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Abstract. This paper compares two grammar based Evolutionary Au-
tomatic Programming methods, Grammatical Evolution (GE) and Cho-
rus. Both systems evolve sequences of derivation rules which can be used
to produce computer programs, however, Chorus employs a position inde-
pendent representation, while GE uses polymorphic codons, the meaning
of which depends on the context in which they are used.
We consider issues such as the order in which rules appear in individuals,
and demonstrate that an order always emerges with Chorus, which is
similar to that of GE, but more flexible.
The paper also examines the final step of evolution, that is, how per-
fect individuals are produced, and how they differ from their immediate
neighbours.
We demonstrate that, although Chorus appears to be more flexible
structure-wise, GE tends to produce individuals with a higher neutrality,
suggesting that its representation can, in some cases, make finding the
perfect solution easier.

1 Introduction

Chorus [8] is a Genetic Programming (GP) [4] type evolutionary algorithm that
evolves programs. It belongs to the same family of algorithms as Grammatical
Evolution (GE) [9] and like [2,3,5], uses grammars to evolve the programs.

As with GE, Chorus recognizes a distinction between genotype and pheno-
type. The genotype is a string of 8 bit integers. It is translated into a high level
language program described by a context free grammar given in Backus Naur
Form (BNF) using a genotype-phenotype mapping process.

The nature of the mapping process is such that the functionality of the genes
is almost never tied with their exact locations on the chromosome. This is the
crucial difference between Chorus and GE, as they share many similar traits, as
described in Sect. 4. Position independence not only allows the system to evolve
the constituents of its individuals, but it also gives the flexibility to evolve their
order.

This study is an investigation into any underlying trends that the system may
have in forming its individuals and compares it with GE. The study examines
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the patterns that emerge in the chromosomes over the course of evolution, and
considers their consequences. In particular, we wish to investigate if an order
can emerge using the position independent representation of Chorus. Emergence
of an order in a position independent system can also be interesting if it can
be correlated with building block formation. The individuals are also tested
for robustness to see the amount of neutrality available in the search space
surrounding them. Finally, we also look into the leap the system has to make
to reach the ideal fitness. For this purpose we analyse the parents of the ideal
solutions and compare them with their perfect offsprings.

The paper first gives a brief introduction to Backus Naur Form. Next, a
brief introduction to GE is followed by a description of Chorus. Section 5 then
describes the genetic operators used by the systems. The following section de-
scribes the experimental setup to carry out this study and comments on the
results obtained from the experiments.

2 Backus Naur Form

Backus Naur Form (BNF) is a notation for describing grammars. A grammar is
represented by a tuple {N, T, P, S}, where T is a set of terminals, i.e. items that
can appear in legal sentences of the grammar, and N is a set of non-terminals,
which are interim items used in the generation of terminals. P is the set of
production rules that map the non-terminals to the terminals, and S is a start
symbol, from which all legal sentences may be generated.

Below is a sample grammar, which produces individuals similar to those used
by Koza [4] in his symbolic regression and integration problems.

S = <expr>

<expr> ::= <expr> <op> <expr> (0)
| ( <expr> <op> <expr>)(1)
| <pre-op> ( <expr> ) (2)
| <var> (3)

<op> ::= + (4) | - (5) | % (6)
| * (7)

<pre-op> ::= Sin (8) | Cos (9)
| Exp (A)| Log (B)

<var> ::= 1.0 (C) | X (D)

3 Grammatical Evolution

Grammatical Evolution (GE)[9] evolves computer programs in an arbitrary lan-
guage. Unlike GP, as described in [4], which typically uses abstract syntax trees,
GE recognizes a distinction between genotype and phenotype. Genotypes are 8
bit integer (typically referred to as a codon) strings of varying length. Translation
to the phenotype is dictated by a context free grammar.
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One of the distinguishing features of GE is intrinsic polymorphism, that
allows it to possess a genotype without non coding regions(introns). Whenever a
rule has to be chosen for a non-terminal, a codon is moded against the number
of rules pertaining to that non-terminal. This ensures that every codon produces
a rule that is immediately consumed. A complete description of GE can be found
in [6].

4 The Chorus System

In a manner similar to GE, Chorus uses 8 bit integer strings to represent the
genotypes. However, unlike the intrinsically polymorphic codons of GE, each
codon in Chorus corresponds to a particular rule in the grammar. In this way it
is similar to GAGS[5], but it does not have the same issue with introns.

