
Adaptation of Length in a Nonstationary
Environment

Han Yu1, Annie S. Wu1, Kuo-Chi Lin2, and Guy Schiavone2

1 School of EECS
University of Central Florida

P.O. Box 162362
Orlando, FL 32816-2362
{hyu,aswu}@cs.ucf.edu

2 Institute for Simulation and Training
University of Central Florida

Orlando, FL 32826-0544
{klin,guy}@pegasus.cc.ucf.edu

Abstract. In this paper, we examine the behavior of a variable length
GA in a nonstationary problem environment. Results indicate that a
variable length GA is better able to adapt to changes than a fixed length
GA. Closer examination of the evolutionary dynamics reveals that a
variable length GA can in fact take advantage of its variable length
representation to exploit good quality building blocks after a change in
the problem environment.

1 Introduction

A typical genetic algorithm (GA) tends to use problem representations that are
orderly, fixed, and somewhat arbitrary. Individuals are of a fixed length with
information encoded at fixed, programmer-defined locations on the individuals.
These representations are very efficient, well organized, and encoded in ways
that are very logical or easy for humans to interpret. Extending a GA to use a
variable length problem representation brings about a host of new issues that
must be addressed, including how to encode information and modifications to
traditional genetic operators. Nevertheless, the advantages of a more adaptable
and evolvable problem representation are thought to outweigh the additional
effort.

In this paper, we explore the adaptability of a variable length representation
in a nonstationary environment. Previous work has suggested that in periods of
heavy search, e.g. those periods immediately following a change in the environ-
ment or target solution, a variable length GA will tend to favor longer individuals
because longer individuals provide more resources to the search process [1,2]. We
test this theory on a variable length GA applied to the problem of multiprocessor
task scheduling [3]. Although our initial results are somewhat surprising, a de-
tailed analysis of the evolutionary dynamics provide an interesting and positive
explanation.

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 1541–1553, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

1542 H. Yu et al.

2 Related Work

Early work on variable length representations includes Smith’s LS-1 learning
system [4], Goldberg’s messy GA [5], Koza’s genetic programming (GP) [6],
and Harvey’s SAGA [7]. These studies laid much of the groundwork in terms of
defining the issues that need to be addressed with variable length representations
and exploring potential solutions.

Since then, much research has been conducted on the variation of individual
length during evolution. Langdon and Poli [2] explore the cause of bloat in the
variable length genetic programming (GP) representation. They conclude that
longer individuals are favored in the selection process because they have more
ways to encode solutions than shorter individuals. Soule et al. [8,9] perform a
detailed investigation on code growth in GP and conclude that code growth is
dominated by non-functional code. As a result, parsimony pressure can affect the
search quality in GP. The relationship between size and fitness in a population
is useful in predicting the GP’s search performance in a long run. Burke et al. [1]
study the adaptation of length in a variable length GA. They found that, with-
out parsimony pressure, a GA tends to generate individuals of arbitrary length.
If parsimony pressure is applied, the average individual length increases quickly
in early evolution, followed by a gradual decrease until stabilization. The early
increase was thought to be a period of growth of resources: increasing individ-
ual length increases the probability of finding building blocks. All of the above
studies examine variable length representation in a stable problem environment.

A variety of studies have looked at GA behavior in changing environments
[10]. Some of these approaches focus on maintaining the population diversity
during GA search, such as the use of random immigrants [11], hypermutation
[12], adaptive GA operators [13], and the TDGA [14,15]. Other strategies at-
tempt to improve the search by storing duplicate information with redundant
representation schemes [16,17,18], using alternative memory systems [19], or en-
couraging the maintenance of multiple “species” within a GA population [20,21,
22].

3 Problem Description

We perform our experiments on a variable length GA applied to the problem
of multiprocessor task scheduling [23]. The task scheduling problem begins with
a task dependency graph which specifies the dependencies among a number of
tasks that together compose a larger complete task. Each task has a fixed execu-
tion time that is given in the problem. Figure 1 shows two example task depen-
dency graphs. The goal of the GA is to assign tasks to four parallel processors
such that all tasks can be completed and total execution time is minimized. The
same task may be assigned to multiple processors but not the same processor
twice. The data dependencies that exist among tasks place restrictions on the
order in which tasks can be assigned to processors. Dependent tasks that are
assigned to different processors may incur additional communication delays. A

Adaptation of Length in a Nonstationary Environment 1543

1

15

10 1211

9876

5432

13 14

1

15

1012 11

9 8 7 6

5 4 3 2

1314

Fig. 1. Task dependency graph for problems G1 (left) and G2 (right)

valid solution is one in which there is at least one copy of every task and all task
orderings are valid.

