
Limits in Long Path Learning with XCS

Alwyn Barry

Department of Computer Science
University of Bath
Claverton Down

Bath, BA2 7AY, UK
A.M.Barry@bath.ac.uk

Abstract. The development of the XCS Learning Classifier System [26]
has produced a stable implementation, able to consistently identify the
accurate and optimally general population of classifiers mapping a given
reward landscape [15,16,29]. XCS is particularly powerful within direct-
reward environments, and notably within problems suitable for com-
mercial application [3]. The application of XCS within delayed reward
environments has also shown promise, although early investigations were
within enviroments with a comparatively short delay to reward (e.g. [28,
19]). Subsequent systematic investigation [19,20,1,2] have suggested that
XCS has difficulty accurately mapping and exploiting even simple en-
vironments with moderate reward delays. This paper summarises these
results and presents new results that identify some limits and their im-
plications. A modification to the error computation within XCS is intro-
duced that allows the minimum error parameter to be applied relative to
the magnitude of the payoff to each classifier. First results demonstrate
that this modification enables XCS to successfully map longer delayed-
reward enviroments.

1 Background

Learning Classifier Systems (‘LCS ’) are a class of machine learning techniques
that utilise evolutionary computation to provide the main knowledge induction
algorithm. They are characterised by the representation of knowledge in terms
of a population of simplified production rules (‘classifiers’) in which the condi-
tions are able to cover one or more inputs. The Michigan LCS [13] maintain a
single population of production rules with a Genetic Algorithm (‘GA’) operat-
ing within the population . . . each rule maintains its own fitness estimate. LCS
are general machine learners, primarily limited by the constraints in the repre-
sentation adopted for the production rules (see, for example, [29]) and by the
complexity of solutions that can be maintained under the action of the GA [10].

LCS have been successfully applied to many application areas – most no-
tably for Data Mining [22,14,3] but also in more complex control problems (e.g.
[12,24])1. Although LCS performance has been competitive with the most effec-
tive machine learning techniques, it is notable that many of these cases (and all
1 see [21] for further details of LCS applications
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of those cited earlier in this paragraph) have been with LCS implementations
that use direct reward allocation. In contrast, the application of LCS to com-
plex delayed reward tasks has, until recently, been more problematic2. Recently a
number of new LCS implementations appear to have overcome some of the insta-
bilities of LCS when learning in delayed reward situations. ZCS [25] is a simplifi-
cation of earlier LCS implementations and was designed for academic study, but
[4,6] have shown that ZCS can perform optimally with appropriate parameter
settings. [16] has argued persuasively that strength-based LCS implementations
will inevitably lead to over-generalisation in tasks with biased reward functions.
XCS [26] is an accuracy-based LCS derived from ZCS which overcomes many
of these limitations, and the Optimality Hypothesis: [15] suggests that XCS will
always identify a sub-population of accurate optimally general classifiers that
occupy a larger proportion of the population than other classifiers. Bull argues
that the fitness sharing mechanism of ZCS acts as a mechanism to prevent over-
generalisation within ZCS, making ZCS a competitive strength-based LCS [5].

The effectiveness of XCS in its application to direct reward environments
has been empirically demonstrated by many workers (for example, [26,15,29,3,
11]). Research into the performance of XCS within delayed reward environments
has been more limited. [26,27] provided a proof-of-concept demonstration of the
operation of XCS within the Woods2 environment. [17] identified that within
certain Woods-like environments XCS was unable to identify optimum general-
isations. This was attributed to two major factors: an inequality in exploration
of all states in the environment allowing over-general classifiers to appear accu-
rate, and an input encoding which meant that certain generalisations were not
explored as often as others. [18] sought to apply these lessons to more complex
Woods-based environments and discovered that XCS was additionally unable to
establish a solution to the long chain Woods-14 problem [9]. This was due in part
to the number of possible alternatives to explore in each state that prevented
XCS from attributing equal exploration time to later states within the chain. It
has been shown that XCS is able to learn this environment using an alternative
explore-exploit strategy [6].

