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Abstract. Since typical evolutionary design systems encode only a sin-
gle artifact with each individual, each time the objective changes a new
set of individuals must be evolved. When this objective varies in a way
that can be parameterized, a more general method is to use a represen-
tation in which a single individual encodes an entire class of artifacts. In
addition to saving time by preventing the need for multiple evolutionary
runs, the evolution of parameter-controlled designs can create families of
artifacts with the same style and a reuse of parts between members of the
family. In this paper an evolutionary design system is described which
uses a generative representation to encode families of designs. Because a
generative representation is an algorithmic encoding of a design, its input
parameters are a way to control aspects of the design it generates. By
evaluating individuals multiple times with different input parameters the
evolutionary design system creates individuals in which the input param-
eter controls specific aspects of a design. This system is demonstrated
on two design substrates: neural-networks which solve the 3/5/7-parity
problem and three-dimensional tables of varying heights.

1 Introduction

Evolutionary algorithms have been used in a variety of different design domains,
with each individual in the evolutionary design system typically encoding a single
design. With this type of representation, each time the objective changes (such
as the desired lift of an aircraft wing or the receptive properties of an antenna)
a new evolutionary run must be performed. While one option is to use previous
results to seed a new run — as Gruau did in evolving parity networks [1] — these
additional evolutionary runs can be avoided by evolving individuals which take
an input parameter that controls some feature of the resulting design.

One method for an individual to encode a family of designs is for each mem-
ber of the family to be encoded separately in the genotype. Yet with such a
representation the size of the genotype grows with the number and size of each
family member and it does not easily generalize to produce a design not already
encoded. The alternative is to encode a family of designs with an algorithm
which reuses parts of the genotype for different family members.

In addition to efficiencies of space, the reuse of genotypic elements for multiple
members in the design family has two other advantages. For consumer products
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it is often desirable to have different versions of a product that vary in some
way, yet have the same style. Whereas the individuals produced by different
evolutionary runs usually have a different structure to them, a single individual
that generates a family of designs with a reuse of assemblies of components
will produce designs with a similar style. This reuse of parts leads to a second
advantage of evolving design families, which is improved manufacturability. Since
the members of these design families have more components in common than
designs produced by multiple runs, there are fewer different parts to test and
having assemblies of parts in common across the entire family should result in
lower manufacturing costs.

An algorithm for encoding families of designs can be described as a program
for mapping a seed to a design. Using these definitions existing work in evolution-
ary design can be classified as evolving either a single seed, a program, or both
together. For example, the evolution of a vector of parameters with Dawkins’
Biomorphs [2] and Ventrella’s stick creatures [3] is the evolution of a seed for
a pre-defined creature-building program. More common is the evolution of pro-
grams for fixed seeds, such as the evolution of cellular automata rules for a fixed
starting state [4l5] and the evolution of Lindenmayer systems (L-systems) with a
fixed axiom [6l7]. Finally, both seeds and programs have been evolved together,
such as Frazer’s evolution of both starting condition and cellular-automata-style
rules [8] and the evolution of the axiom and rules of L-systems by Jacob [9] and
Hornby [10].

Previously we defined generative representations as the class of representa-
tions in which elements of the genotype are reused in the translation to the
phenotype and demonstrated a generative representation in which the genotype
contained both a program for creating designs and the input parameters for the
starting rule [I0]. Here we describe an extension of this work from evolving a
single design, with reuse of modules within the design, to evolving design fami-
lies, with a reuse of modules across different members of the family. To produce
individuals which represent a family of designs we now encode in the genotype
only the program for constructing a design, and then evaluate an individual
multiple times by compiling the program with different starting parameters. For
each of these evaluations a specific phenotypic property of the resulting design
is then compared with the desired result and the individual’s fitness is adjusted
based on how closely they match. By testing an individual with different starting
parameters in this way, individuals are evolved to be responsive to the parame-
ter values. We demonstrate the generality of this approach by evolving families
of designs on two different design substrates: neural-networks which correctly
calculate 3/5/7-parity, and three-dimensional tables of varying height.

