

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 2109–2120, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Multi-FPGA Systems Synthesis by Means of
Evolutionary Computation

J.I. Hidalgo1, F. Fernández2, J. Lanchares1, J.M. Sánchez2, R. Hermida1,
M. Tomassini3, R. Baraglia4, R. Perego4, and O. Garnica1

1 Computer Architecture Department (DACYA)
Universidad Complutense de Madrid, Spain

{hidalgo,julandan,rhermida,ogarnica}@dacya.ucm.es
2 Departamento de Informática. Universidad de Extremadura, Spain

{fcofdez,jmsanchez}@unex.es
3 Computer Science Institute. University of Laussane, Switzerland

Marco.Tomassini@iismail.unil.ch
4 Istituto di Scienza e tecnologie dell´informazione “Alessandro Faedo”, CNR, Italy

{Ranieri.Baraglia,Raffaele.Perego}@cnuce.cnr.it

Abstract. Multi-FPGA systems (MFS) are used for a great variety of applica-
tions, for instance, dynamically re-configurable hardware applications, digital
circuit emulation, and numerical computation. There are a great variety of
boards for MFS implementation. In this paper a methodology for MFS design
is presented. The techniques used are evolutionary programs and they solve all
of the design tasks (partitioning placement and routing). Firstly a hybrid com-
pact genetic algorithm solves the partitioning problem and then genetic pro-
gramming is used to obtain a solution for the two other tasks.

1 Introduction

An FPGA (Field Programmable Gate Array) is an integrated circuit capable of im-
plementing any digital circuit by means of a configuration process. FPGAs are made
up of three principal components: configurable logic blocks, input-output blocks and
connection blocks. Configurable logic blocks (CLBs) are used to implement all the
logic circuitry of a given design. They are distributed in a matrix way in the device.
On the other hand, the input-output blocks (IOBs) are the responsible for connecting
the circuit implemented in the FPGA with the external world. This "world" may be
the application environment for which it has been designed, or a set of different
FPGAs. Finally, the connection blocks (switch-boxes) and interconnection lines are
the elements available to the designer for making the routing of the circuit. In most
occasions we need to use some of the CLBs to accomplish the routing. The internal
structure of an FPGA is shown in Figure 1. Logic blocks, IOBs and the interconnec-
tion resources are indicated on it [1].

Sometimes, the size of an FPGA is not enough to implement large circuits and it is
necessary the use of Multi-FPGA system (MFS). There is a great number of MFSs, each
of them suited for different applications [2]. These systems include not only integrated
circuits but, also memories and connection circuitry. Nowadays MFS are used for a
great variety of applications, for instance, dynamically re-configurable hardware appli-
cations [3], digital circuit emulation [4], and numerical computation [5]. There are a lot

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

2110 J.I. Hidalgo et al.

of different boards and topologies for MFS implementation. The two most common
topologies are the mesh and crossbar types. In a mesh, the FPGAs

Fig. 1. General structure of an FPGA

are connected in the nearest-neighbor pattern. This kind of board has a simple routing
methodology as well as an easy expandability and all programmable devices within
the board have identical functionality. Figure 2a shows and FPGA with mesh-
topology. On the other hand crossbar topologies, Figure 2b, separate the system com-
ponents into logic and routing chips. This topology could be suitable for some spe-
cific problems, but crossbar topologies usually waste not only logic resources but also
routing resources. For these reasons we have focused on mesh topologies

Fig. 2. Multi-FPGA Mesh (a) and crossbar (b) topologies

As in any integrated circuit device, MFSs design flow has three major tasks: parti-

tioning, placement and routing. Frequently two of these tasks are tackled together,
because when accomplishing the partitioning, the placement must be considered or
vice versa. The solution that we are proposing on this paper covers the whole process.
Firstly, we obtain the partitions of the circuit; each of them will be later implemented
into a different FPGA. Second, we need to place and route the circuit using the FPGA
resources. As we will see in the following sections, we use two different evolutionary
algorithms: a hybrid compact genetic algorithm (cGA) for the partitioning step and a
genetic programming technique for the routing and placement step. The rest of the
paper is organized as follows. Section 2 describes the partitioning methodology. Sec-
tion 3 shows how genetic programming can finish the design process within the
FPGAs, while section 4 contains the experimental results and finally section 5 drafts
our conclusions and the future work.

