
Studying the Advantages of a Messy
Evolutionary Algorithm for Natural Language

Tagging�

Lourdes Araujo

Dpto. Sistemas Informáticos y Programación
Universidad Complutense de Madrid

lurdes@sip.ucm.es

Abstract. The process of labeling each word in a sentence with one of
its lexical categories (noun, verb, etc) is called tagging and is a key step
in parsing and many other language processing and generation applica-
tions. Automatic lexical taggers are usually based on statistical methods,
such as Hidden Markov Models, which works with information extracted
from large tagged available corpora. This information consists of the fre-
quencies of the contexts of the words, that is, of the sequence of their
neighbouring tags. Thus, these methods rely on the assumption that the
tag of a word only depends on its surrounding tags. This work proposes
the use of a Messy Evolutionary Algorithm to investigate the validity of
this assumption. This algorithm is an extension of the fast messy genetic
algorithms, a variety of Genetic Algorithms that improve the survival
of high quality partial solutions or building blocks. Messy GAs do not
require all genes to be present in the chromosomes and they may also
appear more than one time. This allows us to study the kind of build-
ing blocks that arise, thus obtaining information of possible relationships
between the tag of a word and other tags corresponding to any position
in the sentence. The paper describes the design of a messy evolutionary
algorithm for the tagging problem and a number of experiments on the
performance of the system and the parameters of the algorithm.

1 Introduction

The process of labeling each word in a sentence of a text with its lexical category
(noun, verb, etc) is called tagging and is a key step in the parsing process and
many other natural language processing and generation applications: machine
translation, information retrieval, speech recognition and generation, etc.

A word may have more than one possible tag (lexical ambiguity), and thus,
disambiguation methods are required to proceed with the tagging. There are
different approaches to automatic tagging based on statistical information, that
use large amount of data to establish the probabilities of the tag assignments.
Most of them are based on Hidden Markov Models (HMMs) and variants [11,4,
� Supported by project PR1/03-11588.

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 1951–1962, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

1952 L. Araujo

13,3] and neither require knowledge of the rules of the language nor try to deduce
them. Others are rule-based approaches that apply language rules to improve
the accuracy of the tagging. The Brill system [2] extracts these rules from a
training corpus, obtaining competitive performance with stochastic taggers.

Evolutionary algorithms present an appealing tradeoff between efficiency and
generality and for this reason they have been extensively applied to complex
optimization problems. They have previously been applied to tagging [1]. In
the evolutionary tagger, individuals are sequences of tags assigned to the words
of a sentence. This model is a variant of the HMM in which disambiguation is
introduced by assigning different probabilities to a given tag depending on which
are the neighbouring tags (context) on both sides of the word. The computation
of the fitness of the individuals is based on the data extracted of a training
corpus tagged by hand. These data are organized as contexts. The tagger is able
to learn from a training corpus so as to produce a table of rules (contexts) called
training table. This table records the different contexts of each tag. The table
can be computed by going through the training text and recording the different
contexts and the number of occurrences of each of them for every tag in the
training text.

Results indicate that the evolutionary approach for tagging texts of natural
language obtains accuracies comparable to other statistical approaches, while
improving the robustness of the typical algorithms used for the same purpose in
other stochastic tagging approaches (such as the widely used of Viterbi). These
methods typically perform at about the 96% level of correctness [3] (percentage
of words correctly tagged). However, there is a limit beyond which no further
improvement can be obtained, neither by enlarging the size of the context, nor
the size of the training text.

This leads us to investigate the application of messy GAs to the tagging
problem with the aim of studying the possible relationships between the tags of
the sentence. Statistical methods for tagging rely on the assumption that the only
influence to the correctness comes from the words surrounding the considered
one. Therefore, in the evolutionary tagger solutions are evaluated according to
the position of the genes. In a messy GA, individuals may be composed of any set
of genes, therefore relaxing the previous assumption and allowing to investigate
other kinds of dependencies among the words to be tagged. Messy GAs do not
require all genes to be present in the chromosomes and they may also appear
more than one time. This allows us to study the kind of building blocks that
arise, thus obtaining information of possible relation between the tag of a word
and other tags corresponding to any position in the sentence. Accordingly, this
paper presents an extension of the fast messy GAs to a fast messy evolutionary
algorithm (EA), which does not work with bit strings but with tag strings for
the tagging problem.

