The program runs for 
200 generations with a population size of 50 individuals (80 individuals for kNN 
feature weighting).  When there has been no improvement within the last 100 genera-
tions, the evolution is halted. 

Classifiers:  A 5-nearest neighbor classifier is used.  A Bayes Plug-In classifier 
with its parameters estimated by Maximum Likelihood Estimation (MLE) is imple-
mented, and a linear regression classifier uses the simple multivariate regression com-
bined with a threshold decision to predict the class labels. 

With the kNN classifier, the feature weighting is allowed to range among 1024 dif-
ferent values between 0.0 and 10.0, with minimum changes of about 0.01, as deter-
mined by the GA, by setting the chromosome for each feature to be 10 binary digits.  
With the Bayesian classifier and linear regression classifier, only feature selection 
was tested. 

Table 1. Summary of Data Partitioning Table 2. Result of kNN classifier (k = 5) 

Experiments Training Testing 
Va-
lid

Non-GA 40% N/A 60%

GA 
(n-fold) 

40%×
n

n 1−
 60%×

n

n 1−
n

1

 

 
 

Settings
kNN (k = 5) Results of Classification 

Rate in % 

Fea. 
Trans

Non-
GA 

GA Trn Improve 
P-

Value 

None 73.09 74.54 78.29 1.45±3.23 0.3008 

PCA 74.10 77.16 79.39 3.06±1.59 0.0043 
LDA 73.09 77.00 78.72 3.91±2.24 0.0065 
Both 72.41 75.38 79.82 2.97±2.78 0.0404 

Overall P value: 0.0000  

4.2   Results and Conclusions 

Tables 2-4 list the results of GA-optimized feature extraction using a kNN classifier 
(k=5), Bayes Plug-In classifier and linear regression classifier.  The improvement 
after GA optimization is represented by the average improvement, with a two-tailed t-
test with a 95% confidence interval.  A P value indicating the probability of the Null 
Hypothesis (the improvement is 0) is also given, among which results having a 95% 
significant improvement are in bold font.   

In addition to the row-wise statistics, an overall improvement significance level 
based on the improvement percentage is calculated for each classifier, which is a P 
value on all the improvement ratio values of that classifier.  This significance indica-
tor can be considered as a final summary of the GA improvement based on a particu-
lar classifier and is listed at the bottom of each table.  
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Conclusions: 
 
1. For the ECG data, the utility of GA-optimized feature weighting and selection 

depends on the classifier used.  The GA-kNN feature weighting and GA-Bayes 
feature selection yield significant improvement, with three rows showing a sig-
nificance level of more than 90%, and the fourth showing less improvement, but 
in the same direction.  As a result, the overall significance based on the im-
provement ratio is 99.99%.  In contrast, the GA-optimized linear regression clas-
sifier does not show improved performance, and the inconsistency of change di-
rection makes it likely that any systematic improvement due to the GA-optimized 
weights, if it exists, is very small. 

 
2. The PCA and/or LDA transformation is useful, in combination with GA optimi-

zation.  As we can see from the kNN and Bayes classifiers, although applying the 
PCA and/or LDA transformation on the non-GA optimized classifiers yields no 
major progress, their combination with GA yields significant improvement as 
well as better final classification rates.  In some sense, the PCA and LDA trans-
formations can help the GA to break the “barrier” of the optimum classification 
rate. 

 
3. The more accurate the original classifier is, the less improvement GA optimiza-

tion yields.  From the data, we can see that the linear regression classifier is the 
most powerful classifier if used alone, and also the least improved classifier after 
GA optimization.  Fig. 3 illustrates this conclusion. 

 

 

Table 3. Result of Bayes classifier Table 4. Result of Linear Regression classifier 

Set-
tings 

Bayes Results of Classification 
Rate in % 

Fea. 
Trans 

Non-
GA 

GA Trn Improve P-Val

None 71.92 74.1976.51 2.27±3.69 0.1912
PCA 72.53 74.2777.23 1.75±1.95 0.0730
LDA 72.95 75.4777.23 2.52±3.11 0.0968
Both 71.85 76.9978.33 5.14±2.54 0.0014

Overall P value: 0.0000 

Set-
tings

Linear Regression Results, 
Rate in % 

Fea. 
Trans

Non-
GA

GA Trn Improve 
P-

Value 

None 77.68 76.49 79.08 -1.19±3.23 NA 

PCA 76.48 78.02 79.87 1.53±3.09 0.25 
LDA 78.44 77.42 77.36 -1.02±3.15 NA 
Both 77.59 77.41 77.84 -0.18±2.79 NA 

Overall P value: NA  
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Fig 3. Summary of the ECG classification rate  

4.3   Results of GA Search 

For small numbers of features (here we set the standard: ≤ 15) in feature selection, it 
is possible to apply an exhaustive search in the whole feature space, thus providing 
the possibility to determine whether the GA can find the best solution or not.  At the 
same time, some information about the usefulness of features can be traced from the 
terrain graph of the whole feature space. 

In some cases, the global optimum was found.  However, in Fig. 4, although the 
GA found quite a good result, it was not the global optimum.  But since the classifica-
tion rate for the validation samples is related to but not linearly dependent on the 
training rate obtained by the GA, such a near-optimal result seems to produce good 
performance for a pattern classification problem. 

 

 
Fig. 4. The GA search space (Best not found) 
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5   Test Results for Other Data 

 
Five datasets from UCI repository were tested to further validate our result from the 
previous section.  A brief introduction to the data sets is given first, followed by the 
results and discussion. 

