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Abstract. The emergence of multimedia data in databases requires
adequate methods for information retrieval. In a music data retrieval
system by humming, the first stage is to extract exact pitch periods
from a flow of signals. Due to the complexity of speech signals, it
is difficult to make a robust and practical pitch tracking system.
We adopt genetic algorithm in optimizing the control parameters for
note segmentation and pitch determination. We applied the results
to HumSearch, a commercialized product, as a pitch tracking engine.
Experimental results showed that the proposed engine notably improved
the performance of the existing engine in HumSearch.

1 Introduction

As information systems advance, databases include multimedia data such as
images, musics, and movies. For music databases, there are many search methods
based on melodic contours, authors, singers, or lyrics. People want to find music
with a few notes that are entered by a convenient method like humming. We
aim to develop a pitch tracking engine for a music retrieval system that supports
queries by humming.

A number of music search algorithms have been proposed. Handel [1] em-
phasized that the melodic contour is the most critical factor that listeners use to
distinguish a song from the others. In other words, similar melodic contours make
listeners consider songs as the same. Music search by humming matches songs
and input queries according to properties such as melodic contours and rhyth-
mic variations. Although being attractive, it contains some difficult processes
such as melodic contour representation, note segmentation, and pitch period
determination. Chou et al. [2] proposed a chord decision algorithm which trans-
forms songs and queries into chord strings. Ghias et al. [3] used melodic contours
of hummed queries, which consist of a sequence of relative differences in pitch
between successive notes. They used an alphabet of three possible relationships
between pitches: “U”, “D”, and “S”. Each alphabet represents the situation that
the current note is above (“U”), below (“D”), or the same (“S”), respectively,
as the previous one.
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To represent a melody by a melodic contour, a high-precision pitch tracking
process is required. Pitch tracking is a process to determine the pitch period of
each note in a melody. It involves two main processes: note segmentation and
pitch determination.

Note segmentation determines where notes begin and terminate, and extracts
the notes from a flow of signals. Rodger et al. [4] performed note segmentation
in two ways: One based on amplitude and the other on pitch. Ahmadi et al. [5]
presented an improved system for voiced/unvoiced classification from hummed
queries based on statistical analysis of cepstral peaks, zero-crossing rates, and
energy magnitudes of short-time speech segments. Mingyang et al. [6] proposed
a system for the pitch tracking of noisy speech with statistical anticipation.

Pitch determination calculates pitch period of a segmented note. There are
several approaches to calculate the basic frequency such as autocorrelation [7],
AMDF [8], and cepstrum analysis [9]. There are also a number of studies under
noisy environments. Shimomuro et al. [10] used weighted autocorrelation for
pitch extraction of noisy speech. Kunieda et al. [11] calculated the fundamental
frequency by applying autocorrelation in order to extract periodic features.

Few people usually have perfect pitch and they cannot remember all the exact
pitches of their favorite songs either, even when they sing the songs very often.
There may be errors as well in the melodic contours extracted from hummed
queries. For this reason, we need approximate pattern matching. Our engine is
utilized in HumSearch which supports queries by humming with an advanced
approximate pattern matching.

In this paper, we suggest a genetic algorithm for pitch tracking that tran-
scribes a hummed query into a melodic contour under noisy environments. We
not only used the classical methods for pitch tracking such as the energy of
short-time speech segment, zero-crossing rate, and cepstrum analysis, but also
designed a contour analysis model. While the classical algorithms determined the
threshold for note segmentation using a statistical method [5] [6] or an adaptive
method [4], we optimize the control parameters of the methods by combining
the classical methods with the genetic framework to enhance the performance
of the pitch tracking engine.

The remainder of this paper is organized as follows. In Section 2, we sum-
marize preliminaries for pitch tracking. In Section 3, we explain our additional
methods such as contour analysis for note segmentation and describe our system
in Section 4. We perform experiments and compare the results with an existing
pitch tracking engine in Section 5. Finally, we make our conclusions in Section 6.

2 Preliminaries

2.1 Note Segmentation

In pitch tracking systems, note segmentation is the most important process. To
transcribe a hummed query into a melodic contour, we need to compute the
number of notes contained in the query. Figure 2 shows an energy diagram of
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Fig. 1. Original vocal waveform (spaced by 0.01s)

Fig. 2. Energy diagram of short-time speech segment

Fig. 3. Pitch diagram of speech segment

a hummed query. Figure 3 is the result of pitch determination from the energy
diagram.

Speech Segment. Because of a temporary varying occurrence factor, speech
processing is naturally a non-stationary process. However, we assume that the
speech signal is short-time stationary for simple speech processing. We divide
the whole sound signal into small speech segments and try to determine pitches
on these small blocks. It is accomplished by multiplying the signal by a window
function, wn, whose value is zero outside some defined range. The rectangular
window is defined as follows:

wn =
{

1, if 0 ≤ n < N
0, otherwise.

where n is the time point of speech samples and N is the window size. Note that
if the size of the window is too large, our assumption becomes unreasonable.
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Fig. 4. Note segmentation based on zero-crossing rate

In contrast, if the size of the window is too small, we lack enough information
for delimitating a pitch. The size of the window is thus an important factor of
determining pitch period.