4 Implementation Details

We highlight some of the key features of the GA used in this study. A full
description of this system is available in [3].

4.1 Variable Length Problem Representation

Each individual in the population consists of a vector of cells or genes. A cell is
defined as a task-processor pair, (t, p), which indicates that a task t is assigned
to processor p. The number of cells in an individual may be fixed or may vary
during evolution. The order of the cells of an individual determines the order
in which tasks are assigned to processors: cells are read from left to right and
tasks are assigned to corresponding processors. If the same task-processor pair
appears multiple times in an individual, only the first cell contributes to the
fitness evaluation. This cell is called a coding gene. Any additional identical
cells are ignored by the fitness function but are still subject to action by genetic
operations. The coding length refers to the total number of distinct cells in an
individual. In variable length evolution, the number of cells in an individual is
limited to ten times the number of tasks in the problem. Figure 2 shows an
example individual. Figure 3 shows the corresponding task assignment. Because

(4,1)(2,4)(3,3)(2,3)(4,1)(5,4)(6,3)(1,1)(3,2)

Fig. 2. An example individual

1544 H. Yu et al.

Processor 1 Task 4 Task 1
Processor 2 Task 3
Processor 3 Task 3 Task 2 Task 6
Processor 4 Task 2 Task 5

Fig. 3. Assignment of tasks from individual in Fig. 2

there are no restrictions as to the task processor pairs that may exist in an
individual, both valid and invalid solutions may occur in the population.

4.2 Modified Genetic Operators

Recombination is performed on the cell level and crossover points are restricted
to falling only in between cells. In variable length runs, we use random one-
point crossover which randomly selects a crossover point independently on each
parent. As a result, the length of offspring may be different from their parents.
In fixed length runs, we use simple one point crossover.

Each cell has equal probability to take part in mutation. If a cell is selected
to be mutated, then either the task number or the processor number of that cell
will be randomly changed.

4.3 Fitness Function

The fitness function is a weighted sum of two components, the task fitness and
the processor fitness:

fitness = (1 − b) ∗ task fitness + b ∗ processor fitness.

The value of b ranges from 0.0 to 1.0.
The task fitness evaluates whether tasks have been scheduled in valid or-

ders and whether all tasks have been included in a solution. Calculation of
task fitness consists of three steps.

1. Because we do not limit our GA to only generate valid solutions, we use
an incremental fitness function in order to give partial credit to invalid solu-
tions that may contain some valid subsequences of tasks. This fitness function
starts out rewarding for simpler goals and gradually increases the criteria of
goals until a complete valid solution is found. Partial credit is determined
using the era counter which indicates the length of the subsequences to be
checked for validity, era = 0, 1, 2, ... , T . Initially, era is set to zero. For all
tasks assigned to the same processor, we check the sequence of every pair
of adjacent tasks. The era counter increases when the average population
fitness exceeds a user defined threshold value and a fixed percentage of the
population consists of valid individuals. Each time era is increased, we in-
crease the number of tasks in the sequences checked by one. Thus, the length

Adaptation of Length in a Nonstationary Environment 1545

of the sequences checked always equals era + 2. We calculate raw fitness
using the following equation:

raw fitness =
number of valid task groups in an assignment
total number of task groups in an assignment. (1)

2. We next calculate task ratio using the following equation:

task ratio =
number of distinct tasks specified on an individual

total number of tasks in the problem. (2)

3. Finally, task fitness = raw fitness × task ratio.

The processor fitness evaluates the execution time of a valid task schedule,
favoring schedules that minimize execution time.

processor fitness =
P ∗ serial len − t

P ∗ serial len
.

where P is the number of processors in the problem, t is the execution time of a
solution, and serial len is the execution time of all the tasks if they are assigned
serially to a single processor.

Additional details regarding the fitness function are available in [3].

4.4 System Parameter Settings

Table 1 gives the default parameter settings used in our experiments. In a vari-
able length GA, the initial population of individuals are initialized to length
fifteen (the total number of tasks in the problem), and the maximum allowed
length is 150. Experimental tests indicate that initial population length does not
significantly affect GA performance. In the fixed length GA, we use individuals
of length 150.