1.1 Messy Genetic Algorithms

Messy Genetic Algorithms [5] are variants of Genetic Algorithms that improve
the survival of high quality partial solutions or building blocks. This is achieved

Studying the Advantages of a Messy Evolutionary Algorithm 1953

by explicitly composing increasingly longer and highly fit string from previously
obtained and tested building blocks. This is a technique to tackle the problem
of building block disruption — linkage problem [9] — mainly due to the fixed
mapping from the solutions into the representations of individuals or chromo-
somes and to the way in which the crossover operator combine two chromosomes
to obtain a new one. Classic crossover operators often break promising building
block leading the algorithm to a local optimum. Furthermore, because messy
GAs expedite the presence of high quality building blocks, they increase the
probability of exchanging different building blocks [7].

Messy GAs use variable-length strings that are sequences of messy genes. A
messy gene is an ordered pair composed of a position and a value. The recording
of this information allows any building block to achieve tight linkage. Messy GAs
do not require all genes to be present in the chromosomes. Therefore, under
or overspecified chromosomes may arise. For example, in the messy string ((1
1) (3 0) (1 0)), the leftmost element specifies gene 1 and its allele value is 1.
In a three-bit problem, this chromosome is underspecified, because gene 2 is
absent, and overspecified, because gene 1 appears twice. Overspecification is
handled by applying a first-come-first-served rule on a left to right order. As for
underspecification, some problems do not require to deal with it in any special
way because structures of any size can be interpreted and evaluated. Otherwise,
the missed genes are filled with those of a competitive template, a string that is
locally optimal.

A messy GA proceeds in two different phases. The first one, called primor-
dial phase, aims to select tight building blocks. It is achieved by initializing the
population with all possible building blocks of a specified length. The proportion
of good building blocks is improved by applying selection alone for a number of
generations. Furthermore, the population size is usually reduced at particular
intervals. Thereafter, the next phase, the juxtaposition phase, proceeds applying
different genetic operators, like cut and splice, with the objective of recombining
the building block obtained in the first phase. In order to deal with chromo-
somes of variable length, the traditional crossover operator is substituted by the
complementary operators cut and splice. Cut divides the chromosome with a
specified probability, proportional to the length of the chromosome, while splice
joins two chromosomes.

The previous description corresponds to the original messy GA, which suffers
from an initialization bottleneck due to the generation of all building blocks of
a particular size k: it requires a population of O(lk) individuals, l being the
length of the problem strings. This problem has been dealt with by the socalled
fast messy GAs [7,10]. Fast messy GAs use smaller populations composed of
longer chromosomes. However these longer chromosomes introduce too much
error places [6]. This effect is handled by the mechanism of building block filtering.
According to this, the process begins with long chromosomes, that are reduced
by applying selection and random deletion at specific intervals. Another feature
of messy GAs is the use of a thresholding selection, which enforces any two
chromosomes to share some threshold number of genes before competing for
selection.

1954 L. Araujo

The rest of the paper proceeds as follows: Sect. 2 describes the main elements
in the fast messy EA for tagging; Sect. 3 is devoted to evaluate the model and
Sect. 4 draws the main conclusions of this work.