Whilst other work has investigated some of the more complex problems that
delayed reward environments present, such as perceptual aliasing, there had been
little investigation of the comparative performance of traditional LCS imple-
mentations and XCS in delayed reward environments beyond the simple Woods
environments. Much more importantly, no work had attempted to identify the
limits of XCS learning with increasing environment complexity or length when
applied to delayed reward environments. [2] presented the results of an investiga-
tion of the abililty of XCS to form the population of optimally general classifiers
mapping the payoff of environments of incrementally increasing length. It was
shown that XCS performance was very good within the GREF-1 environment
(100% performance within 1000 explorations – CFS-C [23] achieved 90% perfor-
mance in 10,000 explorations). It was also shown that XCS can reliably learn
the optimal route in a corridor environment (an extension of Fig. 1) of length

2 There are many reasons for this . . . for a review of the issues see [1].
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Fig. 1. A length 5 corridor Finite State World for delayed reward experiments
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Barry’s XCS in a length 15 corridor environment after 15000 iterations; (b) Average
of 10 runs of Butz’s XCS in a length 10 corridor environment showing errors in the
‘steps’ plot

40 where generalisation was not used. However, once XCS was required to learn
the optimal generalisations XCS was unable to reliably select the optimal route
even within the length 10 environment. Learning performance deteriorated suffi-
ciently thereafter to make investigation of performance in corridors longer than
15 steps superfluous (see Fig. 2a – the payoff prediction values of classifiers in the
early states are highly confused). Subsequent investigations using an alternative
XCS implementation [7] have confirmed these findings (see the perturbation in
the ‘steps’ plot in Fig. 2b3).

Analysis of the population coverage of the environment indicated that XCS
was unable to learn appropriate generalisations for early states in the environ-
ment. It was hypothesised that this was partially due to the reduction in payoff
prediction values in classifiers covering these early states, making the prediction
values sufficiently similar that XCS can identify a few over-general classifiers to
cover the early states (see Fig. 2a). This conclusion caused some other work-
ers to suggest that the problem might be resolved through the use of Wilson’s
modified accuracy measure or the use of an alternative subsumption algorithm
(both introduced within [8]). These suggestions, though ill-founded, led to fur-

3 XCS should rapidly identify the optimum number of steps to the reward, but instead
often chooses at least one sub-optimal action in each corridor traversal
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ther investigations into the cause of the over-generalisation within these early
states.

2 XCS Learning in Delayed-Reward Environments

The match set (‘[M ]’) is the set of all classifiers whose conditions match the
current environmental input. XCS selects one of the actions proposed by [M ]
and all classifiers in [M ] which advocate that action become members of the
action set (‘[A]’) in the current iteration. When reward R is obtained by XCS
in a delayed reward environment the reward is allocated to all classifiers in [A].
Clearly the reward could only have been reached as a result of earlier actions. So
that the optimal path to the reward can be established XCS allocates payoff to
classifiers within earlier action sets. In each exploration iteration the maximum
action set prediction of [M] discounted by a discount factor γ is used as the payoff
P in the update of the predictions p of the classifiers in the previous action set
([A]t−1) using the following update scheme (0.0 < β ≤ 1.0):

p ′ = p + β (P − p) . (1)

Over time all action sets will converge upon an estimate of the discounted
payoff that will be received if the action was to be taken. The discount allows the
estimate to take account of distance to reward as well as the magnitude of the
reward so that a trade-off of effort to reward is inherent in the action selection.
Unfortunately the discount also means that the payoff prediction becomes much
smaller with distance from the reward. With the ‘standard’ XCS discount (γ =
0.71) the payoff reduces from the reward of 1000 to less than 10 within 14 steps
. . . the payoff in state n of an N state path to reward R is:

pn = RγN−n . (2)

XCS is an accuracy-based LCS. Accuracy is a steep logarithmic function4 of
the error in the classifier’s prediction of payoff:

κ =
{

ln (α) ε−ε0
ε0

m (ε > ε0)
1.0 (otherwise) .

