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Abstract. Multi-FPGA systems (MFS) are used for a great variety of applica-
tions, for instance, dynamically re-configurable hardware applications, digital 
circuit emulation, and numerical computation. There are a great variety of 
boards for MFS implementation. In this paper a methodology for MFS design 
is presented. The techniques used are evolutionary programs and they solve all 
of the design tasks (partitioning placement and routing). Firstly a hybrid com-
pact genetic algorithm solves the partitioning problem and then genetic pro-
gramming is used to obtain a solution for the two other tasks. 

1 Introduction 

An FPGA (Field Programmable Gate Array) is an integrated circuit capable of im-
plementing any digital circuit by means of a configuration process.  FPGAs are made 
up of three principal components: configurable logic blocks, input-output blocks and 
connection blocks. Configurable logic blocks (CLBs) are used to implement all the 
logic circuitry of a given design. They are distributed in a matrix way in the device. 
On the other hand, the input-output blocks (IOBs) are the responsible for connecting 
the circuit implemented in the FPGA with the external world. This "world" may be 
the application environment for which it has been designed, or a set of different 
FPGAs.  Finally, the connection blocks (switch-boxes) and interconnection lines are 
the elements available to the designer for making the routing of the circuit. In most 
occasions we need to use some of the CLBs to accomplish the routing. The internal 
structure of an FPGA is shown in Figure 1. Logic blocks, IOBs and the interconnec-
tion resources are indicated on it [1]. 

Sometimes, the size of an FPGA is not enough to implement large circuits and it is 
necessary the use of Multi-FPGA system (MFS). There is a great number of MFSs, each 
of them suited for different applications [2]. These systems include not only integrated 
circuits but, also memories and connection circuitry. Nowadays MFS are used for a 
great variety of applications, for instance, dynamically re-configurable hardware appli-
cations [3], digital circuit emulation [4], and numerical computation [5]. There are a lot 
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of different boards and topologies for MFS implementation. The two most common 
topologies are the mesh and crossbar types. In a mesh,  the  FPGAs 

 
 
 
 
 
 
 
 

Fig. 1. General structure of an FPGA 
 

are connected in the nearest-neighbor pattern. This kind of board has a simple routing 
methodology as well as an easy expandability and all programmable devices within 
the board have identical functionality. Figure 2a shows and FPGA with mesh-
topology. On the other hand crossbar topologies, Figure 2b, separate the system com-
ponents into logic and routing chips. This topology could be suitable for some spe-
cific problems, but crossbar topologies usually waste not only logic resources but also 
routing resources. For these reasons we have focused on mesh topologies 
 

Fig. 2. Multi-FPGA Mesh (a) and crossbar (b) topologies 

 
As in any integrated circuit device, MFSs design flow has three major tasks: parti-

tioning, placement and routing. Frequently two of these tasks are tackled together, 
because when accomplishing the partitioning, the placement must be considered or 
vice versa. The solution that we are proposing on this paper covers the whole process. 
Firstly, we obtain the partitions of the circuit; each of them will be later implemented 
into a different FPGA. Second, we need to place and route the circuit using the FPGA 
resources. As we will see in the following sections, we use two different evolutionary 
algorithms: a hybrid compact genetic algorithm (cGA) for the partitioning step and a 
genetic programming technique for the routing and placement step. The rest of the 
paper is organized as follows. Section 2 describes the partitioning methodology. Sec-
tion 3 shows how genetic programming can finish the design process within the 
FPGAs, while section 4 contains the experimental results and finally section 5 drafts 
our conclusions and the future work. 
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2 MFS Partitioning and Placement 