CBA

FED

CBA

GFE

(b) (a)

IOBs

CLBs

Switch Boxes

Multi-FPGA Systems Synthesis by Means of Evolutionary Computation 2111

2 MFS Partitioning and Placement

Methodology: Partitioning deals with the problem of dividing a given circuit into
several parts, in order to be implemented on a MFS. When using a specific board we
must bear in mind several constraints related to the board topology. Some of these
constraints are the number of available I/O pins and logic capacity. Although the
logic capacity is usually a difficulty, the number of available pins is the hardest prob-
lem, because FPGA devices have a reduced number of them comparing with their
logic capacity. In addition we must reserve some of the pins to interconnect the parts
of the circuit placed on non-adjacent FPGAs. Most of the research related to the prob-
lem of partitioning on FPGAs has been adapted from other VLSI areas, and hence,
they disregard the specific features of these systems. In this paper a new method for
solving the partitioning and placement problem in MFSs is presented. We apply the
graph theory to describe a given circuit, and then a compact genetic algorithm (cGA)
with a local search improvement [17] is applied with a problem-specific encoding.
This algorithm not only preserves the original structure of the circuit but also evalu-
ates the I/O-pins consumption due to direct and indirect connections among FPGAs.
It is done by means of a fuzzy technique. We have used the Partitioning93 bench-
marks [6], described in the XNF hardware description language (Xilinx Netlist For-
mat) [7].

Circuit Description: Some authors use hypergraphs for representing a circuit netlist,
although there are some approximations, which use graphs. We have used an undi-
rected graph representation to describe the circuit. This selection has been motivated
because it can be adapted to the compact genetic algorithm code. We will describe
later how the edges of his spanning tree can be used to represent a k-way partitioning.
A spanning tree of a graph is a tree, which has been obtained selecting edges from
this graph [8]. Then we use a hybrid compact genetic algorithm to search the optimal
partitioning which works basically as follows. First we obtain a graph from the netlist
description of the circuit, and then a spanning tree of that graph is obtained. From this
tree, we select k-1 edges and they are eliminated in order to obtain a k-way partition.
The partitions are represented by those deleted edges.

Genetic Representation: The compact genetic algorithm (cGA) uses the encoding
presented in [9], which is directly connected with the solution of the problem. The
code for our problem is based on the edges, which belong to the spanning tree. We
have seen above how the partition is obtained by the elimination of some edges. We
assign a number to every edge of the tree. Consequently a chromosome will have k-1
genes for a k-way partitioning, and the value of these genes can be any of the order
values of the edges. For example, chromosome (3 4 6) for a 4-way partitioning, repre-
sents a solution obtained after the suppression of edge numbers 3, 4, and 6 from its
spanning tree. So the alphabet of the algorithm is {0, 1… n-1} where n is the number
of vertices of the target graph (circuit), because the spanning tree has n-1 edges.