(3)

(α and m are constants), where the error ε is calculated as:

ε ′ = ε + β (εabs − ε) (4)

where εabs =
|P − p|

Rmax − Rmin
. (5)

(Rmax − Rmin is the reward range). Fitness is based on the relative accuracy of
the classifiers appearing within each [A].
4 [8] introduce an alternative accuracy function which is calculated using a power

function.
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A cut-off parameter in the accuracy function, ε0 (typically 0.01), is used to
identify when the accuracy (κ) of a classifier is sufficiently close enough to 1.0
to be considered fully accurate (see Eq. 3). The conclusions in [2] failed to take
into account the effect of this cut-off calculation of accuracy on the generali-
sation behaviour of XCS. Once the error in payoff prediction falls below ε0R
all predictions will be considered accurate. This is normally useful, filtering out
noise in the payoff algorithm. However, in the early states the payoff prediction
is sufficently small that ε0 is a large proportion of the prediction. This will allow
classifiers which advocate sub-optimal actions with a payoff prediction that is
variant from the payoff by less than ε0R to be considered accurate. When the
difference in stable payoff values for the same action in two neighbouring states
falls below this threshold it is possible to identify a single classifier to cover that
action in both states. This classifier will be considered accurate even though
there is a fluctuation in the payoff to the classifier. XCS will use this false accu-
racy to proliferate classifiers that generalise over successive states, so producing
accurate over-general classifiers. That this is the case can be seen within Fig. 2a.
In this environment the optimal route alternates between action 0 and 1. A sin-
gle classifier is covering action 0 and another single classifier covers action 1 in
states s0 to s3 so that the optimal action is not selected in states s1 and s3.

Although this might suggest that a solution to the problem would be to re-
duce ε0, this is problematic because the noise created whilst seeking to identify
appropriate generalisations will also prevent the identification of accurate classi-
fiers. An alternative is to change the value of γ to reduce the amount of discount
and keep the difference in neighbouring payoffs above ε0R. This may increase
the length of paths that can be learnt, but as the level of discount is reduced
the difference between neighbouring prediction values will decrease. It has been
noted that where prediction values are close and there is an area of the envi-
ronment where over-generals are encouraged, it is possible for large numerosity
over-general classifiers to develop [2]. These classifiers use their numerosity to
dominate the action-sets, reducing the payoff of the action-sets to a value sim-
ilar to their prediction, thereby making themselves more accurate and giving
themselves more breeding opportunities. It is therefore hypothesised that:

Hypothesis Reducing the discount level will increase the number of steps over
which XCS can learn the optimal state × action × payoff mapping, but there
will be a point beyond which further reduction will cause the mapping to be
disrupted by over–general classifiers.

3 Experimental Approach

[1] introduced a test environment designed for testing the ability to learn an
optimal policy as the distance to reward increases, whilst controlling other po-
tentially confounding variables. This environment, depicted in Fig. 1 has many
useful properties for these experiments – see [1]. In the experiments that follow
the environment used will be labelled ‘FSW-N ’, where N is the length of the
optimal path from the start to the reward state.
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Unless stated otherwise, each experiment uses the following XCS parameters:
β = 0.2, θ = 25, ε = 0.01, α = 0.1, χ = 0.8, µ = 0.04, pr = 0.5, P# = 0.33, pi =
10.0, εi = 0.0, fi = 0.01, m = 0.1, s = 20 (see [26] for a parameter glossary). Each
experiment was repeated 30 times and the results presented are the average of
30 runs unless otherwise stated.

4 Investigating Length Limits

It was argued in §2 that the reason for the failure to learn the optimal solution
in FSW-10 and FSW-15 was due to the small difference in action-set payoff as
a result of the high discount value (γ). To demonstrate that this is the case
XCS was run within the FSW-15 environment, changing γ to 0.75, 0.80, 0.85,
0.90, 0.95 in each successive batch of 30 experiments. For these experiments
the maximum population size (N) was 1200 and the message size was 7 bits (for
comparability with [2]). For each exploitation iteration the System Relative Error
[1] was calculated, in addition to the number of steps taken in the environment
and the population size. The results of each batch of 30 runs were averaged and
the averages compared. Figures 3 and 4 show the results and coverage chart at
discount values 0.80 and 0.95.