Methodology: Partitioning deals with the problem of dividing a given circuit into 
several parts, in order to be implemented on a MFS. When using a specific board we 
must bear in mind several constraints related to the board topology. Some of these 
constraints are the number of available I/O pins and logic capacity. Although the 
logic capacity is usually a difficulty, the number of available pins is the hardest prob-
lem, because FPGA devices have a reduced number of them comparing with their 
logic capacity. In addition we must reserve some of the pins to interconnect the parts 
of the circuit placed on non-adjacent FPGAs. Most of the research related to the prob-
lem of partitioning on FPGAs has been adapted from other VLSI areas, and hence, 
they disregard the specific features of these systems. In this paper a new method for 
solving the partitioning and placement problem in MFSs is presented. We apply the 
graph theory to describe a given circuit, and then a compact genetic algorithm (cGA) 
with a local search improvement [17] is applied with a problem-specific encoding. 
This algorithm not only preserves the original structure of the circuit but also evalu-
ates the I/O-pins consumption due to direct and indirect connections among FPGAs.  
It is done by means of a fuzzy technique. We have used the Partitioning93 bench-
marks [6], described in the XNF hardware description language (Xilinx Netlist For-
mat) [7]. 
 
Circuit Description: Some authors use hypergraphs for representing a circuit netlist, 
although there are some approximations, which use graphs. We have used an undi-
rected graph representation to describe the circuit. This selection has been motivated 
because it can be adapted to the compact genetic algorithm code. We will describe 
later how the edges of his spanning tree can be used to represent a k-way partitioning. 
A spanning tree of a graph is a tree, which has been obtained selecting edges from 
this graph [8]. Then we use a hybrid compact genetic algorithm to search the optimal 
partitioning which works basically as follows. First we obtain a graph from the netlist 
description of the circuit, and then a spanning tree of that graph is obtained. From this 
tree, we select k-1 edges and they are eliminated in order to obtain a k-way partition. 
The partitions are represented by those deleted edges.  
 
Genetic Representation: The compact genetic algorithm (cGA) uses the encoding 
presented in [9], which is directly connected with the solution of the problem. The 
code for our problem is based on the edges, which belong to the spanning tree. We 
have seen above how the partition is obtained by the elimination of some edges. We 
assign a number to every edge of the tree. Consequently a chromosome will have k-1 
genes for a k-way partitioning, and the value of these genes can be any of the order 
values of the edges. For example, chromosome (3 4 6) for a 4-way partitioning, repre-
sents a solution obtained after the suppression of edge numbers 3, 4, and 6 from its 
spanning tree. So the alphabet of the algorithm is {0, 1… n-1} where n is the number 
of vertices of the target graph (circuit), because the spanning tree has n-1 edges.  
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Hybrid Compact Genetic Algorithm: The cGA does not manage a population of 
solutions but only mimics its existence [10]. It represents the population by means of 
a vector of values, pi ∈ [0,1], ∀i = 1,…,l, where l is the number of alleles needed to 
represent the solutions. In order to design a cGA for MFS partitioning we adopted the 
edge representation explained below and we consider the frequencies of the edges 
occurring in the simulated population. A vector V with the same dimension as the 
number of nodes minus one was used to store these frequencies. Each element vi of V 
represents the proportion of individuals whose partition use the edge ei. The vector 
elements vi were initialised to 0.5 to represent a randomly generated population in 
which each edge has equal probability to belong to a solution [11]. Sometimes it is 
necessary to increase the selection pressure (Ps)rate to reach good results with a 
Compact Genetic Algorithm. A value for Ps near to 4 is usually a good value for MFS 
partitioning. It is not recommendable to increase this value very much because the 
computation time grows. Additionally, for some problems we need a complement for 
the cGA. We can combine heuristics techniques with local search algorithms to obtain 
this additional tool called hybrid algorithms. We have implemented a cGA with local 
search after a certain number of iterations in order to improve the solutions obtained 
by the only use of cGA. In [12] a compact genetic algorithm for MFSs partitioning 
was presented, and in [13] a Hybrid cGA was explained. Authors combine a cGA 
with the Lin-Kernighan (LK) local search algorithm, to solve TSP problems. The 
cGA part explores the most interesting areas of the search space and LK task is the 
fine-tuning of those solutions obtained by cGA. Following this structure we have 
implemented the hybrid cGA for MFS partitioning presented in [17]. In this paper we 
have used other heuristic different from LK, which is more feasible to the problem 
are solving.  