2 Messy Evolutionary Algorithm for Probabilistic
Tagging

The fast messy EA for tagging works with a population of sequences of genes
(chromosomes) of variable length. Each gene consists of a position indicating
the word of the sentence to be tagged and a tag chosen for that word. A word
may appear any number of times in the chromosome or be missing at all. Let
us considered the following words and their tags: Rice: (NOUN), flies: (NOUN,
VERB), like: (PREP, VERB), sand: (NOUN). Then a possible individual when
tagging the sentence Rice flies like sand is shown in Fig. 1. The algorithm uses
a pattern for the evaluation of the underspecified chromosomes. A pattern is a
complete tagging of the sentence. Initially each tag of this pattern is randomly
selected with a probability proportional to the frequency of the tag. Then the
algorithm performs a number of iterations, each of which is devoted to build-
ing up increasingly longer building blocks. The pattern is updated after every
iteration step, replacing its tags by those present in the best current individual.
Figure 2 shows a pattern for the sentence of the previous example. When the
individual of Fig. 1 is evaluated, the tag for the word flies, which is missing in
the chromosome, is taken from the pattern. As in a messy GA, each iteration
proceeds in three consecutive phases (see Fig. 3). In the initialization phase, a
population of individuals is generated to represent the classes corresponding to
each set of genes. In the original messy GA the initial population was composed
of a single copy of all substrings of length k. This initialization ensured that all
building blocks of the considered length were present but led to a bottleneck
for a problem length l moderately large. This is avoided by a technique called
probabilistically complete initialization [7], which creates a population of longer
individuals ensuring that, with high probability, any building block appears at
least once. Two parameters control the procedure: the length of the initial indi-
viduals and the population size. Let us call l′ the length of the initial individuals,
a value larger than k and smaller than l. The results obtained in [7,8] indicate
that if k < l/2 and we set l′ = l − k, a population size O(l) is a good choice.

Rice like sand
NOUN VERB NOUN

Fig. 1. Example of an individual for the sentence Rice flies like sand

Rice flies like sand
NOUN NOUN VERB NOUN

Fig. 2. Example of pattern for the sentence Rice flies like sand

Studying the Advantages of a Messy Evolutionary Algorithm 1955

function Fast messy EA()
pattern = random tagging(sentence);
for level = initial level to final level do{

Probabilistic initialization(Population, level);
Primordial phase(Population, pattern, level);
Juxtaposition phase(Population, pattern);
pattern = update pattern (pattern, best(Population); }

Fig. 3. Scheme of the fast messy EA for tagging

These results have been obtained assuming two alleles for each gene, but they
may be extended to an arbitrary number of them. Accordingly we assume these
results and take, in our case, the population size as a function of the length of
the sentence. Our experimental results serve as an a posteriori justification.

2.1 The Primordial Phase

After the initialization, the primordial phase (Fig. 4) selects the best individuals
of each combination of genes of size k. Because chromosomes in a messy algo-
rithm may contain very different sets of genes, and thus have little in common,
a special selection is required to make the competition fair. This is called thresh-
olding selection, and it is implemented by applying tournament selection only
between two individuals that have in common a number of genes greater than
a threshold value. In our case, the number of common genes is computed as the
number of different words of the sentence tagged in both chromosomes.

Individual Evaluation. The fitness function is related to the total probability
of the sequence of tags assigned to the sentence. The raw data to obtain this
probability are extracted from the training table. The fitness of an assignment
is defined as the sum of the fitness of its positions,

∑
i(f(gi)). The fitness of a

position g is defined as

f(g) = log P (T |LC, RC),

where P (T |LC, RC) is the probability that the tag of position g is T , given that
its context is formed by the sequence of tags LC to the left and the sequence

function Primordial phase(Population, pattern, level)
level temp = length(Population[0]) - level);
while (level temp > level) do{

Selection(Population);
Gene deletion(Population);
Evaluation(Population);
level temp–; }

Fig. 4. Scheme of the primordial phase

1956 L. Araujo

RC to the right. This probability is estimated from the training table as

P (T |LC, RC) ≈ occ(LC, T, RC)
∑

T ′∈T occ(LC, T ′, RC)

where occ(LC, T, RC) is the number of occurrences of the list of tags LC, T, RC
in the training table and T is the set of all possible tags of gi. The contexts
corresponding to the position at the beginning and the end of the sentences lack
tags on the left-hand side and on the right-hand side respectively. This event is
managed by introducing a special tag, NULL, to complete the context.

