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Abstract.  DNA microarray experiments generate thousands of gene expression 
measurement simultaneously. Analyzing the difference of gene expression in 
cell and tissue samples is useful in diagnosis of disease. This paper presents an 
Artificial Immune System for classifying microarray-monitored data. The sys-
tem evolutionarily selects important features and optimizes their weights to de-
rive classification rules. This system was applied to two datasets of cancerous 
cells and tissues. The primary result found few classification rules which cor-
rectly classified all the test samples and gave some interesting implications for 
feature selection.   

1    Introduction 

The analysis of human gene expression is an important topic in bioinformatics. The 
microarrays and DNA chips can measure the expression profile of thousands of genes 
simultaneously. Genes are expressed differently depending on its environment, such 
as their affiliate organs and external stimulation. Many ongoing researches try to 
extract information from the difference in expression profile given the stimulation or 
environmental change. Some of the experiments have shown promising result in di-
agnosis of cancer [16, 17, 4]. Our focus is on classifying gene expression data in [16] 
and [17]. These data are publicly available and has been applied by other classifica-
tion methods.  

This paper describes the implementation of Artificial Immune System (AIS) [2] for 
classification. The AIS simulates the human immune system, which is a complex 
network structure, which responds to an almost unlimited multitude of foreign patho-
gens. It is considered to be potent in intelligent computing applications such as detec-
tion, pattern recognition, and classification. 

This implementation of AIS defines classification rules as hyperplanes, which di-
vide the domain of sample vectors. The experiments with genomic expression data 
showed how the border lines are captured and how the features are selected. Com-
pared to other classifier methods, AIS show reduced complexity of the rules, while 
equaling or improving on the accuracy of prediction.  
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2    Classification of Microarray Data 

Important aspects in gene expression classification are selection of informative genes 
(feature selection), and optimization of strength (weight) of each gene, and generali-
zation.  

Many existing works use ranking methods to select features as a kind of dimen-
sionality reduction on the data. Many studies [7, 15, 16], uses correlation metrics Gi 
(i) to rank the feature genes. Subset of genes with highest correlations is chosen as 
classifier genes. In (i), µ and σ are the mean and standard deviation for the expression 
levels of gene i, in class A or B samples. [5] compares several ranking methods and 
results when combined with several machine learning methods.  

                                                 Gi = (µA-µB) / (σA+σB)          (i) 

For optimizing weights, machine learning methods such as weighted vote cast [16], 
Bayesian Network, Neural Network, RBF Network [7], Support Vector Machine [6, 
15], have been applied to such data. 

2.1    Classification of ALL/AML in Acute Leukemia 

In [16], cancerous cells collected from 72 patients of acute leukemia are monitored 
over 7109 genes. Discovery and prediction of cancer class is important, as clinical 
outcome vary depending on its class. Each sample belongs to either ALL or AML 
cancer classes. Two independent data sets, training data set (38 cell samples, 27 ALL 
and 11 AML) to learn the cancer classes and test data set (34 samples, 20 ALL and 14 
AML) to evaluate its prediction were provided in [16]. The reliable diagnoses of the 
samples were made by combination of clinical tests.  

2.2    Colon Cancer Diagnosis 

In [17], using Affymetrix oligonucleotide arrays, expression levels of 40 tumor and 
22 normal colon tissues are measured for 6500 human genes. Among these genes, 
2000 with the highest minimal intensity across the tissues are selected for classifica-
tion purposes. Since no training data set or test dataset were classified, we randomly 
chosen 38 training samples and 24 test samples. 

Table 1 shows comparison of performance in ALL/AML classification by various 
machine learning techniques. The results are cited from [6, 7, 15, 16]. Each method 
were trained and tested under following conditions. Weighted Vote Cast (WVC) [16] 
selected 50 genes with high correlation as classifier genes. Each sample is classified 
by the sum of each gene’s correlation value. Since weights are not learned, training 
samples are misclassified.  