Most of the local search algorithms try to perform search as exhaustive as possible. 
But, this can implies an unacceptable amount of computation time. In MFS problem, 
the ideal implementation of local search is to explore all the neighbour solutions to 
the current best solutions after a certain number of iterations. Unfortunately, the most 
computational expensive step of our cGA is the evaluation of the individuals. We 
have employed a local search heuristic every n iterations and as in parallel genetic 
algorithms we need to fix the value of n to keep the algorithm search in good working 
order. After an empirical study for different values the local search frequency, we 
obtain that n must be located between 20 and 60 with an optimal value (that depends 
on the benchmark) near to 50. So for our experiments we fixed the local search fre-
quency n to 50 iterations, i.e. we develop a local search process every 50 iterations of 
the compact GA. 

Remember that a chromosome has k-1 genes for a k-way partitioning, and the 
value of these genes are the edges eliminated to obtain a partitioning solution. In 
order to explain the algorithm we must define what a neighbour solution is. We say 
that solution A is a neighbour solution of B (and B is a neighbour solution of A) if the 
difference between their chromosomes is just one gene. For example solution repre-
sented by chromosome (1 43 56 78 120 345 789) is a neighbour solution of the parti-
tion represented by (1 43 56 78 120 289 789), in an 8-way partitioning problem. Our 
local search heuristic explores only one neighbour solution for each gene, that is k-1 



Multi-FPGA Systems Synthesis by Means of Evolutionary Computation         2113 

 

neighbour solutions of the best solution every n iterations. For the sake of clarity we 
reproduce the explanation of the local search process presented in [17]. 

The local search process works as follows. Every n iterations, we obtain the best 
solution up to that time, which is denoted by BS. To obtain BS, first we explore the 
compact GA probability vector and select the k-1 most used genes (edges) to form 
MBS (vector best individual). We also have the best individual generated up to now 
(GBS) (similar to elitism). The best individual between MBS and GBS (i.e. which of 
them has the best fitness value) will be BS. After BS has been deduced at iteration n, 
the first random neighbour solution (TS1) to BS is generated substituting the first 
gene (edge) of the chromosome by a random one not used in BS. Then we evaluate 
the fitness value of BS (FVBS) and the fitness value of TS1 (FVTS1). If FVTS1 is better 
than FVBS, TS1 is dropped to BS and the initial BS is eliminated, otherwise TS1 is 
eliminated. Then we repeat the same process using the new BS but with the second 
gene, to generate TS2. If the fitness value of TS2 (FVTS2) is better than the present 
FVBS then TS2 will be our new BS or, if FVTS2 is worst than FVBS, there will be no 
change in BS. The process is repeated for all genes until the end of the chromosome, 
that is, k-1 times for a k-way partitioning. Although only a very small part of the 
solution neighbourhood space is explored, we improve the performance of the algo-
rithm significantly (in terms of quality of our solutions) without drastically degrading 
its total computation time. 

In order to clarify the explanation about the proposed local search method we can 
see an example. Let us suppose a graph with 12 nodes and its spanning tree, for a 5-
way partitioning problem (i.e. is we want to divide the circuit into five parts). As we 
have explained, we will use individuals with 4 genes. Let us also suppose a local 
search frequency (n) of 50 and that after 50 iterations we have reached to a best solu-
tion represented by:  

BS = 3, 4, 6, 7           (2) 
The circuit graph has 12 nodes, so its spanning tree is formed by 11 edges. The whole 
set of possible edges to obtain a partitioning solution is called E: 

E = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}     (3) 
In order to generate TS1 we need to know the available edges ALS for random selec-
tion, as we have said we eliminate the edges within BS from E to obtain ALS: 

ALS= {0, 1, 2, 5, 8, 9, 10}                (4) 
Now we randomly select an edge (suppose 0) to build TS1substituying it by the first 
gene (3) in BS:  

TS1 = 0, 4, 6, 7               (5) 
The third step is the evaluation of TS1 (suppose FVTS1=12) and comparing (suppose a 
minimization problem) with FVBS (suppose FVBS = 25). As FVTS1 is better than FVBS, 
TS1 will be our new BS and the original BS is eliminated. Those changes also affect 
to ALS because our new ALS is: 