Fixed valued codons are different from GE, where the meaning of every codon
is dependent upon its predecessors. The 8 bit codon is moded with the total
number of rules in the grammar so as to point to a rule from the grammar. This
behaviour differs from GE, where the interpretation of a codon depends upon the
state of the mapping process. As described earlier, GE modes a codon with the
number of rules relevant to the non-terminal being processed. Depending upon
the state of the mapping process, the same codon can be read in for different
non-terminals. This suggests that the behaviour of a codon is determined by its
situation in the chromosome.

As the total number of rules in the grammar remains constant irrespective of
the state of the mapping process, a codon in Chorus behaves in a fixed manner
regardless of its location in the genome.

When the mapping begins, the genome is read from left to right, to pick
the rules from the grammar so as to arrive at a legal sentence comprising of all
terminals. However, fixed valued codons may not necessarily be in the order the
mapping process may demand. We keep track of all the rules that we come across
in a concentration table. The concentration table has an entry for every rule in
the grammar and is initialised to all zeros when the mapping begins. Every time
a codon is read, concentration of the corresponding rules is incremented in the
table.

Consider a sample individual, which has been moded to give the codons:
8 D D C 2 3. If we consider the grammar given in Sect. 2, the start symbol is
<expr> which maps to any of the rules 0 through 3 . While we traverse through
the genome to find an applicable rule, we can find rules that may be used later.
We keep track of all the rules that we come across in the concentration table.

The table is divided into different sections, each pertaining to a particular
non-terminal. As the grammar in the Sect. 2 has four non-terminals, the table
has four different sections. The first section contains entries for rules 0 through
3, the second consists of rules 4 through 7 and so on. When we have to find a
rule corresponding to a non-terminal, we consult the relevant section from the
table. The rule with the highest concentration at that time is chosen. In case
of a tie (e.g at the beginning of the mapping) we read the genome left to right
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incrementing the concentration of every rule we read in. The reading stops when
one of the rules from the relevant section becomes a clear winner. When required,
subsequent scanning of the genome will continue from that point.

For the current example, we stop when we encounter rule 2 so that next
reading position points to rule 3. The rule with the maximum count in the
relevant section (rule 2 in this case) is considered dominant and is chosen, so
that the start symbol is expanded into <pre-op>(<expr>). We always stick to
the left most non-terminal, a <pre-op> in this case. Rule 8 is a clear winner
for this case, as it is the only applicable rule that has been read in. We do not
need to read from the genome in this case. Thus, we see that a codon may not
be consumed the moment it is read in. This delay in the expression of a codon,
combined with the requirement to be in majority to make a claim brings the
position independence in the system. The important thing is the presence or
otherwise of a codon and its location is less so. For more information, consult
[8][1].

5 Genetic Operators

The binary string representation of individuals effectively provides a separation
of search and solution spaces. This permits us to use all the standard genetic
operators at the string level. Crossover is implemented as a simple, one point
affair, the only restriction being that it takes place at the codon boundaries.

Bit mutation is employed at a rate of 0.01, whereas crossover occurs with a
probability of 0.9. Steady state replacement is used with roulette wheel selection.

As with GE, if an individual fails to map after a complete run through the
genome, Chorus uses a wrapping operator to reuse the genetic material. How-
ever, the exact implementation of this operator has been kept different from the
traditional GE implementation [9]. Repeated reuse of the same genetic material
effectively makes the wrapped individual behave like multiple copies of the same
genetic material stacked on top of each other in layers. When such an individual
is subjected to crossover, the stack is broken into two pieces. When linearized,
the result of crossover is different from one or both of its parents at regular
intervals. In order to minimize such happenings, Chorus limits wrapping to the
initial generation. If an individual undergoes wrapping, it is then unrolled by
appending all the genetic material at the end of the genome the number of times
it is reused. The unrolled individual then replaces the original individual in the
population. This altered use of wrapping in combination with position flexibility,
promises to maintain the exploitative effects of crossover. Unlike the traditional
implementation of GE, those individuals that fail to map in second and subse-
quent generations are not wrapped, and are simply considered unfeasible.

All the experiments described in this paper employ the altered wrapping
both for GE and Chorus, except where mentioned otherwise.
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6 Experiments

This paper makes a comparison between the structures of the individuals that
are evolved by the two grammar based evolutionary algorithms. To facilitate
the cause, we have employed a few different approaches. In the first approach,
termed Segment Rule Profiles, the individuals are divided into ten segments to
see if there are certain kinds of rules dominating certain regions in the genomes.
This can help us understand the relationship between the genomes and the
derivation trees they encode.