2112 J.I. Hidalgo et al.

Hybrid Compact Genetic Algorithm: The cGA does not manage a population of
solutions but only mimics its existence [10]. It represents the population by means of
a vector of values, pi ∈ [0,1], ∀i = 1,…,l, where l is the number of alleles needed to
represent the solutions. In order to design a cGA for MFS partitioning we adopted the
edge representation explained below and we consider the frequencies of the edges
occurring in the simulated population. A vector V with the same dimension as the
number of nodes minus one was used to store these frequencies. Each element vi of V
represents the proportion of individuals whose partition use the edge ei. The vector
elements vi were initialised to 0.5 to represent a randomly generated population in
which each edge has equal probability to belong to a solution [11]. Sometimes it is
necessary to increase the selection pressure (Ps)rate to reach good results with a
Compact Genetic Algorithm. A value for Ps near to 4 is usually a good value for MFS
partitioning. It is not recommendable to increase this value very much because the
computation time grows. Additionally, for some problems we need a complement for
the cGA. We can combine heuristics techniques with local search algorithms to obtain
this additional tool called hybrid algorithms. We have implemented a cGA with local
search after a certain number of iterations in order to improve the solutions obtained
by the only use of cGA. In [12] a compact genetic algorithm for MFSs partitioning
was presented, and in [13] a Hybrid cGA was explained. Authors combine a cGA
with the Lin-Kernighan (LK) local search algorithm, to solve TSP problems. The
cGA part explores the most interesting areas of the search space and LK task is the
fine-tuning of those solutions obtained by cGA. Following this structure we have
implemented the hybrid cGA for MFS partitioning presented in [17]. In this paper we
have used other heuristic different from LK, which is more feasible to the problem
are solving.

Most of the local search algorithms try to perform search as exhaustive as possible.
But, this can implies an unacceptable amount of computation time. In MFS problem,
the ideal implementation of local search is to explore all the neighbour solutions to
the current best solutions after a certain number of iterations. Unfortunately, the most
computational expensive step of our cGA is the evaluation of the individuals. We
have employed a local search heuristic every n iterations and as in parallel genetic
algorithms we need to fix the value of n to keep the algorithm search in good working
order. After an empirical study for different values the local search frequency, we
obtain that n must be located between 20 and 60 with an optimal value (that depends
on the benchmark) near to 50. So for our experiments we fixed the local search fre-
quency n to 50 iterations, i.e. we develop a local search process every 50 iterations of
the compact GA.

Remember that a chromosome has k-1 genes for a k-way partitioning, and the
value of these genes are the edges eliminated to obtain a partitioning solution. In
order to explain the algorithm we must define what a neighbour solution is. We say
that solution A is a neighbour solution of B (and B is a neighbour solution of A) if the
difference between their chromosomes is just one gene. For example solution repre-
sented by chromosome (1 43 56 78 120 345 789) is a neighbour solution of the parti-
tion represented by (1 43 56 78 120 289 789), in an 8-way partitioning problem. Our
local search heuristic explores only one neighbour solution for each gene, that is k-1

Multi-FPGA Systems Synthesis by Means of Evolutionary Computation 2113

neighbour solutions of the best solution every n iterations. For the sake of clarity we
reproduce the explanation of the local search process presented in [17].

The local search process works as follows. Every n iterations, we obtain the best
solution up to that time, which is denoted by BS. To obtain BS, first we explore the
compact GA probability vector and select the k-1 most used genes (edges) to form
MBS (vector best individual). We also have the best individual generated up to now
(GBS) (similar to elitism). The best individual between MBS and GBS (i.e. which of
them has the best fitness value) will be BS. After BS has been deduced at iteration n,
the first random neighbour solution (TS1) to BS is generated substituting the first
gene (edge) of the chromosome by a random one not used in BS. Then we evaluate
the fitness value of BS (FVBS) and the fitness value of TS1 (FVTS1). If FVTS1 is better
than FVBS, TS1 is dropped to BS and the initial BS is eliminated, otherwise TS1 is
eliminated. Then we repeat the same process using the new BS but with the second
gene, to generate TS2. If the fitness value of TS2 (FVTS2) is better than the present
FVBS then TS2 will be our new BS or, if FVTS2 is worst than FVBS, there will be no
change in BS. The process is repeated for all genes until the end of the chromosome,
that is, k-1 times for a k-way partitioning. Although only a very small part of the
solution neighbourhood space is explored, we improve the performance of the algo-
rithm significantly (in terms of quality of our solutions) without drastically degrading
its total computation time.