Energy of Speech Segment. The energy of a speech segment is defined to
be the sum of amplitudes of the input wave as follows:

E =
N∑

i=0

|x(i)|

where x(i) is the amplitude of original waveform signals and N is the size of a
speech segment [12]. A statistical metric such as average or median is used to
determine a threshold which classifies segments with or without voice. To make
classification simpler, a user sings by “da” or “ta” because the consonants cause
a drop in amplitude at each note boundary [3].

Zero-Crossing Rate. Zero-crossing occurs when neighboring points in a wave
have different signs. The zero-crossing rate measures the number of zero-crossings
in a given time interval [5]. The zero-crossing rate corresponding to the ith speech
segment is computed as follows:

ZCRi =
N−1∑
n=1

|sgn[xi(n)] − sgn[xi(n − 1)]|

where xi(n) is the value at position n in the ith speech segment and N denotes
the size of the speech segment, xi(n). A segment with a high zero-crossing rate is
judged to be unvoiced or sibilant sounds; a segment with a low number is judged
to be voiced intervals (See Figure 4).
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2.2 Pitch Determination

Algorithms for determining the pitch on a vocal signal are roughly classified
into two types: time-domain methods and frequency-domain methods. The time-
domain methods such as autocorrelation and AMDF examine the structure of
the sampled waveform, and the frequency-domain methods such as cepstrum
analysis perform the Fourier transform and examine the resulting cepstrum.

Autocorrelation. Autocorrelation is one of the oldest classical algorithms
for pitch determination. It shows the similarity in phase between two values of
the speech signal at times xn and xn+k. The autocorrelation function R(k) is
calculated from a numerical sequence as

R(k) =
N−k∑
n=1

x(n) · x(n + k)

where k is the correlation distance in the time sequence, N is the length of the
sequence, and x(n) is the value at position n in the time sequence. The func-
tion value with respect to k expresses the average correlation between numbers
separated by distance k in the sequence. The correlation distance k with the
maximum function value corresponds to the pitch period of the input signal.

Cepstrum Analysis. The cepstrum is defined to be the real part of the inverse
Fourier transform of the log-power spectrum of x(n) which is the value of acoustic
signal in time sequence. Since cepstrum analysis requires a high computation
cost, we use the Fast Fourier Transformation (FFT). For the FFT, we restrict
the window size of the speech segment to be a dyadic number. Figure 7 shows
the pitch period extracted from the vocal waveform of Figure 6.

2.3 The MIDI Notes Presentation

Since musical units such as octaves or cents are relative measures, we use the
MIDI notation for note presentation. MIDI is a standard for communicating with
electronic musical instruments and also a standard representation of the western
musical scale. It is thus appropriate for representing a melodic contour of song
or hummed input. MIDI assigns an integer in [0, 127] to each note. Middle C
(C4) is assigned 60, the note just above is 61, and that below is 59. MIDI note
0 corresponds to 8.1279 Hz and the highest defined note, 127, corresponds to
13,344 Hz in frequency. The output of the pitch tracking system is eventually
stored in MIDI form. Figure 12 contains a sequence of 12 MIDI notes from a
hummed input.

3 Enhanced Methods for Pitch Tracking System

Since a user hums at a slide, the amplitude of an unvoiced sound segment does
not drop. Thus the repeated notes may not be segmented successfully using the
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Fig. 5. Cepstrum analysis

Fig. 6. Original waveform signal

Fig. 7. Cepstrum pitch determination (p = pitch period)
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Fig. 8. Note segmentation based on energy of short-time speech segment

Fig. 9. Note segmentation based on smoothed energy diagram for detecting a valley

methods such as energy of the speech segment and zero-crossing rate. Unseg-
mented notes should separate into two notes (See Figure 8). We try to separate
the successive notes with contour analysis of energy diagram. We detect the val-
ley in the energy diagram and adopt it as a new feature for note segmentation.
We use a moving average method and make an energy diagram flatten to re-
move the small valleys. This method divides the successive notes into two notes
(Figure 9).

In our system, we divided the resolution of the relative pitch differences into
15 levels (U1 ∼ U7 (Up), D1 ∼ D7 (Down), and R (Same)). If the difference
is beyond the range, it is assigned one of the boundary levels, U7 or D7. More
accurate representation of pitch differences in successive notes is possible by this
fine-grained strategy.
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Fig. 10. Optimized pitch tracking system with GA

4 Optimized Pitch Tracking System with GA: GAPTS

4.1 System Architecture

The system architecture is shown in Figure 10. A hummed query fed into the
system is evaluated through the pitch tracking and query systems. The effi-
ciency of the pitch tracking module depends on the control parameters such as
weighted value, window size, etc. There are three main modules in the system :
voiced/unvoiced classification, note segmentation, and pitch determination.