As is the nature of the mapping in both the algorithms, all the genetic ma-
terial available in the genomes may not be required for the mapping. Instead,
a certain percentage of the chromosome may be read in. This study only mon-
itors the effective lengths of the genomes that contribute towards the mapping.
Considering only effective length is also motivated by the fact that, even though
fixed valued codons found in the tails or unused portions of Chorus individuals
can be sampled, intrinsically polymorphic codons in GE can not be interpreted
so as the mapping terminates before reading them in.

We have used two problems to make such a comparison. The first problem
is Koza’s[4] symbolic regression of the quartic polynomial (x4 + x3 + x2 + x). In
order to evolve such a function, rules 0,1,3,4,7 and D from the grammar in Sect. 2
play a significant role. However, if we can use a problem whose solution requires
less number of rules, we can have a clearer view of any underlying trends. For
this purpose we have used an abbreviated form of the same problem, where the
objective function is x4 + x3.

We then move on to compare the robustness of the individuals produced by
each of the algorithms. In this test we compare the perfect individuals produced
for the two problems against their nearest neighbourhoods. Bit string represen-
tation means that any individual having a hamming distance of 1 exists in the
nearest neighbourhood of the individual under observation. Percentage fall off
in the fitness is recorded by generating all the nearest neighbours. This provides
us with a test of neutrality around the perfect solutions found by the systems.

We also compare the similarity in the rule history of the perfect individuals
with their immediate neighbours. It gives us a measure of similarity in structure
in the space immediately surrounding those individuals.

We then use the notion of productive parents [7], that is, parents that produce
perfectly fit offspring, and considers the relationship between these parents and
the offspring in terms of the leap in fitness required to get to the ideal fitness.

All the experiments involve 100 independent runs with a population size of
500 spanning 250 generations. Runs terminated upon finding an ideal fitness. All
fitness comparisons involve normalized fitness as described in [4]. The experimen-
tal setup is primarily the same as used by Koza[4] for the symbolic regression
problem.
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6.1 Segment Rule Profiles

In GE, every sampled codon decodes to an applicable rule, so the effective length
of an individual can be seen as a history of the rules selected.

Position independence in Chorus, however, may not permit such minimal
individuals. Effective length in a Chorus individual may possess introns as well
as high counts of the competing rules trying to maximise their concentrations to
stake a claim. Thus, we have also recorded rule selection histories of the Chorus
Individuals to see what kind of derivation trees are being produced.

The figures reported in this section show a snapshot of the 50th generation.
It was observed that the rule percentiles reasonably stabilised upon reaching the
50th generation.

Figure 1 shows the rule percentiles in the effective lengths of the Chorus
individuals for both the problems. As mentioned earlier, the figures show that
the system has figured out the necessary constituents of the ideal solutions,
depicted by their higher percentages in different segments. However, some of
these significant rules show clearly dominating percentiles in certain segments,
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and a low profile in the others. Let’s consider the regression problem first. If
we consider segment 1, the rules <expr><op><expr> (rule 0 in the grammar in
Sect. 2) and (<expr><op><expr>) (rule 1 in the grammar) constitute about 38%
of the profile. However, as we move to the right, the percentages of these rules
decrease consistently up until segment 5, maintaining a relatively stable propor-
tion thereafter. <var>, that links the aforementioned rules to the terminals, has
only 2.935% share in segment 1, but as the percentiles of those rules decrease,
<var> shows a clear tendency to increase attaining its maximum value in the
last segment.

The terminal symbol X scores about 13% in segment 1, and does not show
as much variation as the rules discussed earlier, except in the last segment.

The two operators + and ∗ start off at the same level. + then takes over briefly
for the earlier segments, before ∗ takes the lead in later segments, emphasizing
its increased role towards the end of the derivation tree.

Figure 1 shows that the artificial problem shows a trend very similar to the
regression problem. The reduced effect of the + operator gives us a much clearer
picture of the same phenomenon.

It appears from the findings that the system arranges its genomes in a way
that the earlier part primarily consists of the rules that define the structure of
the derivation tree and lead to increase in its size. This dominance is further
enhanced by the low percentage of the rule <var> in the earlier segments, thus
ensuring that even a high percentage of the terminal symbol X, will not hinder
the structure formation. This is a consequence of the property of the system,
which not only allows it to evolve the values of its genes but also the order
in which the chromosome may possess them. This can be helpful in forming
building blocks by allowing the rules of conflicting roles towards the derivation
tree formation to exist in close vicinity.

Figure 2 shows a comparison of the rule selection histories of the two algo-
rithms on the regression problem. The figure for Chorus correlates well with the
earlier figure showing a high percentile (about 80%) of the structure imposing
rules in earlier segments. <var> has a much lower appearance with terminal
symbol X being almost non-existent with a share of 0.257%.