Neural Network (NN) creates different classifier in every run. The success rate 
shown in Table 1 is the best in 10 runs, while the average and worst success rate of 
test data was 4.9 and 9 respectively. Bayesian Network[7] uses 4 genes with higher 
correlations, though how the features were chosen is not clearly stated. Support Vec-
tor Machine (SVM) is a combination of linear modeling and instance–based learning. 
[15] uses 50, 100, and 200 genes of high correlation. [6] uses Recursive Feature 
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Elimination to select informative genes. Result in Table 1 is obtained when 8, 16, 32 
genes were chosen.Our implementation of AIS selects combination of genes and 
weights in evolutionary recombination process. The result in Table 1 is the best of 20 
runs, while average number of misclassification was 0.85. More detailed result will be 
given in later section. 

Table 1. Comparison of machine learning techniques in Leukemia data set 

ALL/AML WVC[16] BN[7] NN[7] SVM[15] SVM[6] AIS 
Training  2/38 0/38 0/38 0/38 0/38 0/38 
Test  5/34  2/34 1/34 2-4/34 0/34 0/34 

3    Features of Immune System  

The capabilities of natural immune system, which are to recognize, destroy, and re-
member almost unlimited multitude of foreign pathogens, have drawn increasing 
interest of researchers over the past few years. Application of AIS includes fields of 
computer security, pattern recognition, and classification.  

The natural immune system responds to and removes intruders such as bacteria, vi-
ruses, fungi, and parasites. Substances that are capable of invoking specific immune 
responses are referred to as antigens (Ag).  

Immune system learns the features of antigens and remembers successful responses 
to use against invasions by similar pathogens in the future. These characteristics are 
achieved by a class of white blood cells called lymphocytes, whose function is to 
detect antigens and assist in their elimination. The receptors on the surface of a lym-
phocyte bind with specific epitopes on the surfaces of antigens. These proteins related 
to immune system are called antibodies (Ab). 

Immune system can maintain a diverse repertoire of receptors to capture various 
antigens, because the DNA strings which codes the receptors are subject to high prob-
ability crossover and mutation, and new receptors are constantly created.  

Lymphocytes are subject to two types of selection process. Negative selection, 
which takes place in thymus, operates by killing all antibodies that binds to any self-
protein in its maturing process. The clonal selection takes place in the bone marrow. 
Lymphocyte which binds to a pathogen is stimulated to copy themselves. The copy 
process is subject to a high probability of errors, i.e., hypermutation. The combination 
of mutation and selection amounts to an evolutionary algorithm that produces lym-
phocytes that become increasingly specific to invading pathogens. 

During the primary response to a new pathogen, the organism will experience an 
infection while the immune system learns to recognize the epitope by evolutionary 
process. The memory of successful receptors is maintained to allow much quicker 
secondary response when same or similar pathogens invade thereafter.  

There are several theories of how immune memory is maintained. The AIS in this 
paper stores successful antibodies in permanent memory cells to store adapted results. 
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4    Implementation of Artificial Immune System  

In the application of artificial immune system to ALL/AML classification problem, 
the following analogy applies. The ALL training data sets correspond to Ag, and 
AML training data sets to the self-proteins. Classification rules represent Ab, which 
captures training samples(Ag or self-proteins) when its profile satisfies the conditions 
of the rule. A population of Ab goes through a cycle of invasion by Ag and selective 
reproduction. As successful Abs are converted into memory cells, ALL/AML class is 
learned. Above analogy can be applied to Colon cancer data by replacing ALL with 
the tumor tissues and AML with normal tissue. 

4.1    Rule Encoding 

Classification rules are linear separators, or hyper-planes, as shown in (ii). Vector x 
=(x1, x2, …, xi, … xn) represents gene expression levels of a sample, and vector w=(w1, 
w2, …, wi, …, wn) represents the weight of each gene. A hyperplane W(x)=0 can sepa-
rate the domain and the samples into two classes. W determines the class of sample x; 
if W(x) is larger than or equal to 0, sample x is classifies as ALL. If it is smaller than 
0, the sample is classified as AML.  

                                    { }xwxWxW T ⋅=≥ )(0)(          (ii) 

Encoded rules are shown in (iii). It represents a vector w, where each loci consists 
of a pointer to a gene and weight value of that gene. It corresponds to a vector where 
unspecified gene weights are supplemented with 0. It is similar to messyGA[3] encod-
ing of vector w.  