The rest of this paper is organized as follows. First the generative representa-
tion for encoding families of designs is described, followed by a description of the
overall evolutionary design system. The next two sections describe the evolution
of a family of networks for calculating the 3/5/7 odd-parity function and the
evolution of three-dimensional tables of varying heights. Finally we close with a
summary of this paper.
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2 L-Systems as a Generative Representation

The generative representation for our design families is based on parametric Lin-
denmayer systems (PL-systems) [I1]. PL-systems are a grammar consisting of
a set of production rules for string rewriting. Production rules are composed
of a predecessor, which is the symbol to be replaced, followed by a number of
condition-successor pairs. The condition is a boolean expression on the parame-
ters to the production-rule, and the successor consists of a sequence of characters
that replace the predecessor. For example in the production:

A(nq,n1) : n2 > 5 — B(na+1)eD(n2+0.5,n1—2)

the predecessor is A(n1, ng), the condition is ng > 5 and the successor is B(ng+1)
¢ D(n2+0.5, n1-2). Predecessor symbols are re-written by testing each of their
conditions sequentially and then replacing the predecessor symbol with the suc-
cessor of the first condition that succeeds.

To generate strings with the grammar a starting string is required. For ex-
ample the following grammatical rules,

A(ni,ng) : (n1 > 0) = a(n1) B(na,n1) A(ng — 1,n2)

(
a(0

A(nl,ng) (n1 < O)
B(’I’Ll,TLQ) ( ni > 1) (ng) (711 — 1,’/12)
B(ni,ns) : (n1 < 1) = b(n2)

when compiled starting with the string, A(3,2), produce the sequence,

A(3,2)
a(3)B(2,3)A(2,2)
a(3)b(3)B(1 3)a(2)B(2,2)A(1,2)
a(3)b(3)b(3)a(2)b(2)B(1,2)a(1)B(2,1)A(0, 2)
a(3)b(3)b(3)a(2)b(2)b(2 ) (1)b(1)B(1, 1)a(0)

a(3)b(3)b(3)a(2)b(2)b(2)a(1)b(1)b(1)a(0)

The combination of A(3,2) and the grammatical rules is a generative representa-
tion for producing the final string in the sequence. In this case the seed consists
of A(3,2) and the program is the grammar. Alternatively, by using the starting
string A(n1, n2), the grammar is a program for creating a family of designs: the
first parameter, ny, controls the number of blocks of b’s that are created and the
second parameter, no, controls how many b’s are in each block.

By assigning a meaning to each symbol, the strings produced by a PL-system
can be used to construct artifacts. Consider the following PL-system:

PO(ny): n1 >1.0— [ Pl(ny x1.5) ] up(1l) forward(3)
down(1) PO(ny — 1)

Pl(ny): n1 > 1.0 — { [ forward(ny) ] left(1) }(4)

If this PL-system is started with the string P0(4), it produces the following
sequence of strings,
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(a) (b)

Fig. 1. Two example structures

1. PO(4)

2. [ P1(6) ] up(1) forward(3) down(1) PO(3)

3. [{ [ forward(6) ] left(1) }(4) ] up(1) forward(8) down(1) [ P1(4.5) ]
up(1) forward(3) down(1) P0O(2)

4. [{ [ forward(6) ] left(1) }(4) ] up(1) forward(3) down(1) [{ [ for-
ward(4.5) ] left(1) }(4) | up(1) forward(8) down(1) [ P1(3) ] up(1)
forward(3) down(1) PO(1)

5. [{ [ forward(6) ] left(1) }(4) | up(1) forward(3) down(1) [{ [ for-
ward(4.5) [ left(1) }(4) | up(1) forward(3) down(1) [{ [ forward(3) ]
left(1) Y(4) ] up(1) forward(3) down(1)

6. [ [ forward(6) ] left(1) [ forward(6) ] left(1) [ forward(6) | left(1)
[ forward(6) ] left(1) | up(1) forward(3) down(1) [ [ forward(4.5) ]
left(1) [ forward(4.5) ] left(1) [ forward(4.5) ] left(1) [ forward(4.5) ]
left(1) | up(1) forward(3) down(1) [ [ forward(3) ] left(1) [ forward(3)
] left(1) [ forward(3) | left(1) [ forward(3) | left(1) | up(1) forward(3)
down(1) forward(8)

By interpreting the final string as a sequence of commands to a LOGO-style
turtle, this PL-system creates the tree in Fig. [Ta.