In our case chromosomes are evaluated by previously building a tagging of
the sentence with tags coming from the individual if it contains any instance of
the corresponding gene and from the pattern otherwise. For overspecified genes
we take the first occurrence of the gene in a left-to-right order. For example, if we
are evaluating the individual of Fig. 1 and we are considering contexts composed
of one tag on the left and one tag on the right of the position evaluated, the
second gene, for which there are two possible tags, NOUN (the one chosen in
this individual) and VERB, will be evaluated as:

#(NOUN NOUN VERB)
[#(NOUN NOUN VERB) + #(NOUN VERB VERB)]

where # represents the number of occurrences of the context. The remaining
genes are evaluated in the same manner.

Another mechanism introduced in this phase is the deletion of genes to reduce
the length of the individuals from l′ to k. The genes to be erased are randomly
selected. We expect to have enough copies of the best building blocks so that
after the random deletion some of them still remain.

2.2 The Juxtaposition Phase

The last phase, called juxtaposition (Fig. 5), is devoted to combine the tight
building blocks obtained in the previous phase. This phase also uses thresholding
selection as well the cut-and-splice operator to combine individuals, and the
mutation operator. The rate of application of the cut operator increases with
the length of the individuals, while splicing is applied at a fixed rate. Thus, in

function Juxtaposition phase(Population, pattern)
generation = 0;
while (generation < max generation) && not convergence do{

Selection(Population);
Cut splice(Population);
Mutation(Population);
Evaluation(Population);
generation++; }

Fig. 5. Scheme of the juxtaposition phase

Studying the Advantages of a Messy Evolutionary Algorithm 1957

the beginning of the evolution process, cut-and-splice behaves almost like splice
alone, increasing the length of the individuals. Later on, when the length of the
individuals is long enough, cut and splice are applied together producing an
effect similar to a one-point crossover operator.

Mutation is then applied to every gene of the chromosomes resulting from the
cut-and-splice operation with a probability given by the mutation rate. The tag
of the mutation point is replaced by another of the valid tags of the corresponding
word. The new tag is randomly chosen according to its probability (the frequency
it appears with in the corpus).

Chromosomes resulting from the application of genetic operators replace an
equal number of individuals selected with a probability inversely proportional to
their fitness.

3 Experiments

The algorithm has been implemented on C++ language on a Pentium II PC.
Tables 1 and 2 compare the accuracy rate obtained with a classic EA and a fast
messy EA for the tagging problem. Experiments have been carried out using a
training corpus of 185000 words extracted from the Brown corpus [12], a test
text of 500 words, population sizes once, twice or three times the length of the
sentence to be tagged, a crossover rate of 30%, and a mutation rate of 1%.
Table 1 presents the highest accuracy achieved in ten runs for all population
sizes; Table 2 presents the average and standard deviation of these ten runs for
a population size twice the sentence length, as well as the results of a t-test to
asses the statistical significance of the differences in accuracy of both methods.

Table 1. Largest accuracy of ten runs obtained with the classic EA and with the fast
messy EA with different numbers of generation and population sizes for the tagging
problem. CEA stands for classic evolutionary algorithm and FMEA for fast messy
evolutionary algorithm. In the FMEA the number of generations refers to the juxtapo-
sition phase. The range of sizes of building blocks in the primordial phase has been |s|
/ 3.5 – |s| / 2.5. The threshold value to allow competition during selection has been |s|
- 2, and the threshold value to begin to apply cut has been |s| / 1.5. Two last columns
show the number of fitness evaluations for PS = |s|*2

Accuracy evaluations n.
PS = |s| PS = |s|*2 PS = |s|*3 PS = |s|*2

CEA FMEA CEA FMEA CEA FMEA CEA FMEA
5 generations 95.44 96.40 95.44 96.40 95.20 95.62 98964 11521

10 generations 95.44 96.48 96.16 96.88 95.68 96.64 102944 21494
20 generations 95.68 96.88 96.16 97.12 96.16 96.68 109964 38136
30 generations 95.44 96.88 95.92 96.88 95.92 96.64 117337 51225
40 generations 95.68 96.40 95.92 96.88 95.92 96.64 123757 60728

1958 L. Araujo

Table 2. Study of the statistical significance of the results obtained for a population
size of 2*|s|. CEA stands for classic evolutionary algorithm and FMEA for fast messy
evolutionary algorithm. Last column reports the probability that the two samples (the
accuracies of the ten runs with the CEA and those of the FMEA) arise from the same
probability distribution (a small number means that the difference in the means is
statistically significant)

CEA FMEA significance
Mean St. dev. Mean St. Dev. t-test signif.