In order to clarify the explanation about the proposed local search method we can
see an example. Let us suppose a graph with 12 nodes and its spanning tree, for a 5-
way partitioning problem (i.e. is we want to divide the circuit into five parts). As we
have explained, we will use individuals with 4 genes. Let us also suppose a local
search frequency (n) of 50 and that after 50 iterations we have reached to a best solu-
tion represented by:

BS = 3, 4, 6, 7 (2)
The circuit graph has 12 nodes, so its spanning tree is formed by 11 edges. The whole
set of possible edges to obtain a partitioning solution is called E:

E = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (3)
In order to generate TS1 we need to know the available edges ALS for random selec-
tion, as we have said we eliminate the edges within BS from E to obtain ALS:

ALS= {0, 1, 2, 5, 8, 9, 10} (4)
Now we randomly select an edge (suppose 0) to build TS1substituying it by the first
gene (3) in BS:

TS1 = 0, 4, 6, 7 (5)
The third step is the evaluation of TS1 (suppose FVTS1=12) and comparing (suppose a
minimization problem) with FVBS (suppose FVBS = 25). As FVTS1 is better than FVBS,
TS1 will be our new BS and the original BS is eliminated. Those changes also affect
to ALS because our new ALS is:

 ALS= {1, 2, 3, 5, 8, 9, 10} (6)
Table 1 represents the rest of the local search process for this example.

2114 J.I. Hidalgo et al.

Table 1. Local search example

i ALS BS FV Random gene TS FV New BS

1 0,1,2,5,8,9,10 3,4,6,7 25 0 0,4,6,7 12 0,4,6,7

2 1,2,3,5,8,9,10 0,4,6,7 12 1 0,1,6,7 37 0,1,6,7

3 1,2,3,5,8,9,10 0,4,6,7 12 9 0,4,9,7 10 0,4,9,7

4 1,2,3,5,6,8,10 0,4,9,7 10 8 0,4,8,9 11 0,4,9,7

Pre-Local Search Best Solution: 3, 4, 6, 7

Post-Local Search Best Solution: 0, 4, 9, 7

3 Placement and Routing on FPGAs

Once different partitions have been obtained and assigned to different FPGAs, we
must place components into FPGAs’ CLBs and connect CLBs within each of the
FPGAs. To do so, we use Genetic Programming (GP). A wide description of this
technique can be found in [14].

Fig. 3. Representing a circuit wit black boxes and labeling connections

Partitions Representation Using Trees: The main goal for this step is to implement
a partition (circuit) -that has been obtained in the previous step- into an FPGA. We
have thus to place each of the circuit component into a CLB and then to connect all
the CLBs according to the circuit’s topology. We have used Genetic Programming
(GP) based in tree structures in this task. Therefore, circuits will be encoded here as
trees. A given circuit is made up of components and connections. If we forget the
name and function of each of the simple components (considering each of them as a
black box), and instead we use only one symbol for representing any of them, a cir-
cuit could be represented in a similar way as the example depicted in figure 3. Given
that components compute very easy logic function, any of them can be implemented
by using any of the CLBs available within each FPGA. This means that we only have
to connect CLBs from the FPGA according to the interconnection model that a given
circuit implements, and then we can configure each of the CLB with the function that
each component performs in the circuit. After this couple of simple steps we have got
the circuit in the FPGA. Given that we employ Genetic Programming we have to
encode the circuit in a tree. We can firstly number each component from the circuit,
and then assign the number of those components to the ends of wires connected to
them (see figure 3). Wires could now be disconnected without loosing any informa-
tion. We could even rebuild the circuit by using labels as a guide.

Multi-FPGA Systems Synthesis by Means of Evolutionary Computation 2115

Fig. 4. Encoding circuits by means of binary trees. a) Each branch of the tree describe a con-
nection from the circuit. Dotted lines indicates a number internal nodes in the branch. b) Mak-
ing connections in the FPGA according to nodes.