To encode families of designs with this generative representation, the starting
string (seed) is set to the predecessor of the first production rule with variables
for starting parameters instead of numerical values. In this example the starting
string is PO(n,) and different values of ny will produce different trees: the tree
in Fig. [[b is created from this system by starting it with n; equal to six.
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3 Method

The system for evolving design families uses a canonical evolutionary algorithm
(EA) with variation operators customized for the representation. A generational
EA is used in which each individual encodes a design family using the generative
representation described in Sect. Pl Parents are selected with stochastic remain-
der selection [12] based on rank, using exponential scaling [13]. To create new
individuals, the mutation and recombination operators of Hornby [10] are applied
with equal probability. Mutation modifies an individual by changing one sym-
bol with another, perturbing the parameter value of a symbol, adding/deleting
some symbols, or recombining an individual with itself. With recombination, one
parent is the main parent and it is modified by swapping some genetic material
— either an entire rule, a single production body or substrings of a production
body — with a second parent.

To produce individuals which encode for families of designs, individuals are
evolved such that the value(s) of the input parameter(s) controls a certain feature
of a design in a specific way. Each individual is tested with a range of different
input values and each design’s score is modified by how well the feature in the
design matches the desired result. The following two sections will describe the
application of this system for two design substrates.

4 Evolution of Parameter-Controlled n-Parity Networks

The first substrate for which families of designs are evolved is neural networks
which calculate the odd-parity function. The odd-n-parity function returns true
if the number of true inputs is odd and returns false otherwise. This function
is difficult because the correct output changes for every change of an input value.
In addition, the even/odd-n-parity functions have become a standard benchmark
function in genetic programming (GP) and past experiments have shown that
GP does not solve the five-parity (or higher) problem without automatically
defined functions [I4].

The method for using generative representations to encode neural networks
is the same as our earlier work [15], which we now summarize. First the gener-
ative representation (Sect.[2]) is compiled into an assembly procedure and each
neural network is constructed from an initial graph by executing this assembly
procedure. The initial graph consists of a single neuron which has a single edge
from itself to itself and the assembly procedure is a sequence of commands from
the following command set, for which the current link connects from neuron A
to neuron B:

— add-input(n), creates an input neuron with a link from it to neuron B with
weight n.

— add-output(n), creates an output neuron with a link from B to it with
weight n.

— decrease-weight(n), subtracts n from the weight of the current link. If the
current link is a virtual link, it creates it with weight —n.
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— duplicate(n), creates a new link from neuron A to neuron B with weight
n.

— increase-weight(n), adds n to the weight of the current link. If the current
link is a virtual link, it creates it with weight n.

— loop(n), creates a new link from neuron B to itself with weight n.

— merge(n), merges neuron A into neuron B by copying all inputs of A as
inputs to B and replacing all occurrences of neuron A as an input with
neuron B. The current link then becomes the nth input into neuron B.

— next(n), changes the from-neuron in the current link to its nth sibling.

— output(n), creates an output-neuron, with a linear transfer function, from
the current from-neuron with weight n. The current-link continues to be
from neuron A to neuron B.

— parent(n), changes the from-neuron in the current link to the nth input-
neuron of the current from-neuron. Often there will not be an actual link
between the new from-neuron and to-neuron, in which case a virtual link of
weight 0 is used.

— [, pops the top state off the stack and makes it the current state.

— 1, pushes the current state to the stack.

— reverse, deletes the current link and replaces it with a link from B to A
with the same weight as the original.

— set-function(n), changes the transfer function of the to-neuron in the cur-
rent link, B, with: 0, for sigmoid; 1, linear; and 2, for oscillator.