 

                (X123, 0.5) (Xi, wi) (…) (…) (…) (gene index, weight)        (iii) 

4.2    Initialization 

Initially, rules are created by sequential creation of locus. For each locus, a gene and a 
weight value is chosen randomly. With probability Pi, next locus is created. Thus, 
average lengths of the initial rules are ΣnnPin. Empirically, the number of initial rules 
should be in the same order as the number of genes to ensure sufficient building 
blocks for classification rules. 

4.3    Negative Selection 

All newly created rules will first go through negative selection. Each rule is met with 
set of AML training samples, xi(i=1,2,…,NAML), as self-proteins. If a rule binds with 
any of the samples(satisfy (iv)0, it is terminated. The new rules are created until NAb 
antibodies pass the negative selection. These rules constitute population of antibodies 
Abi(i=1,2,…,NAb). 

                                   ( )( ) ( )
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4.4    Memory Cell Conversion 

The antibodies who endures the negative selection are met with invading antigens, 
Agi(i=1,2,…,NALL), or ALL training samples. Antibodies which can capture many 
antigens are converted into memory cells Mi(i=1,2,…,NMem).  

Abi are converted to memory cell in following conditions. A set of antigens cap-
tured by Abi or a memory cell Mi is represented by C(Abi), C(Mi).  
• Mi is removed if )(Ab)(M ii CC ⊂ . 

• Abi is converted to MN+1 if C(Abi) ⊄ C(M1) ∪ C(M2) ∪ … ∪ C(MN). 
• Abi is converted to MN+1, if C(Mi)=C(Abi) 

4.5    Clonal Selection 

The memory cells and Abs which bind with Ags go through clonal selection for re-
production. This process is a cycle described as follows: 
• First, an Ag is selected from the list of captured Ags. The probability of selection is 

proportional to S(Agi), the concentration of Agi, which is initially 1.  
• Randomly select two antibodies Abp1 and Abp2 from all the antibodies bound with 

the antigen. 
• Abp1 and Abp2 are crossed over with probability Pc to produce offspring Abc1 and 

Abc2. 
The crossover operation is defined as cut and splice operation. 
Crossover is followed by hypermutation, which is a series of copy mutation ap-

plied to wc1, wc2, and their copied offspring. There are several types of mutation. Locus 
deletion, deletes randomly selected locus. Locus addition, adds newly created locus to 
the antibody. Weight mutation changes the weight value of randomly chosen locus.  
• With probability Pm, newly created antibody creates another mutated copy. Copy 

operation is repeated for ΣnPm

n times on average.  
• Parents are selected from memory cells as well. Same crossover and hypermutation 

process is applied.  
• The copied antigens go through negative selection as previously described. The 

reproduction processes are repeated until NAb antigens pass the negative selection. 
• Finally, the score of each Ag is updated by (v). T is the score of Ag, s is the num-

ber of Ab bound to an Ag, and N is the total number of Ab. β is an empirically de-
termined constant, 1.44 in this study. The concentration of Ag converges to 1 with 
appropriate β.  

                                                      T´=βT-s/N         (v) 

The process goes back to Negative Selection to start a new cycle. 

4.6    Generalization 

In a single run, many rules with same set of captured antigens, C(Mem), are stored as 
memory cells. After the run is terminated, one memory cell is chosen to classify the 
test samples. A memory cell with largest margin M (vi), is chosen.  

                                           ( ) ( )ii
i

xWxWM ~min=         (vi) 
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xi are the ALL/AML sample vectors and 
ix~  is the median of the samples. We try to 

maximize generality by choosing a hyperplane whose margin to nearest sample vector 
is the largest. 

4.7    Summary of Experiment 

AIS repeats the cycle as previously described. Flow of the system is shown in Fig. 1. 
Each run was terminated after Nc(=50) cycles. The AIS runs on parameters shown in 
Table 2. The results were robust to minor tuning of these parameters. 