We may now describe all the wires by means of a tree by connecting each of the

wires as a branch of the tree and keeping them all together in the same tree. By label-
ing both extremes of branches, we will have all the information required to recon-
structing the circuits. This way of representing circuits allows us to go back and
construct the real graph. Moreover, any given tree, randomly generated, will always
correspond to a particular graph, regardless of the usefulness of the associated circuit.
In this proposal, each node from the tree is representing a connection, and each
branch is representing a wire. The next stage is to encode the path of wires into an
FPGA. Each branch of the tree will encode a wire from the circuit. We have now to
decide how each of the tree’s branches can encode a set of connections. As seen in
previous sections, mesh FPGAs contains CLBs, switch blocks and wire segments.
Each wire segment can connect adjacent blocks, both CLBs and switch blocks. Sev-
eral wire segments must be connected through switch blocks when joining two CLBs’
pins according to a given circuit description. A connection in a circuit can be placed
into an FPGA in many different ways. For example, there are as many choices in the
selection of each CLB as the number of rows multiplied by the number of columns
available in the FPGA (see figure 1, section 1). Moreover, which of the pins of the
CLB will be used and how the wire traverses the FPGA has to be decided from
among the incredibly high number of possibilities. Of course, the same connection
can be made in many different ways, with more or fewer switch blocks being crossed
by the wire.

Every wire in an FPGA is made up of two ends - these can connect to a CLB or to
an IOB. On the other hand, as said above, a given number of switch connections may
conform the path of the wire. In the representation we have used a branch from tree
for codifying wires, CLB and IOB connections are described as each of the two end
nodes which make up a branch. In order to describe switch connections, we add as
many new internal nodes to the branch as switch blocks are traversed by wires (see
figure 4b). Each internal node requires some extra information: if the node corre-
sponds to a CLB we need to know information about the position of the CLB in the
FPGA, the number of pin to which one of the ends of the wire is connected, and

2116 J.I. Hidalgo et al.

which of the wires of the wire block we are using; if the node represents a switch
connection, we need information about that connection (Figure 4 graphically depicts
how a tree describes a circuit).

It may well happen that when placing a wire into an FPGA, some of the required
connections specified in the branch can not be made, because, for instance, a switch
block connection has been previously used for routing another wire segment. In this
case the circuit is not valid, in the sense that not all the connections can be placed into
a physical circuit. In order for the whole circuit to be represented by means of a tree,
we will use a binary tree, whose left most branch will correspond to one of its con-
nections, and the left branch will consist of another subtree constructed recursively in
the same way (left-branch is a connection and right-branch a subtree). The last and
deepest right branch will be the last circuit connection. Given that all internal nodes
are binary ones we can use only a kind of function with two descendants.

GP Sets: When solving a problem by means of GP one of the first things to do once
the problem has been analyzed is to build both the function and terminal sets. The
function set for our problem contains only one element: F={SW}, Similarly, the
terminal set contains only one element T={CLB}. But SW and CLB may be inter-
preted differently depending on the position of the node within a tree. Sometimes a
terminal node corresponds to an IOB connection, while sometimes it corresponds to a
CLB connection in the FPGA (see figure 4,a). Similarly, a SW node sometimes cor-
responds to a CLB connection, while others affects switch connections in the FPGA.
Each of the nodes in the tree will thus contain different information:

• If we are dealing with a terminal node, it will have information about the po-
sition of CLBs, the number of pins selected, the number of wires to which it is con-
nected, and the direction we are taking when placing the wire.

• If we are instead in a function node, it will have information about the direc-
tion we are taking. This information enables us to establish the switch connection, or
in the case of the first node of the branch, the number of the pin where the connection
ends.

If we look at figure 4, we can observe that wires with IOBs at one of their ends are
shorter –only needs a couple of nodes- than those that have CLBs at both ends –they
require internal nodes for expressing switch connections-. Wires expressed in the
latest position of trees have less space to grow, and so we decided to place IOB wires
in that position, thus leaving the first parts of the trees for long wires joining CLBs.