— split(n), creates a new neuron, C, with a sigmoid transfer function, and
moves the current link from C' to B and creates a new link connecting from
neuron A to neuron C with weight n.

The design problem is to evolve an individual that specifies a family of net-
works with three/five/seven inputs which calculates the three/five/seven-odd-
parity problem. To specify which network to construct, the first input parameter
is set to 3.0, 5.0 and 7.0 to solve the three, five and seven parity problem. Input
values are 1.0 for true and -1.0 for false. Networks are updated four times
and then the value of the output neuron is examined to determine the parity
value calculated for that set of input values. If the value of the output neuron
is > 0.9 then the output of the network is taken as true and if the value of the
output neuron is < 0.9 then the output of the network is taken as false. If the
absolute value of the output neuron is < 0.9, the network is iteratively updated
until its output value is either > 0.9 or < —0.9, for a maximum of six updates.
The network receives a score of 2.0 for returning the correct parity value and a
score of -1 for an incorrect answer. If the absolute value of the output neuron is
less than 0.9 after six network updates, the network receives a score of 1.0 if the
value of the output neuron is positive and the parity was true or if the value of
the output neuron is negative and the parity is false. No penalty is given for
having an incorrect value in this case. The fitness value of a network is the sum
of its scores on all possible inputs and an individual’s fitness score is the sum of
its scores for the three networks.

Using the fitness function described in the previous paragraph, the graph
in Fig. [2 contains a plot of the fitness of the best individual in the popula-
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Fig. 2. Best fitness and average population fitness, averaged over fifty trials, for solving
3/5/7-parity. The maximum possible score is 336

tion averaged over fifty trials. For these trials the generative representation was
set to a maximum of fifteen productions, each with two parameters and three
sets of condition-successor pairs. The maximum number of commands in each
condition-successor pair is fifteen and the maximum length of an assembly pro-
cedure generated by the representation is ten thousand commands. The evolu-
tionary algorithm used a population of five hundred individuals and was run for
five thousand generations. Out of these fifty runs, the generative representation
found a solution that produced correct 3/5/7-parity networks twelve times. For
those runs that were successful it took 1800 generations, on average, to find a
solution that produced correct networks. The smallest networks produced by a
single individual that correctly calculates the 3/5/7-parity problems are shown
in Fig. Bl (the genotype of this individual is listed in Appendix B of [10]).

5 Evolution of Parameter-Controlled Table Designs

The second design problem is that of evolving families of tables in which the input
parameter controls the height of the table. With this substrate, the command set
consists of commands for controlling a LOGO-style turtle in a three-dimensional
grid [I6]. As the turtle moves it fills in voxels, creating a three-dimensional
object. The commands for this substrate are:

— back(n), move in the turtle’s negative X direction n units.

— clockwise(n), rotate heading n x 90° about the turtle’s X axis.

— counter-clockwise(n), rotate heading n x —90° about the turtle’s X axis.
— down(n), rotate heading n x —90° about the turtle’s Z axis.

— forward(n),move in the turtle’s positive X direction n units.

— left(n), rotate heading n x 90° about the turtle’s Y axis.

— [, pops the top state off the stack and makes it the current state.

— 1, pushes the current state to the stack.
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(c) 7-parity

Fig. 3. Networks constructed to solve 3, 5, 7-parity from the same evolved network
encoding

— right(n), rotate heading n x —90° about the turtle’s Y axis.
— up(n), rotate heading n x 90° about the turtle’s Z axis.

Section Pl contains an example of a design family encoded using this command
set and the assembly procedure it compiles into.

Rather than have the input parameter exactly specify the height of the table,
we evolve tables whose height is four times higher than the value of the input
parameter. Using a volume of 40x40x40 voxels, the maximum height of a table
is forty units, so the valid range of input parameters is from one to ten. To
allow us to later determine if an evolved generative representation will interpo-
late between tested input values and extrapolate beyond tested input values, we
evaluate an individual using four input values that cover the range: 2.0, 4.0,
6.0, and 8.0. As with the previous set of experiments, individuals are encoded
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with the generative representation of Sect. Plusing a maximum of fifteen produc-
tion rules, each with two parameters and three condition-successor pairs. Since
production rules take two input parameters, the second input value is an evolved
value and is fixed for all trials.