5 generations 95.5 0.441 96.1 0.415 0.0057
10 generations 95.5 0.411 95.8 0.343 0.17
20 generations 95.5 0.435 96.3 0.509 0.0015
30 generations 95.4 0.518 96.1 0.610 0.020
40 generations 95.5 0.499 96.5 0.495 0.0002

We can observe that the messy algorithm slightly but systematically improves
the results. Although the accuracy results are limited a priori by the statistical
information used in the fitness function, the systematic improvement obtained
suggests the existence of some correlation between the word to be tagged and dis-
tant words, which comes to light by the nature of the messy EA. This hypothesis
is supported by the shape of the building blocks obtained from the primordial
phase. Figure 6 shows some instances of building blocks obtained from the pri-
mordial phase for a sentence of 29 words and a level k = 7. A ’0’ indicates that
the gene corresponding to the word of that position in the sentence is absent
and any other number that it is present at least once. A ’1’ indicates that the
gene is present but the tag is wrong, ’2’ that the tag is right and ’3’ that the
tag is right while it was wrong in the tagging performed with a classic EA. We
can observe that the worse building blocks present very sparse genes. We can
also observe that although some of the best building blocks, such as 9, present
their genes very grouped, there are also some others, such as 2, with some sparse
genes. Furthermore, we can also observe that some of the tags that have been

Building blocks Fitness
1 0220012100000010220000302 20.2156
2 0020002022020002002000302 22.1340
3 0020022000202012000002020 21.6027
4 0000200020002220020202300 21.6340
5 0023210000020010202020000 20.7156
6 0221200000002210020002022 21.1027
7 0203200120020002000020002 21.1352
8 0020212000220000200020020 21.2468
9 0020002220002200000020302 22.1340

Fig. 6. Samples of building blocks obtained from the primordial phase for a sentence
of 29 words and a level k = 7. Average fitness is 20.92

Studying the Advantages of a Messy Evolutionary Algorithm 1959

correctly assigned by the messy EA but wrongly by the classic EA (marked ’3’)
appear among sparse genes. The evaluation of contexts containing missing genes
amounts to taking the tag of the pattern and thus, in general, at least in the
primordial phase, the resulting context will be composed of tags without any re-
lation. For the same reason, we expect that consecutive genes increase the fitness
because with high probability they correspond to frequent contexts (they have
appeared after the selection of the primordial phase). Therefore, the selection
of chromosomes with separate genes may indicate a correlation between tags by
some hidden indirect mechanisms. To illustrate this assume the following pattern
for a sentence with n words:

P : P1, P2, · · · , Pn

where Pi is the tag assigned to the word wi. Let us consider now the following
individuals (denotes a missing gene), and let T represent the tag they have
assigned to the word:

I1 : T1, T2, T3 · · · ,
I2 : T ′

1, , T ′
3, , T ′

5, · · · ,

Assuming that a context is composed of one tag on the left and one of the
right, the evaluation of I1 is done according to the frequencies of the contexts
(T1, T2), (T1, T2, T3), (T2, T3, T4), etc, that must have high frequencies because
they have been selected. However, the evaluation of I2 is done with the con-
texts (T ′

1, P2), (T ′
1, P2, T

′
3), (P2, T

′
3, P4), etc, composed of tags not necessarily

related. Therefore, in general, they will have low frequencies and will hardly
appear. Accordingly, the actual occurrence of an individual as the following one

I : T ′′
1, , , T ′′

4, T
′′
5, · · · ,

may indicate a hidden relation between T ′′
1 and T ′′

4, T
′′
5 (e.g. they might cor-

respond to words separated by a subordinate phrase, or by words that have only
one possible tag). In this way the messy EA although less efficient than classic
EAs (the number of fitness evaluations is more than twice, see two last columns
of Table 1), helps to uncover hidden relations between the words of the sentence.