                                                 ALS= {1, 2, 3, 5, 8, 9, 10}                                       (6) 
Table 1 represents the rest of the local search process for this example. 
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Table 1. Local search example 

i ALS BS             FV Random gene TS           FV New BS 

1 0,1,2,5,8,9,10 3,4,6,7 25 0 0,4,6,7 12 0,4,6,7 

2 1,2,3,5,8,9,10 0,4,6,7 12 1 0,1,6,7 37 0,1,6,7 

3 1,2,3,5,8,9,10 0,4,6,7 12 9 0,4,9,7 10 0,4,9,7 

4 1,2,3,5,6,8,10 0,4,9,7 10 8 0,4,8,9 11 0,4,9,7 

Pre-Local Search Best Solution: 3, 4, 6, 7  

Post-Local Search Best Solution: 0, 4, 9, 7 

3 Placement and Routing on FPGAs  

Once different partitions have been obtained and assigned to different FPGAs, we 
must place components into FPGAs’ CLBs and connect CLBs within each of the 
FPGAs.  To do so, we use Genetic Programming (GP).  A wide description of this 
technique can be found in [14]. 

 

 
Fig. 3. Representing a circuit wit black boxes and labeling connections 

Partitions Representation Using Trees: The main goal for this step is to implement 
a partition (circuit) -that has been obtained in the previous step- into an FPGA.  We 
have thus to place each of the circuit component into a CLB and then to connect all 
the CLBs according to the circuit’s topology.  We have used Genetic Programming 
(GP) based in tree structures in this task.  Therefore, circuits will be encoded here as 
trees. A given circuit is made up of components and connections.  If we forget the 
name and function of each of the simple components (considering each of them as a 
black box), and instead we use only one symbol for representing any of them, a cir-
cuit could be represented in a similar way as the example depicted in figure 3. Given 
that components compute very easy logic function, any of them can be implemented 
by using any of the CLBs available within each FPGA.  This means that we only have 
to connect CLBs from the FPGA according to the interconnection model that a given 
circuit implements, and then we can configure each of the CLB with the function that 
each component performs in the circuit.  After this couple of simple steps we have got 
the circuit in the FPGA. Given that we employ Genetic Programming we have to 
encode the circuit in a tree.  We can firstly number each component from the circuit, 
and then assign the number of those components to the ends of wires connected to 
them (see figure 3).  Wires could now be disconnected without loosing any informa-
tion.  We could even rebuild the circuit by using labels as a guide.  



Multi-FPGA Systems Synthesis by Means of Evolutionary Computation         2115 

 

 
 

Fig. 4. Encoding circuits by means of binary trees.  a) Each branch of the tree describe a con-
nection from the circuit. Dotted lines indicates a number internal nodes in the branch. b)  Mak-
ing connections in the FPGA according to nodes. 

 
We may now describe all the wires by means of a tree by connecting each of the 

wires as a branch of the tree and keeping them all together in the same tree.  By label-
ing both extremes of branches, we will have all the information required to recon-
structing the circuits.  This way of representing circuits allows us to go back and 
construct the real graph.  Moreover, any given tree, randomly generated, will always 
correspond to a particular graph, regardless of the usefulness of the associated circuit. 
In this proposal, each node from the tree is representing a connection, and each 
branch is representing a wire.  The next stage is to encode the path of wires into an 
FPGA.  Each branch of the tree will encode a wire from the circuit. We have now to 
decide how each of the tree’s branches can encode a set of connections. As seen in 
previous sections, mesh FPGAs contains CLBs, switch blocks and wire segments. 
Each wire segment can connect adjacent blocks, both CLBs and switch blocks. Sev-
eral wire segments must be connected through switch blocks when joining two CLBs’ 
pins according to a given circuit description. A connection in a circuit can be placed 
into an FPGA in many different ways.  For example, there are as many choices in the 
selection of each CLB as the number of rows multiplied by the number of columns 
available in the FPGA (see figure 1, section 1).  Moreover, which of the pins of the 
CLB will be used and how the wire traverses the FPGA has to be decided from 
among the incredibly high number of possibilities. Of course, the same connection 
can be made in many different ways, with more or fewer switch blocks being crossed 
by the wire.   