To score the sensitivity of an individual to its input parameters, an individ-
ual’s fitness is a combination of scores from the four designs created using four
different input values. The fitness score for a single table design is based on that
of our earlier work [16], with the objectives of maximizing stability and surface
area while minimizing the amount of material used:

fsurface = the number of voxels at Yi,qz
Ymaa

fstabitity = Z area of the convex hull at height y
y=0

fmateriat = number of voxels not on the surface

The overall score of a single table combines these objectives into a single function:

SCOT’G(tCLbZB) = fsurface X fstability/fmaterial (1)
In addition, there is a height objective specified by the seed parameter:

Ymam/heightdesired if Ymam < heightdesired
fheight =14 Yo if Yinae = heightdesired
heightdesi'r‘ed/ymax if Yinaz > heightgesired

This height objective is a value in the range of zero to one that penalizes a
design for under-shooting or overshooting the desired height. A single fitness
value for an individual is created by summing the scores for each of the four
tables created by the four different seeds and multiplying them by the sum of
the height penalties for all four tables:

4 4
fitness = <Z fheight(tablei)> X (Z score(tableﬁ) (2)
i=1

i=1

The reason for summing all the height penalties and applying them to the scores
for all tables is to put pressure on the EA to evolve individuals which are sensitive
to the seed parameter. With an early version of this test function in which the
height penalty for a given table was applied only to that table,

i=1

4
fitness = (Z freignt (table;) x score(tableﬁ) (3)

evolved individuals tended to produce tables with high fitness for some of the
seed parameters and had low fitnesses for others.

Using the fitness function of Eq. @), Fig. B contains a graph plotting the
fitness of the best individual in the population and average fitness of the entire
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Fig. 4. Best fitness and average population fitness, averaged over fifty trials, for the
table design problem

population averaged over fifty trials. Evolved tables were responsive to the seed
values and in all fifty trials the individuals in the final generation created tables
within one voxel of the desired height for all four seed values. Figure Bl contains
six tables in the design family for one of the evolved parameter-controlled tables.
The tables in[Bh—d are the tables that are generated with tested input parameters
2.0, 4.0, 6.0 and 8.0 — the second parameter is evolvable and in this case is 2.0.
The table in [Be is an example with an input of 7.0, demonstrating that this
individual can interpolate and generate a table with a seed value that is inside
the tested range, and the table in BF is an example with an input of 10.0, which
demonstrates that this individual can produce designs that extrapolate beyond
the range tried during evolution.

6 Summary

Typical evolutionary design systems must evolve a new set of individuals each
time the design objective changes. Here we presented an evolutionary design
system in which individuals use a generative representation to encode a family
of designs. By encoding designs as a program and not directly, the generative
representation uses an input parameter to control a design feature. Individuals
are evolved to be sensitive to this input parameter by evaluating each one mul-
tiple times with different input values and combining the scores for the resulting
designs into a single fitness function.

Using this system, families of designs were evolved on two different problem
domains. On the first design problem, individuals were evolved that encoded
three networks that calculated 3, 5 and 7 parity. On the second domain, individ-
uals were evolved such that an input parameter controlled the height of a table.
In addition, it was demonstrated that one evolved individual produces tables of
the correct height for an input value in between those tested during evolution
and for an input value greater than those tested during evolution: examples of
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(a) table(2.0, 2.0) (b) table(4.0, 2.0)
(c) table(6.0, 2.0) (d) table(8.0, 2.0)
(e) table(7.0, 2.0) (f) table(10.0, 2.0)

Fig. 5. Parameter-controlled tables: (a)-(d) are the four trial parameters, (e) is an
interpolation example, and (f) is an extrapolation example
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interpolation and extrapolation. In general, evolving families of designs with a
generative representation produced individuals with a reuse of modules among
members of the design family. This reuse produced designs in a similar style and
should lead to improved manufacturability.
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