3.1 Study of the Algorithm Parameters

Two fundamental parameters for the probabilistic initialization phase in a messy
EA are the length of the chromosomes and the size of the initial population. Some
experiments have been carried out in order to determine the most appropriate
values of these parameters in our problem. Because the text is tagged sentence
by sentence it seems reasonable to adjust these parameters as some kind of sim-
ple function of the length of the sentence. Figure 7 shows the results obtained
when varying the length of the chromosomes for different population sizes. All
parameters are established as a function of the length of the sentence. We can
observe that values of the order of the problem length are enough. A parameter

1960 L. Araujo

|s| |s|*1.5 |s|*2 |s|*2.5 |s|*3
Chromosome size

95

95.5

96

96.5

97

97.5

98

A
cc

ur
ac

y

PS = |s|
PS = |s|*2
PS = |s|*3

Fig. 7. Accuracy obtained with different sizes of the chromosomes. Each chart corre-
sponds to a different population size: P1 stand for a population size of equal to the
length of the sentence, P2 to one of twice the length of the sentence and P2 of three
times this length

of the algorithm that needs to be studied is the threshold value for the mea-
surement of similarities between two chromosomes, in order to decide if they are
similar enough for the comparison to make sense. Table 3(a) shows the results
for some values defined as a function of the length of the sentence to be tagged.
The number of similarities is measured as the number of different words of the
sentence that corresponds to any of the genes of the chromosome. The best result
is obtained when the required similarity is equal to the length of the sentence
minus 2. This indicates that only very similar chromosomes must be compared.

Another parameter to be fixed in a messy EA is the threshold value for the
chromosome size to begin to apply the cut operator. Table 3(b) shows the results.

Table 3. Table (a) presents the accuracy obtained with different values of the thresh-
old established to considerer two chromosomes similar enough to be compared. Table
(b) shows the accuracy obtained with different values of the threshold size of the chro-
mosomes to apply the cut operator. Table (c) presents the accuracy obtained with
different range of sizes of building blocks in the primordial phase. |s| stands for length
of the sentence. When varying one of the three parameters the other two are assigned
the value marked in boldface

Thres. similarity Acc.
|s| 96.16

|s| - 1 96.64
|s| - 2 97.12
|s| - 3 95.44

(a)

Thres. length Acc.
|s| / 1.3 95.68
|s| / 1.4 96.88
|s| / 1.5 97.12
|s| / 1.6 96.16
|s| / 1.7 95.68

(b)

Range Acc.
|s| / 3 – |s| / 2 96.40
|s| / 4 – |s| / 3 96.88

|s| / 3.5 – |s| / 2.5 97.12
|s| / 3 – |s| / 2.5 96.88

(c)

Studying the Advantages of a Messy Evolutionary Algorithm 1961

The best accuracy is obtained when cut is only applied to individuals longer than
two thirds of the length of the sentence.

Finally, the range of sizes of building blocks explored in the primordial phase
has also been studied. Table 3(c) shows the results obtained. In this case, the
greater accuracy is obtained when the size of the building blocks explored ranges
between the length of the sentence divided by 2.5 and the length divided by 3.5.

4 Conclusions

This work has investigated the kind of dependencies between words in the tag-
ging problem, that is the assignment of lexical categories to the words of a text.
This have been done by applying a fast messy evolutionary algorithm to solve
the problem. This algorithm is an extension of the fast messy genetic algorithm,
a variety of Genetic Algorithm that improves the survival of high quality par-
tial solutions or building blocks. Thus, it is a technique to tackle the problem of
building block disruption or linkage problem partially due to the fixed mapping
from the solutions into the representations of individuals. In a messy GA indi-
viduals are variable-length strings of messy genes. A messy gene is an ordered
pair composed of a position and a value. The recording of this information allows
any building block to achieve tight linkage. These algorithms allow obtaining in
a phase, called primordial phase, previous to the evolutionary process, a set of
tight building blocks, whose features can provide information about the internal
dependencies of the problem.