4.2 GA Framework

Encoding. A chromosome consists of 11 genes. Each gene corresponds to a
feature that affects controlling the pitch tracking system. The function of each
gene is explained in Table 1.

Initialization. Initial solutions are generated at random. We set the population
size to be 100.
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Create initial population;
Evaluation all chromosomes ;
do
{

Choose parent1 and parent2 from population ;
offspring = crossover (parent1, parent2) ;
mutation(offspring) ;
evaluation (offspring) ;
replace(parent1, parent2, offspring);

} until (stopping condition) ;
return the best solution;

Fig. 11. Genetic algorithm framework

Table 1. The functions of genes

Genes Description
0 The window size of speech segment
1 A weighted value for determining the threshold of short-time energy

which divides voiced/unvoiced segments
2 The upper bound of frequency considered as voiced pitch
3 The lower bound of frequency considered as voiced pitch
4 Weighted value for determining the threshold of zero-crossing

rate which divides voiced/unvoiced segments
5 Boundary value for deciding a sampling count to determine pitch periods
6 The window size of analysis section for pitch determining
7 A window size of the moving average method for smoothing the contour

of a short-time energy diagram. If the size is set to 0, the method is not
applied to the system

8 The window size of the moving average method for smoothing the contour
of a zero-crossing rate diagram. if the size is set to 0, the method is not
applied to the system

9 Sampling count for pitch determining
10 Weighted value to determine the threshold that cuts a note into two or more

for note segmentation with contour analysis

Parent Selection. We assign to each chromosome a fitness value. A fitness
value is defined to be the sum of edit distances between the melodic contours
of the hummed query and the original song. Let SED(t, q) be the string edit
distance between a hummed query q and the target contour t. The fitness value
Fi of chromosome i is defined as follows:

Fi =
N∑

i=1

SED(Q(i), T (i))

where Q(i) is the ith hummed query, T (i) is the ith target contour, and N is the
number of the hummed queries. We use the tournament selection method [13].
The tournament size is 2.

Crossover. We use the uniform crossover [14]. The relatively high disruptivity
of the uniform crossover helped our algorithm escape from local optima and
converge to better solutions.
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Table 2. sets of parameters

gene number Optus PTS GAPTS
0 11 11
1 0.4 0.47
2 530.0 454.91
3 90.0 64.28
4 0.4 0.5
5 6 10
6 2 3
7 0 1
8 0 0
9 1.5 5.00
10 1.5 0.68

Mutation. We randomly select each genes with a probability (= 0.5) and
mutate the gene values within its admitted range.

Replacement. After generating an offspring, GAPTS replaces a member of
the population by the offspring. We replace the inferior of the two parents with
the offspring if the offspring is not worse than both parents. Otherwise, we
replace the worst member of the population by the offspring. This scheme is a
compromise between preselection [15] and GENITOR-style replacement [16].

Stopping Condition. The GA stops if the generation count reaches a prede-
termined number, or it shows 2000 times of consecutive fails to replace one of
the parents.

5 Experimental Results

The melodic contours extracted by GAPTS are evaluated by SED. SED is the
error in the string edit distance as mentioned in Section 4.2. Ten people hummed
95 songs for test. Following the convention for clear segmentation, they sang by
“ta” or “da” into microphone under a usual condition with noise. All programs
were written in C++ language and run on PentiumIII 866MHz with the Linux
operating system. We did not use any hardware device for acoustic signal pro-
cessing except the microphone.

For robust comparison between Optus PTS and GAPTS (combined with
GA), we followed the 5-fold cross-validation approach [17] [18]. We randomly
divided the entire hummed query set D into 5 mutually exclusive subsets of
approximately equal size. The GAPTS was trained and tested 5 times. Table 2
shows the sets of parameters; the first is the set of parameters that has been used
in HumSearch, a commercial query-by-humming product of Optus Inc., and the
second is the set we have found by the GA.

The original SED of HumSearch was 443. The GAPTS improved it to 424,
which is a notable improvement. When we replaced the existing set of parameters
in HumSearch by the new set, HumSearch also showed improvement. Out of the
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Fig. 12. A snapshot of our hummed query system

95 songs, we found 10 songs ranked up and 8 songs ranked down. We should note
that the parameter set for the HumSearch has been tuned for a long time to be a
commercial product. Considering this, the improvement in SED and the change
of ranks is notable. Figure 12 shows a snapshot of our interactive hummed query
system.

6 Conclusions

We extracted the parameters that control the note segmentation and pitch de-
termination. We optimized them by combining the classical methods such as
short-time energy diagram, zero-crossing rate, contour analysis of short-time
energy diagram for note segmentation and cepstrum analysis for pitch determi-
nation. Our pitch tracking system worked well regardless of testing environments
under various conditions, e.g., sexuality, noise, and input devices (mobile phone
or microphone).
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facilities for this study.
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