 
 

Antigens
(ALL)

Self-protein
(AML)

Negative
Selection

InfectionInitialize
Rules

Hypermutation Memory
Cell

Clonal
Selection

Crossover

 

Fig. 1. Cycle of artificial immune system 

Table 2. Data attributes and AIS parameters 

Leukemia NG = 7109 NAML = 11 NALL = 27   
Colon cancer NG = 2001 Nnorm = 13 Ntumor = 25   
AIS parameters NAb = 7,000 Nc = 50 Pi = 0.5 Pc = 0.9 Pm = 0.6 

4.8    Results 

AIS was applied to Leukemia dataset and Colon cancer dataset. Its performance was 
measured by average and standard deviation of 20 runs. In all runs, training data set 
was correctly classified. Table 3 shows average and standard deviation of the number 
of false positives (misclassified AML test data/ misclassified normal tissue) and false 
negative (misclassified ALL test data / misclassified tumor tissue) prediction on test 
samples for both dataset. 
 

Table 3. The number of misclassified samples in test data set of Leukemia and Colon cancer 

 #FN(Average/Standard Dev.) #FP(Average/Standard Dev.) 
Leukemia 0.3 / 0.47 0.55 / 0.51 
Colon Caner 0.75 / 0.44 0.7 / 0.47 
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Fig. 2 and Fig. 3 show the learning process of AIS in a typical run for Leukemia 
dataset. Fig. 2 shows the number of Ag captured by best and worst Abs. The average 
number of captured Ag is also shown. It shows training samples are learned by 20th 
cycle. It can be read from the graph that cycles afterward are spent to derive more 
general rules.  

Fig. 3 shows the concentration of Ags at each cycle. Most Ags converge to 1, while 
few are slower to converge. These samples imply the borderline of the classes. Sam-
ples near the classification border are prone to misclassification by untrained Abs, 
thus slower to converge.  
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Fig. 2. Number of antigens caught by the best and worst antibodies 

 
 
Empirically, the results were successful when the grasp of border is clear, i.e. all 

but few samples have converged. The termination criteria (number of cycle) were 
determined so that sufficient convergence was achieved by the end of iteration. 
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Fig. 3. Transition of antigen scores 

 

5    Analyses of Selected Features 

Fig. 4 and Fig. 5 shows some of the classification rules which correctly classified the 
test samples of Leukemia dataset and Colon cancer dataset respectively. 

 
 

A) 1.21896X3675 + -1.5858X4474 + 1.46134X1540 + -1.19885X2105 
+ 1.84803X757 + 1.82983X4038  

B) -1.4577X1385 + -1.57815X4363 + 1.31819X2317+ 1.75329X2328 

C) 1.00809X1904 + 1.7706X6244 + -1.41034X4526 + -1.14542X759 
+ 1.94696X2723 + -1.34382X4875 

D) 1.26745X3110 + 1.43941X1190 + 1.97632 + 1.74422X5519 + 
1.79449X6874 + -1.44577X6022 

Fig. 4. Examples of ALL/AML classifier rules 
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A) -1.678X1997 -1.55458X1516 1.41783X1297 -1.85391X696 
1.69254X416 -1.39212X620 -1.19309X1672 -1.95164X1310 
1.95381X49 1.64378X134  

B) -1.25102X1997 + 1.77743X138 + -1.42182X1770 + 1.3154X49 + 
1.63866X183 + 1.17681X94  

Fig. 5. Examples of colon cancer classifier rules 

 
Each rule was different for each run. In this section, we further analyze the selected 

genes. Some of the genes appear repeatedly in the classification rules. Such genes 
have relatively high correlations (i) as shown in Table 4. These genes are fairly infor-
mative in terms of ALL/AML classification.  Fig. 6 shows the expression level of 
those genes, and how the test data sets can be clustered with features in Table 4. The 
figure was created with average linkage clustering by Eisen’s clustering tool and 
viewer [10]. It can separate ALL/AML samples with the exception of one sample.  

Table 4. Correlation value of the classifier genes (GAN: Gene Accession Number) 

Gene X757 X1238 X4038 X2328 X1683 X6022 X4363 
GAN D88270 L07633 X03934 M89957 M11722 L00634_s X62654 
Gene name VPREB1 PSME1 CD3D CD79B DNTT FNTA CD63 
Correlation 0.838 0.592 0.647 0.766 0.816 -0.837 -0.834 

 
Many of these genes have relations to Leukemic disease which can be confirmed by 

biological literature. For example, CD79b is one of the surface marker molecule 
which could provide important additional information in leukemia cell analysis [8]. 
CD3D is involved in abnormal location of the genes often observed in acute leukemia 
[14].  