From 0.75 through to 0.90 the maximum System Relative Error reduces and
the number of steps taken to achieve the reward moves towards the optimal
route, with γ = 0.95 allowing the optimal route to be reliably selected. The
identification that XCS can learn the optimal route in the FSW-15 environment
given an appropriate discount factor provides an initial verification of the hy-
pothesis. However, it is useful to question why a discount of 0.8 or 0.85 was not
effective. The answer is partially revealed by an examination of Table 1. The
difference between the predictions in s0 and s1 for discount 0.8 is 11 and the
difference in payoff between the optimal and sub-optimal route in s0 is 8.8 –
below the ε0 error boundary and therefore a candidate for generalisation. This
is reflected in the results for γ = 0.8 – the ‘iterations’ plot shows one incorrect
decision is taken in each episode (see Fig. 3). At γ = 0.85 the difference between
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Table 1. Payout predictions in states within FSW-15 with different values of γ

γ s0err s0 s1 s2 s3 s4 s5

0.71 5.87 8.27 11.65 16.41 23.11 32.55 45.85
0.75 13.36 17.82 23.76 31.68 42.24 56.31 75.08
0.8 35.18 43.98 54.98 68.72 85.90 107.37 134.21

0.85 87.35 102.77 120.91 142.24 167.34 196.87 231.62
0.9 205.89 228.77 254.19 282.43 313.81 348.68 387.42

0.95 463.29 487.68 513.34 540.36 568.80 598.74 630.25

the predicted payoff in s0 and s1 is increased. Unfortunately the coverage graph
(not shown) indicates that difference of 15 between the optimal and non-optimal
routes in s0 is still sufficiently small to adversely influence the coverage of the
sub-optimal route in s0.

Now that it is clear that γ = 0.95 allows XCS to learn the optimal coverage of
FSW-15, the second part of the hypothesis must be tested. This suggests that as
the discount becomes small over-general classifiers will develop. It is worth noting
that the proximity of the payoff values produced by γ = 0.95 were assumed by
the author prior to the investigation to be sufficient to start to produce this
generalisation. To investigate further, γ was systematically reduced to 0.99 in
steps of 0.01, and then from 0.99 to 0.999 in steps of 0.001.

When the results were analysed, a clear pattern was evident. As γ was in-
creased towards 0.99 the System Relative Error increased and more errors were
evident in the number of steps taken to sr. However, as it drew near to 0.99
and thereafter, the System Relative Error reduced even though the number of
steps taken gradually moved towards that expected for a random selection of
action in each state. An examination of the populations revealed that at 0.995
fully general classifiers dominated 7 of the 30 populations (see Fig. 5a) and at
0.999 all populations maintained high numerosity fully general classifiers. This
is no surprise – the proximity of the predictions at 0.999 causes the difference in
prediction to be well below ε0 and the range of predictions is sufficiently small to
allow a fully general classifier to easily gain sufficient numerosity to suppress the
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Fig. 5. Coverage charts for FSW-15 at γ = 0.99 and γ = 0.995

predictions and always be classed as accurate. What was surprising was the rev-
elation that XCS was able to maintain such a reasonable coverage at a discount
level of γ = 0.99.

Having demonstrated that XCS can perform optimally within FSW-15, it was
appropriate to investigate how much the environment could be extended before
XCS would once more perform sub-optimally. XCS was run with γ = 0.95 in
FSW of length 20, 25, 30 and 40. If errors in coverage are guaranteed when
the difference between payoff in sn and sn+1 is 10.0 then a simple mathemati-
cal exercise would suggest that the practical limit is an environment of length
30. However it is now known that a difference of 15 was sufficient to prevent
appropriate early state coverage, and this magnitude difference is seen between
optimal and sub-optimal routes only 22 states from sr. When the experiments
were completed and the results analysed, is was found that XCS was able to
find an optimal solution to FSW-20 at γ = 0.95. In FSW-25 the coverage chart
remained almost optimal, and a careful analysis of each run showed that a sin-
gle erroneous step was taken in 2.3% of the episodes after episode 3000. Within
FSW-30 up to three additional steps were taken in each episode after episode
3000, and the coverage chart indicated generalisation over states up to s6 (23
states from sr).