GE also shows a clear dominance of the structure forming rules in the first
segment. However, there are two noticeable exceptions. The combined percentage
of rule 0 (<expr><op><expr>) and rule 1 ((expr><op><expr>) is much lower
compared to Chorus(about 48% as against 80%). Also, the percentage of <var>
is much higher, about 18% as against 7.277% in Chorus. The figure is unable
to show clearly that the percentage of the terminal X is also higher for GE in
segment 1 at 7.312%.

The differences observed in the regression problem become even clearer in
the artificial problem (Fig. 3). There is an increase in the difference in combined
percentages of rule 0 and rule 1 between GE and Chorus. Also, <var> has an
increased percentile with GE.

The results of the rule selection history seem to suggest that, while, the indi-
viduals produced by Chorus tend to create thinner and deeper derivation trees,
GE individuals encode broader trees (see Fig. 4). This fact can be attributed
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Fig. 2. A comparison of the choices made by GE and Chorus across the 10 segments
for the Regression problem

to the depth first mapping employed by both the algorithms. As, earlier on,
rules 0 and 1 dominate in Chorus, depth first mapping uses them to increase
the depth of the tree. The phenomenon is also visible in GE, but given that it
possesses <var> with a higher percentage in comparison with Chorus, it may
possess broader trees as depicted by Fig. 4. This may have implications towards
crossover. We get an impression that Chorus tends to preserve the structure in
the earlier part of the genome. Also, the earlier portions possess the terminals
that may not have been expressed so far. Thus, while the incoming fragment
may contain terminals of its own, it may also be expected to trace a path to
the terminals already contained by the receiving individual. Crossover, thus, can
potentially behave in a more context preserving fashion.

GE, however, can have more irregularly shaped trees exchanged, possibly
leading to a more exploratory behaviour. However, a study focused on the deriva-
tion trees can be more conclusive in uncovering such trends.
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6.2 Fitness Fall Off and Rule History Similarity in the
Neighbourhood

In this section we analyse the robustness of the individuals produced by the two
algorithms. We consider 32 perfect individuals produced against each problem
by GE and Chorus, and generate all of their immediate neighbours. As men-
tioned earlier, the neighbours are generated only for the effective lengths. This
is so because mutations in the tails, will give us exactly the same rule selection
histories thus leading to the same phenotypes. This will give a false sense of
neutrality in terms of percentage fall off in fitness as well as the similarity in the
rule histories. However, the neighbours may require a longer genome length in
order to map completely. Thus, we have done two kinds of test. In one case, we
allow the neighbours to use the tails if they require them. In the other case we
do not allow them to go beyond the effective length of the corresponding perfect
individual.

Table 1 explores the neighbourhoods for neutrality in fitness values. The
leftmost column shows the fall off in the fitness. The entries in the table show
the percentage of immediate neighbourhood lying in a range of fitness fall off. If
we consider the regression problem, we can see that Chorus shows 35.017% of
the immediate neighbours having perfect fitness even without being allowed to
use the tails. With the use of tails, the figure slightly rises to 37.71%. GE shows
higher fitness neutrality at about 41.059%. Allowing the use of tails increases
this figure very slightly.

The bottom of the table also shows better figures for GE, with Chorus show-
ing high percentage of individuals getting a zero fitness.

The artificial problem also shows that GE seems more robust to handle bit
mutation. The allowance to use the tails helps Chorus to decrease the difference
in performance. GE, however, remains largely unaffected by it.

Table 2 shows the similarity between the rule histories of the perfect individ-
uals and their neighbours. It shows that most of the neutrality shown in fitness

Table 1. Percentage fall off in Fitness of Immediate Neighbours

%age Chorus-Regression GE-Regression Chorus-X4 + X3 GE-X4 + X3

No Tails Tails No Tails Tails No Tails Tails No Tails Tails
0 35.017 37.71 41.059 41.332 33.789 39.129 41.334 41.334
10 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0.018 0.018
40 0 0 0 0 0 0 0.263 0.263
50 0 0 0 0 0 0 0.105 0.105
60 0 0 0 0 0 0 0 0
70 0.0060 0.0060 0.174 0.186 0.018 0.072 0 0
80 6.423 7.188 5.543 5.63 10.391 13.523 9.506 9.664
90 4.031 5.187 4.849 5.146 8.789 10.961 9.979 10.662
100 54.524 49.909 48.375 47.706 47.013 36.314 38.796 37.955
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Table 2. Percentage similarity in the Rule Selection History of Immediate Neighbours