Evaluating Individuals: In order for GP to work, individuals from the population
have to be evaluated and reproduced employing the GP algorithm. For evaluating an
individual we must convert the genotype (tree structure) to the phenotype (circuit in
the FPGA), and then compare it to the circuit provided by the partitioning algorithm.
We developed an FPGA simulator for this task. This software allows us to simulate
any circuit and checks its resemblance to other circuit. Therefore, this software tool
is in charge of taking an individual from the population and evaluating every branch
from the tree, in a sequential way, establishing the connections that each branch
specifies. Circuits are thus mapped by visiting each of the useful nodes of the trees

Multi-FPGA Systems Synthesis by Means of Evolutionary Computation 2117

and making connections on the virtual FPGA, thus obtaining phenotype. Each time a
connection is made, the position into the FPGA must be brought up to date, in order to
be capable of making new connections when evaluating the following nodes. If we
evaluate each branch, beginning with the terminal node, thus establishing the first end of
the wire, we could continue evaluating nodes of the branch from the bottom to the top.
Nevertheless, we must be aware that there are several terminals related to each branch,
because each function node has two different descendants. We must decide which of
the terminals will be taken as the beginning of the wire, and then drive the evaluation to
the top of the branch. We have decided to use the terminal that is reached when going
down through the branch using always the left descendant (see figure 5).

Fig. 5. Evaluating trees

In one sense there is a waste of resources when having so many unused nodes.
Nevertheless they represent new possibilities that can show up after a crossover op-
eration (in nature, there always exist recessive genes, which from time to time appear
in descendants). These nodes are hidden, in the sense that they don’t take part in the
construction of the circuit and may appear in new individuals after some generations.
If they are useful in solving the problem, they will remain in descendants in the form
of nodes that express connections. The fitness function is computed as the difference
between the circuit provided and the circuit described by the individual.

4 Experimental Results

• Partitioning and Placement onto the FPGAs
The algorithm has been implemented in C and it has been run on a Pentium II 450
MHz. We have used the partitioning 93 benchmarks in XNF format. As the number
and characteristics of CLBs depend on the device used for the implementation, we
have supposed that each block of the circuits uses one CLB. We use the Xilinx’s 4000
series. Table 2 contains some experimental results. It has seven columns which ex-
press: the name of the test circuit (Circuit), its number of CLBs (CLB), the number of
connections between CLBs (Edges), the distribution of CLBs among the FPGAs (Dis-
tribution), the number of I/O pins lacking (p), the device proposed for the implemen-
tation (FPGA type), and the CPU time in seconds necessary to obtain a solution
(T(sec)). From the results we can observe that there are some unbalanced distribu-
tions. This is a logic result because we need some circuits to pass the nets from one
device to another. In addition our fitness function has been developed to achieve two
objectives, so that the cGA works. In summary, the algorithm succeeds in solving the
partitioning problem with board constraints. We have implemented a board and we
have checked some basic circuits so we can conclude that the algorithms works.

2118 J.I. Hidalgo et al.

Table 2. Partitioning and Placement Results for different benchmarks

Cir-
cuit

CLBs Edges Distribution p FPGA type T (sec)

S208 127 200 16,15,17,21,11,11,19,17 0 4003 20.70
S298 158 306 20,23,29,20,20,20,25,11 0 4003 5.92
S400 217 412 28,47,23,37,16,20,33,13 0 4005 52.96
S444 234 442 27,38,36,29,41,37,16,27 0 4005 52.99
S510 251 455 34,41,38,42,32,19,24,2 0 4005 96.74
S832 336 808 230,11,25,14,17,18,16,5 0 4008 96.74
S820 338 796 237,17,24,14,21,8,7,10 0 4008 138.93
S953 494 882 168,60,82,31,101,289,15 0 4008 194.65
S838 495 800 100,92,37,77,67,60,43,17 0 4008 293.45
S1238 574 1127 91,11,293,56,50,25,17,31 0 4008 320.14
C1423 829 1465 525,52,114,14,37,51,28,8 0 4020 273.65
C3540 1778 2115 614,135,88,89,56,26,28,2 0 4020 844.16

• Inter-FPGA Placement and Routing

Several experiments with different sizes and complexities have been performed for
testing the placement and routing process. [10]. One of them is shown in figure 6. We
worked on a SUN workstation 167 Mhz. The main parameters employed were the
following: Population size = 200, Number of generations = 500, Population size: 200,
Maximum depth: 30, Steady State Tournament size: 10. Crossover probability=98%,
Mutation probability=2%, Creation type: Ramp Half/Half. Add best to New Popula-
tion. The GP tool we used is described in [16]. Figures 6 and 7 show one of the pro-
posed circuits and one of the solutions found, respectively. More solutions found for
this circuit are described in [15].