These limitations present some difficulties. XCS has shown itself to be power-
ful in application to direct-reward problems, and yet apparently fundamentally
limited in relatively small delayed-reward environments. However, it is important
to understand that the problems arise not because of the basic mechanisms of
XCS but due to the use of an absolute measure of error. As equation 4 indicates,
error is computed relative to the reward range without taking account of the
discount mechanism. A way to tackle this problem may be to identify an error
measure that is independent of the position of the classifier in the action chain
to the reward. A first attempt at such a solution was devised. This involved a
simple modification to XCS to retain an estimate of the distance d from the
reward within each classifier. This was used to calculate an action set estimate
of distance to the nearest reward and to calculate the error as a proportion of
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γN−dR. Although this technique resulted in a reduction in the System Relative
Error, considerable error remained within the calculations, due to the magnifica-
tion of errors in the estimate of d by the calculation. It is possible that reducing
d to an integer value within this expression may mask these errors.

An alternative approach replaced the absolute calculation of error with:

ε =

{
|P−p|

max(P,p) (max(P, p) > 0)
0.0 (otherwise) .

(6)

As the prediction becomes more accurate, the relative difference between P and
p will reduce and so the error will become small independently of the magnitude
of the payoff P . This, and an alternative error calculation: ε = |P−p|

p (capped
to 1.0 if ε > 1.0), have been the subject of recent investigations. Figure 6 shows
that the use of the relative error update method reduces the over-generalisation
in states above the state s0. In FSW-15 at γ = 0.71 the two relative error
expressions appear to produce similar results, although the second should provide
less variance in the initial updates.

The results of applying a relative error calculation are encouraging, though
further investigations are now required to identify any penalties that may be
present in the formulation of the optimal sub-population of accurate classifiers.
It would appear that the use of relative error makes the identification of accurate
classifiers more problematic leading to greater divergence in the population,
although this does not appear to dramatically affect the time taken for XCS to
identify the optimal route. The use of a more focused GA selection technique,
such as Tournament Selection, may resolve this problem.

5 Discussion

The limitations on the length of delayed reward environments are highly con-
straining. Delayed reward environments are commonly of much greater size
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within the laboratory, let alone within ‘real-world’ applications. In defence of
XCS it should be noted that the corridor environment used within these tests
is highly artificial. Richer environments may provide more distinct payoff gra-
dients which will enable XCS to work over a larger range. It should also be
noted that changes in parameters alongside modification to γ may affect the
performance. For example, in experiments conducted alongside this investiga-
tion it was found that using the within-niche mutation scheme of [8] produced a
much weaker performance because it encouraged an early decision on the most
accurate generalisation and so aided the formation of over-general classifiers.
Mutation schemes that encourage more diversity will act as a pressure against
generalisation, and so enable XCS to map the environment using more specific
classifiers. This is hardly a desirable solution, however.

The results are interesting in the light of [16]. This identifies that all non-
trivial delayed reward environments are environments which encourage the de-
velopment of over-general classifiers. Whilst XCS, as an accuracy-based LCS, has
some protection against over-general classifiers, it is clear that the formation of
over-generals will be encouraged as soon as there is a failure of the accuracy
function to distinguish between payoff boundaries. The lack of provision for dis-
count within the error calculation leads to an inequity of accuracy computation
that encourages such a failure.

Whilst the results presented on the use of relative error are promising, more
work is required in order to identify the dynamics of the calculated error in
various parts of the action chain, and to identify the effect of the measure on
the ability of XCS to satisfy the Optimality Hypothesis. The use of a relative
measure of error should allow the length of paths that can be optimally mapped
to be extended, but new limits must be established.

It is recognised that any discounted payoff scheme will cause hard limits in
the length of path learning. Therefore work towards autonomous problem-space
subdivision, the autonomous identification of sub-goals and their use in hierar-
chical planning remain important research objectives. Many other Reinforcement
Learning methods face related problems in long path learning, and lessons can
be drawn from these areas. However, the limits this paper has sought to address
are those generated by the requirement to identify the minimum set of input
generalisations that produce an accurate condition × action × payoff prediction
mapping. The combination of accuracy-based learning and the requirement for
the production of an optimally compact and accurate mapping is unique to XCS.
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