Results obtained for the tagging problem systematically outperform a little
those obtained with a classic evolutionary algorithm, thus indicating the exis-
tence of other relation between tags apart from those between the neighbouring
words. This idea is also supported by the kind of building blocks obtained from
the primordial phase. Some of them present their genes grouped, but in others
the genes are mainly sparse in the proximity of the group or forming others
groups.

These results indicate the presence of more complex relationships between
words. Accordingly, in the future those possible relationships will be investigated
by studying the dependencies between the tagging and the parsing problem.

A number of parameters affecting the performance of the results have also
been investigated. These parameters have been assigned values as a function of
the length of the sentence. The study of the size of the chromosomes and of
the initial population size in the probabilistic initialization phase indicates that
values close to the length of the sentence or twice this length are enough to
obtain the best results. The experiments on the threshold value to consider that
two chromosomes are comparable indicates that very similar chromosomes are
required (different at most by the presence of two genes).

1962 L. Araujo

References

1. L. Araujo. A parallel evolutionary algorithm for stochastic natural language pars-
ing. In Proc. of the Int. Conf. Parallel Problem Solving from Nature (PPSNVII),
2002.

2. E. Brill. Transformation-based error-driven learning and natural language pro-
cessing: A case study in part of speech tagging. Computational Linguistics, 21(4),
1995.

3. E. Charniak. Statistical Language Learning. MIT press, 1993.
4. D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun. A practical part-of-speech tagger.

In Proc. of the Third Conf. on Applied Natural Language Processing. Association
for Computational Linguistics, 1992.

5. D.E. Goldberg, Korb B., and Deb K. Messy genetic algorithms: motivation, anal-
ysis, and first results. Complex Systems, 3:493–530, 1989.

6. D.E. Goldberg, Korb B., and Deb K. Messy genetic algorithms revisited: Studies
in mixed size and scale. Complex Systems, 4:415–444, 1990.

7. D.E. Goldberg, Kargupta H. Deb K., and Harik G. Rapid, accurate optimization
of difficult problems using fast messy genetic algorithms. In Proc. of the Fifth
International Conference on Genetic Algorithms, pages 56–64. Morgan Kaufmann
Publishers, 1993.

8. D.E. Goldberg, Deb K., and J. H. Clark. Don’t worry, be messy. In Proc. of
the Fourth International Conference in Genetic Algorithms and their Applications,
pages 24–30, 1991.

9. Georges R. Harik and David E. Goldberg. Learning linkage. In Richard K. Belew
and Michael D. Vose, editors, Foundations of Genetic Algorithms 4, pages 247–262.
Morgan Kaufmann, San Francisco, CA, 1997.

10. H. Kargupta. Search, polynomial complexity, and the fast messy genetic algorithm.
Ph.D. thesis, Graduate College of the University of Illinois at Urbana-Champaign,
1996.

11. B. Merialdo. Tagging english text with a probabilistic model. Computational
Linguistics, 20(2):155–172, 1994.

12. Francis W. Nelson and Henry Kucera. Manual of information to accompany a stan-
dard corpus of present-day edited american english, for use with digital computers.
Technical report, Department of Linguistics, Brown University., 1979.

13. H. Schutze and Y. Singer. Part od speech tagging using a variable memory markov
model. In Proc. of the 1994 of the Association for Computational Linguistics.
Association for Computational Linguistics, 1994.

	Introduction
	Messy Genetic Algorithms

	Messy Evolutionary Algorithm for Probabilistic Tagging
	The Primordial Phase
	The Juxtaposition Phase

	Experiments
	Study of the Algorithm Parameters

	Conclusions