5 Conclusions and Future Work

In this paper a methodology for circuit design using MFSs has been presented. We
have used evolutionary computation for all steps in the design process. First, a com-
pact genetic algorithm with a local search heuristic was used on achieving partition-
ing and placement for intra-FPGA systems and, for the Inter-FPGA tasks Genetic
programming was used. This method can be applied for different boards and solves
the whole design flow process. As future work, we are working now on the paralleli-
zation of all of the steps and studying Multi-Objective Genetic Algorithms (MOGA)
techniques.

Fig. 6. Circuit to be tested.

Multi-FPGA Systems Synthesis by Means of Evolutionary Computation 2119

Acknowledgement. Part of this research has been possible thanks to the Spanish
Government research projects number TIC2002-04498-C05-01 and TIC2002/750.

References

1. S. Trimberger. “Field Programmable Gate Array Technology”. Kluwer 1994.
2. S .Hauck,: Multi-FPGA systems. Ph. D. dissertation. University of Washington. 1994
3. M. Baxter. “Icarus: A dinamically reconfigurable computer architecture” IEEE Sympo-

sium on FPGAs for Custom Computing machines, 1999, 278–279.
4. R. Macketanz, W. Karl. “JVX: a rapid prototyping system based on Java and FPGAs”. In

Field Programmable Logic: From FPGAs to Computing Paradigm, pages 99–108.
Spinger Verlag, 1998

5. M.I. Heywood and A.N. Zincir-Heywood. “Register based genetic programming on
FPGA computing platforms”. Euro GP 2000, 44–59.

6. CAD Benmarching Laboratory, http://vlsicad.cs.ud.edu/
7. XNF: Xilinx Netlist Format", http://www.xilinx.com
8. F. Harary. “Graph Theory”. Addison-Wesley 1968
9. J.I. Hidalgo, J. Lanchares, R. Hermida. "Graph Partitioning methods for Multi-FPGA

systems and Reconfigurable Hardware based on Genetic algorithms", Proceedings of the
1999 Genetic and Evolutionary Computation Conference Workshop Program, Orlando
(USA), 1999, 357–358.

10. G.R. Harik, F.G. Lobo, D. E. Goldberg “The Compact Genetic Algorithm”. Illigal Report
Nº 97006, August 1997. University of Illinois at Urbana-Champaign

11. G.R. Harik, F.G. Lobo, D. E. Goldberg “The Compact Genetic Algorithm”. IEEE Trans-
actions on Evolutionary Computation. Vol. 3, No. 4, pp. 287–297, 1999.

12. J.I. Hidalgo. R.Baraglia, R. Perego, J. Lanchares, F. Tirado. “A Parallel compact genetic
algorithm for Multi-FPGA partitioning” Euromicro PDP 2001, 113–120. IEEE Press.

13. R, Baraglia, J.I.Hidalgo, and R. Perego. ”A Hybrid Heuristic for the Travelling Salesman
Problem “. IEEE Transactions on Evolutionary Computation. Vol. 5, No. 6, pp. 613–622,
December 2001.