5.1   The Testing Datasets 

• WDBC: The Wisconsin Diagnostic Breast Cancer [16] data contains 30 features 
expanded from the original 10 features by taking mean, standard error and ex-
treme value of the originally measured features.  The dataset has 357 benign and 
212 malignant samples, with highest reported classification accuracies around 
97%. 

• LIVER: The BUPA Liver Disorders data has 6 numerical features on 345 in-
stances, with 2 classes. 

• PIMA: The Pima Indians Diabetes Database has 8 features on female diabetes 
patients, classified to be positive and negative.  The total of 768 samples has 500 
negative and 268 positive samples. 

• SONAR: The Sonar data compares mines versus rocks based on their reflected 
sonar signals.  With the 111 metal patterns and 97 rock patterns, each of them has 
60 feature values [17]. 

• IONO: The Ionosphere database from Johns Hopkins University [18] contains 
351 instances of radar signals returned from the ionosphere, with 34 features.  It 
contrasts "Good" and "Bad" radar returns that show or not show evidence of 
some types of structure in the ionosphere. 

5.2   Results for Benchmark Datasets 

The results presented here are all based on both PCA and LDA transformation, which 
were shown to be useful in GA-optimized pattern classification in Section 4. 

Table 5. kNN classifier (Benchmark Datasets) 

DATA Non-GA GA Train Improve P-Value

WDBC 91.38 94.19 92.24 2.81±2.93 0.0571 

LIVER 66.36 66.64 72.89 0.28±6.28 0.9126 
PIMA 70.44 72.65 76.97 2.21±2.90 0.1076 

SONAR 69.28 74.97 64.06 5.69±5.91 0.0563 
IONO 79.19 80.32 69.98 1.13±3.13 0.3986 

Overall P value: 0.0001 
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Table 6. Bayes classifier (Benchmark Datasets) 

DATA Non-GA GA Train Improve P-Value

WDBC 94.78 94.71 96.66 -0.07±2.44 NA 

LIVER 56.96 64.00 67.40 7.04±6.57 0.0334 
PIMA 72.91 74.74 76.30 1.84±3.73 0.2864 

SONAR 46.83 68.27 76.37 21.45±10.77 0.0015 
IONO 64.88 90.64 94.17 25.76±11.52 0.0000 
Overall P value: 0.0000 

 
From the results shown in Table 5—7, we can see that: 
1. More than half of the row-wise results show an improvement with significance 

above 90%.  For some settings, such as Bayes classifier for SONAR data, the 
original classification rate is very low, but GA can make up for this and yield a 
decent result.  The effect of GA optimization here is to reach a fairly good result, 
if not the best, when the original settings of the classifier are not very good. 

Table 7. Regression classifier (Benchmark Datasets) 

DATA Non-GA GA Train Improve P-Value

WDBC 94.43 95.26 95.49 0.83±2.50 0.4737 

LIVER 66.04 67.23 66.33 1.19±6.21 0.6752 
PIMA 76.57 76.69 77.55 0.11±3.14 0.9364 

SONAR 63.65 72.44 74.78 8.79±9.91 0.0757 
IONO 85.12 82.61 84.98 -2.51±5.78 NA 

Overall P value: 0.1364 

 
2. The linear regression classifier has the highest classification rate among the three.  

After GA-optimized feature weighting and selection, the gaps in performance 
among the various classifiers became smaller, as shown in Fig. 5. 

 

 
Fig. 5. Comparison, before and after GA optimization 
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6   Conclusions 

The utility of GA-optimized feature weighting and selection depends on both the 
classifier and the data set.  Especially in those cases when a particular classifier has a 
better classification rate than some other classifiers, the potential improvement from 
GA optimization of the better classifier seems to be quite limited in comparison with 
its performance improvement of the poorer classifiers. 

Clearly, to evaluate a new approach involving optimization on feature space, it is 
necessary to test on different classifiers, and the improvement in the best classifier 
will be the most convincing evidence of the utility of that method.   

In this work, the Genetic Algorithm shows powerful searching ability in high-
dimensionality feature spaces.  By comparing it with an exhaustive search algorithm 
on small-scale problems, it was determined that the GA found the optimal or a nearly 
optimal solution with a computational complexity of O(n). 

The results from Sections 4 and 5 indicate that over-fitting exists in various ap-
proaches.  While the training performances can be significantly improved, the im-
provements on the validation samples lag behind in every case. 

The tests run in Section 4 show that the PCA and LDA transformations are very 
useful in pattern classification.  The significance levels of GA optimization are 
greatly improved for the kNN and Bayes classifiers, though the absolute values after 
PCA and LDA transformation without GA optimization do not differ much from the 
non-PCA and non-LDA cases.  The point is, however, that GA-optimized feature 
extraction and selection extend the utilities of those traditional feature transformation 
techniques. 

7   Future Works 

To solve the problem of over-fitting, one possible approach is to evaluate the solution 
not only by the classification rate on training data, but also to consider the margin 
between classes and the boundary, because a larger margin means a more general and 
more robust classification boundary.  Support Vector Machines (SVM) are classifica-
tion systems that separate the training patterns by maximizing the margins between 
support vectors (those nearest patterns) and the decision boundary in a high-
dimensional space.  Work by Gartner and Flach [19] that used SVM rather than a GA 
to optimize the feature space yielded a statistically significant result on Bayes classi-
fiers. 

Another possible improvement may be non-linear feature construction using GA 
[4].  Non-linear feature construction can generate more artificial features so that the 
GA can search for more hidden patterns.  However, the problem of over-fitting still 
theoretically exists. 

This work was supported in part by the National Science Foundation of China 
(NSFC) under Grant 39970210. 
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