Every wire in an FPGA is made up of two ends - these can connect to a CLB or to 
an IOB.  On the other hand, as said above, a given number of switch connections may 
conform the path of the wire.  In the representation we have used a branch from tree 
for codifying wires, CLB and IOB connections are described as each of the two end 
nodes which make up a branch.  In order to describe switch connections, we add as 
many new internal nodes to the branch as switch blocks are traversed by wires (see 
figure 4b).  Each internal node requires some extra information:  if the node corre-
sponds to a CLB we need to know information about the position of the CLB in the 
FPGA, the number of pin to which one of the ends of the wire is connected, and 
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which of the wires of the wire block we are using; if the node represents a switch 
connection, we need information about that connection (Figure 4 graphically depicts 
how a tree describes a circuit).   

It may well happen that when placing a wire into an FPGA, some of the required 
connections specified in the branch can not be made, because, for instance, a switch 
block connection has been previously used for routing another wire segment.  In this 
case the circuit is not valid, in the sense that not all the connections can be placed into 
a physical circuit. In order for the whole circuit to be represented by means of a tree, 
we will use a binary tree, whose left most branch will correspond to one of its con-
nections, and the left branch will consist of another subtree constructed recursively in 
the same way (left-branch is a connection and right-branch a subtree).  The last and 
deepest right branch will be the last circuit connection.  Given that all internal nodes 
are binary ones we can use only a kind of function with two descendants.   
 
GP Sets: When solving a problem by means of GP one of the first things to do once 
the problem has been analyzed is to build both the function and terminal sets.  The 
function set for our problem contains only one element:  F={SW},  Similarly, the 
terminal set contains only one element T={CLB}.  But SW and CLB may be inter-
preted differently depending on the position of the node within a tree.  Sometimes a 
terminal node corresponds to an IOB connection, while sometimes it corresponds to a 
CLB connection in the FPGA (see figure 4,a).  Similarly, a SW node sometimes cor-
responds to a CLB connection, while others affects switch connections in the FPGA.  
Each of the nodes in the tree will thus contain different information: 

• If we are dealing with a terminal node, it will have information about the po-
sition of CLBs, the number of pins selected, the number of wires to which it is con-
nected, and the direction we are taking when placing the wire.   

• If we are instead in a function node, it will have information about the direc-
tion we are taking.  This information enables us to establish the switch connection, or 
in the case of the first node of the branch, the number of the pin where the connection 
ends. 

If we look at figure 4, we can observe that wires with IOBs at one of their ends are 
shorter –only needs a couple of nodes- than those that have CLBs at both ends –they 
require internal nodes for expressing switch connections-. Wires expressed in the 
latest position of trees have less space to grow, and so we decided to place IOB wires 
in that position, thus leaving the first parts of the trees for long wires joining CLBs. 
 
Evaluating Individuals: In order for GP to work, individuals from the population 
have to be evaluated and reproduced employing the GP algorithm.  For evaluating an 
individual we must convert the genotype (tree structure) to the phenotype (circuit in 
the FPGA), and then compare it to the circuit provided by the partitioning algorithm.  
We developed an FPGA simulator for this task. This software allows us to simulate 
any circuit and checks its resemblance to other circuit.  Therefore, this software tool 
is in charge of taking an individual from the population and evaluating every branch 
from the tree, in a sequential way, establishing the connections that each branch 
specifies. Circuits are thus mapped by visiting each of the useful nodes of the trees 
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and making connections on the virtual FPGA, thus obtaining phenotype. Each time a 
connection is made, the position into the FPGA must be brought up to date, in order to 
be capable of making new connections when evaluating the following nodes. If we 
evaluate each branch, beginning with the terminal node, thus establishing the first end of 
the wire, we could continue evaluating nodes of the branch from the bottom to the top.  
Nevertheless, we must be aware that there are several terminals related to each branch, 
because each function node has two different descendants.  We must decide which of 
the terminals will be taken as the beginning of the wire, and then drive the evaluation to 
the top of the branch.  We have decided to use the terminal that is reached when going 
down through the branch using always the left descendant (see figure 5). 