14. J.R. Koza: Genetic Programming. On the programming of computers by mens of natural
selection. Cambridge MA: The MIT Press

Clb
1,0

S
1,0

Clb
2,0

S
2,0

Clb
3,0

S
3,0

Clb
4,0

S
4,0

Clb
5,0

S
5,0

Clb
6,0

S
6,0

Clb
7,0

S
7,0

Clb
8,0

S
8,0

Clb
1,1

Sw
1,1

Clb
2,1

Sw
2,1

Clb
3,1

Sw
3,1

Clb
4,1

Sw
4,1

Clb
5,1

Sw
5,1

Clb
6,1

Sw
6,1

Clb
7,1

Sw
7,1

Clb
8,1

Sw
8,1

Clb
1,2

Sw
1,2

Clb
2,2

Sw
2,2

Clb
3,2

Sw
3,2

Clb
4,2

Sw
4,2

Clb
5,2

Sw
5,2

Clb
6,2

Sw
6,2

Clb
7,2

Sw
7,2

Clb
8,2

Sw
8,2

Clb
1,3

Sw
1,3

Clb
2,3

Sw
2,3

Clb
3,3

Sw
3,3

Clb
4,3

Sw
4,3

Clb
5,3

Sw
5,3

Clb
6,3

Sw
6,3

Clb
7,3

Sw
7,3

Clb
8,3

Sw
8,3

Clb
1,4

Sw
1,4

Clb
2,4

Sw
2,4

Clb
3,4

Sw
3,4

Clb
4,4

Sw
4,4

Clb
5,4

Sw
5,4

Clb
6,4

Sw
6,4

Clb
7,4

Sw
7,0

Clb
8,4

Sw
8,4

Clb
1,5

Sw
1,5

Clb
2,5

Sw
2,5

Clb
3,5

Sw
3,5

Clb
4,5

Sw
4,5

Clb
5,5

Sw
5,5

Clb
6,5

Sw
6,5

Clb
7,5

Sw
7,1

Clb
8,5

Sw
8,5

Clb
1,6

Sw
1,6

Clb
2,6

Sw
2,6

Clb
3,6

Sw
3,6

Clb
4,6

Sw
4,6

Clb
5,6

Sw
5,6

Clb
6,6

Sw
6,6

Clb
7,6

Sw
7,2

Clb
8,6

Sw
8,6

Clb
1,7

Sw
1,7

Clb
2,7

Sw
2,7

Clb
3,7

Sw
3,7

Clb
4,7

Sw
4,7

Clb
5,7

Sw
5,7

Clb
6,7

Sw
6,7

Clb
7,7

Sw
7,3

Clb
8,7

Sw
8,7

Clb
1,8

Sw
1,8

Clb
2,8

Sw
2,8

Clb
3,8

Sw
3,8

Clb
4,8

Sw
4,8

Clb
5,8

Sw
5,8

Clb
6,8

Sw
6,8

Clb
7,8

Sw
7,0

Clb
8,8

Sw
8,8

Clb
1,9

Clb
2,9

Clb
3,9

Clb
4,9

Clb
5,9

Clb
6,9

Clb
7,9

Clb
8,9

Clb
9,6

Clb
9,7

Clb
9,8

Clb
9,9

Clb
9,0 Clb

9,1 Clb
8,8

Sw
8,8

Clb
8,9

Sw
8,9

Clb
9,2 Clb

9,3
Clb
9,4

Clb
9,5

OUT

IN

IN

IN

IN

IN

Fig. 7. A solution found for example on Figure 6

2120 J.I. Hidalgo et al.

15. F. Fernández, J.M. Sánchez, M. Tomassini, "Placing and routing circuits on FPGAs by
means of Parallel and Distributed Genetic Programming ". Proceedings 4th international
conference on Evolvable systems ICES 2001.

16. M. Tomassini, F. Fernández, L. Vannexhi, L. Bucher, "An MPI-Based Tool for Distrib-
uted Genetic Programming" In Proceedings of IEEE International Conference on Cluster
Computing CLUSTER2000, IEEE Computer Society. Pp. 209–216

17. J.I. Hidalgo, J. Lanchares, A.ibarra,R. Hermida. A Hybrid Evolutionary Algorithm for
Multi-FPGA Systems Design. Proceedings of Euromicro Symposium on Digital System
Design, DSD 2002. Dortmund, Germany, September 2002. IEEE Press, pp. 60–68.

	1 Introduction
	2 MFS Partitioning and Placement
	3 Placement and Routing on FPGAs
	4 Experimental Results
	5 Conclusions and Future Work