%age Chorus-Regression GE-Regression Chorus-X4 + X3 GE-X4 + X3

No Tails Tails No Tails Tails No Tails Tails No Tails Tails
0 3.81 3.815 0.409 0.409 4.861 4.843 0.35 0.35
10 2.625 2.613 0.31 0.31 3.829 3.811 0.683 0.683
20 4.303 4.32 0.608 0.608 3.738 3.729 0.735 0.735
30 4.734 4.722 0.57 0.57 3.376 3.222 1.296 1.296
40 4.649 4.546 0.471 0.471 4.001 3.747 0.63 0.63
50 7.347 7.381 0.818 0.818 6.725 6.988 1.576 1.576
60 6.803 6.429 1.128 1.128 7.902 7.476 2.714 2.714
70 5.72 5.811 3.137 3.137 4.435 4.797 7.143 7.143
80 6.281 5.726 11.471 11.471 10.889 7.594 9.191 9.191
90 19.881 18.974 45.3 45.3 18.773 18.049 41.877 41.877
100 33.849 35.663 35.776 35.776 31.472 35.744 33.806 33.806

is basically due to the similar derivation sequences. For instance, in regression
problem 33.849% of the neighbours show complete neutrality for Chorus, as
against a fitness neutrality of 35.017% (see Table 1), when tails are not allowed.
The bulk of fitness neutrality for GE is also derived from neutrality in derivation
sequences. However, the difference in 100% fitness neutrality (41.059%) (see Ta-
ble 1) and 100% rule history similarity(35.776%) is higher compared to Chorus.
It suggests that GE has more individuals in the neighbourhood which may be
somewhat different in appearance, yet they are able to reach the ideal fitness. A
similar trend is observable in the artificial problem.

The results suggest that GE is more tolerant to bit mutation as compared
to Chorus. It is helped by intrinsic polymorphism that provides more neutrality
in GE codons. A codon is moded only with the number of rules pertaining to
the non-terminal which has to be mapped. Every non-terminal in the grammar
given in Sect. 2 has 4 rules except <var>, which has 2. This means an 8 bit
codon can represent the same rule in 64 different ways. The figure rises to 128
for <var>.

Chorus, on the other hand, uses fixed valued codons by moding them with
the total number of rules in the grammar(14 in this case). This means every
codon can represent a rule in about 18 ways, a figure considerably less than that
of GE.

6.3 Productive Parents

In this section we compare the fitness of the parents of the ideal solutions to their
offsprings. This gives us an idea about the relationship between the parents and
their offsprings in terms of fitness.

Table 3 shows that on average the parents are quite distant from their off-
springs in the fitness landscape. As is the case in neighbourhood tests, GE does
better by evolving parents that are closer to the ideal solutions in terms of fit-
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Table 3. Percentage distance between the fitness of productive parents and the ideal
fitness. A low score indicates a higher fitness

Chorus GE
Regression X4 + X3 Regression X4 + X3

Maximum 91.74 92.95 83.55 82.86
Average 77.11 79.07 66.53 73.8
Minimum 49.31 41.46 21.87 31.7

ness. This suggests that GE has a relatively smoother approach towards the
ideal solutions.

Artificial problem reported that 33% of the Chorus parents and 59% of GE
parents encoded for the building block x3 +x2 which is 75% away from the ideal
fitness. While it shows the ruggedness of the search space, it is interesting to see
how the systems managed to find their way through low fitness area instead of
getting trapped into highly fit but possibly misleading areas of search space.

7 Conclusions

Chorus and Grammatical Evolution are from the same family of algorithms, and
clearly have much in common as a result. This paper investigates and compares
the two algorithms in terms of the individuals they produce. There appears to be
a convergence in behaviour, yet some differences have been pointed out. The seg-
ment profile tests show that, despite Chorus possessing position independence,
an order seems to settle down as the evolution progresses. In particular, the genes
that deal with structural information, tend to be at the start of individuals.

This emergent order shows that the system has the potential for building
block formation, and produces individuals more conducive for crossover opera-
tions. A study focused on derivation trees can shed further light in exploring the
effects of crossover.

Intrinsic polymorphism enables GE to have more tolerance towards bit mu-
tation compared to fixed valued codons, while Chorus individuals require signif-
icantly larger codons to achieve the same neutrality.

A result of this is that GE also seems to enjoy a smoother passage towards
the ideal fitness in terms of fitness distance between the productive parents and
the offsprings. Further investigation into the roles of the genetic operators can
help us understand it better.
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