 
 
 
 
 

 

Fig. 5. Evaluating trees 

In one sense there is a waste of resources when having so many unused nodes.  
Nevertheless they represent new possibilities that can show up after a crossover op-
eration  (in nature, there always exist recessive genes, which from time to time appear 
in descendants).  These nodes are hidden, in the sense that they don’t take part in the 
construction of the circuit and may appear in new individuals after some generations.  
If they are useful in solving the problem, they will remain in descendants in the form 
of nodes that express connections.  The fitness function is computed as the difference 
between the circuit provided and the circuit described by the individual.  

4 Experimental Results  

• Partitioning and Placement onto the FPGAs  
The algorithm has been implemented in C and it has been run on a Pentium II 450 
MHz. We have used the partitioning 93 benchmarks in XNF format. As the number 
and characteristics of CLBs depend on the device used for the implementation, we 
have supposed that each block of the circuits uses one CLB. We use the Xilinx’s 4000 
series. Table 2 contains some experimental results. It has seven columns which ex-
press: the name of the test circuit (Circuit), its number of CLBs (CLB), the number of 
connections between CLBs (Edges), the distribution of CLBs among the FPGAs (Dis-
tribution), the number of I/O pins lacking (p), the device proposed for the implemen-
tation (FPGA type), and the CPU time in seconds necessary to obtain a solution 
(T(sec)). From the results we can observe that there are some unbalanced distribu-
tions. This is a logic result because we need some circuits to pass the nets from one 
device to another. In addition our fitness function has been developed to achieve two 
objectives, so that the cGA works. In summary, the algorithm succeeds in solving the 
partitioning problem with board constraints. We have implemented a board and we 
have checked some basic circuits so we can conclude that the algorithms works. 
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Table 2. Partitioning and Placement Results for different benchmarks 
 
Cir-
cuit  

CLBs Edges Distribution p FPGA type T (sec) 

S208 127 200 16,15,17,21,11,11,19,17 0 4003 20.70 
S298 158 306 20,23,29,20,20,20,25,11 0 4003 5.92 
S400 217 412 28,47,23,37,16,20,33,13 0 4005 52.96 
S444 234 442 27,38,36,29,41,37,16,27 0 4005 52.99 
S510 251 455 34,41,38,42,32,19,24,2 0 4005 96.74 
S832 336 808 230,11,25,14,17,18,16,5 0 4008 96.74 
S820 338 796 237,17,24,14,21,8,7,10 0 4008 138.93 
S953 494 882 168,60,82,31,101,289,15 0 4008 194.65 
S838 495 800 100,92,37,77,67,60,43,17 0 4008 293.45 
S1238 574 1127 91,11,293,56,50,25,17,31 0 4008 320.14 
C1423 829 1465 525,52,114,14,37,51,28,8 0 4020 273.65 
C3540 1778 2115 614,135,88,89,56,26,28,2 0 4020 844.16 

• Inter-FPGA Placement and Routing  
 

Several experiments with different sizes and complexities have been performed for 
testing the placement and routing process. [10]. One of them is shown in figure 6. We 
worked on a SUN workstation 167 Mhz. The main parameters employed were the 
following: Population size = 200, Number of generations = 500, Population size: 200, 
Maximum depth: 30, Steady State Tournament size: 10. Crossover probability=98%, 
Mutation probability=2%, Creation type:  Ramp Half/Half. Add best to New Popula-
tion. The GP tool we used is described in [16]. Figures 6 and 7 show one of the pro-
posed circuits and one of the solutions found, respectively. More solutions found for 
this circuit are described in [15]. 

 
 
 
 
 

 

5 Conclusions and Future Work  

In this paper a methodology for circuit design using MFSs has been presented. We 
have used evolutionary computation for all steps in the design process. First, a com-
pact genetic algorithm with a local search heuristic was used on achieving partition-
ing and placement for intra-FPGA systems and, for the Inter-FPGA tasks Genetic 
programming was used. This method can be applied for different boards and solves 
the whole design flow process. As future work, we are working now on the paralleli-
zation of all of the steps and studying Multi-Objective Genetic Algorithms (MOGA) 
techniques. 

Fig. 6. Circuit to be tested. 
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