 

Fig. 6. Expression levels of informative genes and clustering based on those genes 

The following section analyzes featured genes in rule A (Fig. 4). Each gene does 
not always have high correlation value as can be seen in Table 5.  
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Table 5. Correlation of classifier genes in rule A 

Gene X3675 X4474 X1540 X2105 X757 X4038 
Weight 1.21896 -1.5858 1.46134 -1.19885 1.84803 1.82983 
GAN U73682 X69699 L38696 M62762 D88270 X03934 
Correlation 0.151 0.371 0.418 -1.02 0.838 0.647 

 
Fig. 7 shows the expression levels of feature genes in rule A. It implies that major-

ity of the samples can be classified by few ALL(X2105, X757) and AML(X4038) classifier 
genes. These classifier genes have relatively high correlation value.  

Some of the samples (AML1, 6, 10, ALL11, 17, 18, 19) in Fig. 7 seem indistin-
guishable by those classifier genes. Functions of supplementary genes(X3675, X4474, 
X1540) become evident when these samples are looked at especially. 

Fig. 8 shows normalized expression levels of selected samples. In this selected 
group, X3675 and X4474 are highly correlated to ALL and AML respectively, while the 
classifier genes(X2105, X757, X4038) became irrelevant to sample class. 

 
 

 

Fig. 7. Expression level of classifier genes in rule A 

 

Fig. 8. Selected samples 

6    Conclusion 

This paper presented Artificial Immune System to classify gene expression of cancer-
ous tissues. Despite sparseness in training data, the accuracy of prediction was satis-
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factory, as test data were correctly classified 8 out of 20 times in ALL/AML classifi-
cation. The colon cancer classification is known to be much harder. For comparison, 
we implemented classification algorithms using popular machine learning methods. 
Table 6 shows the error rates of the algorithms when applied to the colon cancer data, 
using 50, 100, and 200 genes selected by correlation metric (i) as features. SVM used 
linear kernel and error margin of 0.001. NN was implemented as a 3-layer perceptron.  

In the experiment with Colon Cancer dataset, the approximate amount of time re-
quired for each of the algorithms are: 50 min. for SVM, 3 hours for NN, and 6 hours 
for AIS. It is hard to compare the efficiency of the algorithms with regards to accu-
racy of the prediction and amount of computation required. The computational cost 
may depend on the conditions of the data and the algorithms, e.g. the number of itera-
tions in SVM increase exponentially to the number of training samples, where as the 
AIS population must increase linear to the number of genes. Considering that prepara-
tion of the data, i.e., collecting samples from patients and performing the Microarray 
tests, takes months, it can be said that all algorithms require considerably small 
amount of time. 

Table 6. Comparison of performance in colon cancer dataset 

# of Missclassification SVM NN AIS 
Test Data 3/24 9/24 1.45/24 

 
We presume that AIS was more effective than other methods in regards to the fea-

ture selection. AIS evolutionarily chooses informative genes whilst optimizing its 
weight as well. Though gene subset chosen by AIS for classification differs in each 
run, the genes with strong correlation are chosen frequently as Table 4 shows. Similar 
results can be obtained by application of Genetic Algorithm [9].  

These genes with strong correlation, either selected by frequency or correlation, 
may not contain enough information to be a sufficient subset for classification, when 
many co-regulated genes are selected in the subset. Many genes are predicted to be 
co-expressed and those genes are expected to have similar rankings.  

On the other hand, the result in Fig. 8 implies that selection of complementary 
genes, which are not necessary highly correlated, can be useful in classification. It 
might be suggested that the choice of feature gene subsets should be based not only 
on single ranking method, but also on redundancy and mutual information between 
the genes. Changing of ranking objective, when one feature is removed as a ranking 
criterion, has been suggested in [13], while [1937] states that performance of machine 
learning is naïve to choice of features. AIS selects features in the learning process and 
it is interesting that it can choose primary and complementary feature genes by evolu-
tionary process.  

Monitoring the convergence of the clonal selection suggested new termination cri-
teria, as results improved when all but few genes converged. The analysis and quanti-
tative implementation of such criteria is underway. As future work to improve classi-
fication capability, use of effective kernel functions, and expressing relations between 
the genes, such as combining antibodies with AND/OR functions should be ad-
dressed.  
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