Table 1. Parameter settings used in our experiments

Parameter Value
Population size 200
Number of generations 1500
Crossover type random one-point
Crossover rate 1.0
Mutation rate 0.005
Selection scheme Tournament (2)
b 0.2
Fitness threshold 0.75

1546 H. Yu et al.

5 Experimental Results

We compare the behavior of fixed and variable length GAs in a nonstationary
environment. In these experiments, the target solution oscillates between two
different problems, G1 and G2, shown in Fig. 1 every 100 generations. To empha-
size the differences between the two target solutions and increase the difficulty
of finding and maintaining solutions for both targets, we designed G2 to have
the completely opposite set of task dependencies as G1. The results presented
are from individual runs that are representative of overall GA behavior.

We compare four experimental scenarios:

1. A fixed length GA in which era is not reset.
2. A fixed length GA in which era is reset after each target change.
3. A variable length GA in which era is not reset.
4. A variable length GA in which era is reset after each target change.

In the runs where era is not reset, the era counter increases normally throughout
a run, independent of target changes. In the runs where era is reset, the value of
era is reset to zero after each target change; era increases normally in between
two consecutive target changes.

5.1 Fixed versus Variable Length

Figure 4 shows the typical variation in average population fitness and average
coding length during a fixed length GA run where era is not reset. A sharp drop
in fitness occurs after each target change indicating that the GA has difficulty
retaining both solutions in its population. The alternating high and low peaks
suggest that the GA population has converged primarily to one of the two target
solutions. When the converged solution is the target solution, the average pop-
ulation fitness reaches above 0.8. When the non-converged solution is the target
solution, the average population fitness is unable to exceed 0.6.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

fit
ne

ss

Generation

Average Individual Fitness

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400

In
di

vi
du

al
 L

en
gt

h

Generation

Average Individual Length
Average Coding Length

Fig. 4. Typical plots of average population fitness (left) and average coding length
(right) for a fixed length (150) GA with no resetting era in a nonstationary environment

Adaptation of Length in a Nonstationary Environment 1547

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

fit
ne

ss

Generation

Average Individual Fitness

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400

In
di

vi
du

al
 L

en
gt

h

Generation

Average Individual Length
Average Coding Length

Fig. 5. Typical plots of average population fitness (left) and average coding length
(right) for a fixed length (150) GA with resetting era in a nonstationary environment

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

fit
ne

ss

Generation

Average Individual Fitness

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400

In
di

vi
du

al
 L

en
gt

h

Generation

Average Individual Length
Average Coding Length

Fig. 6. Typical plots of average population fitness (left) and average length (right) for
a variable length GA with no resetting era in a nonstationary environment

Figure 5 shows the typical variation in average population fitness and average
coding length during a fixed length GA run where era is reset after each target
change. The result is very similar to the run shown in Fig. 4. We see sharp drops
in fitness after every target change. The high and low peaks in fitness indicate
that GA is evolving solutions toward only one target. The primary difference
is the existence of smaller oscillations in fitness within the larger peaks due to
increases in the era counter.

Figure 6 shows typical plots of the average population fitness and average
population length of a variable length GA where era is not reset. We again see
sharp drops in fitness after each target change indicating difficulty in retaining
multiple solutions in the population. These data exhibit two notable differences
from the corresponding fixed length results in Fig. 4. First, there is little evidence
of alternating peaks; the GA appears to be able to find equally strong solutions
for both targets. Average fitness values are slightly lower, but comparable, to
those achieved by the fixed length GA. Second, the rise in fitness following each
drop is much faster and sharper. These differences suggest that a variable length
GA is better able to adapt to changes in the target solutions.

1548 H. Yu et al.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

fit
ne

ss

Generation

Average Individual Fitness

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400

In
di

vi
du

al
 L

en
gt

h

Generation

Average Individual Length
Average Coding Length

Fig. 7. Typical plots of average population fitness (left) and average length (right) for
a variable length GA with resetting era in a nonstationary environment

The variation in average population length shows interesting and unexpected
behavior. Instead of increasing after each target change (as one would predict
based on previous studies [1,2]), the average population length drops sharply
after each target change. The average population length immediately increases
after each drop, and reaches almost 90 for both target solutions. The average
coding length shows similar behavior to a smaller degree, stabilizing at about
20. With respect to coding length, the variable length GA appears to be able
to evolve more compact solutions than the fixed length GA, albeit with slightly
lower fitness.

Figure 7 shows typical plots of the average population fitness and average
population length of a variable length GA where era is reset after each target
change. We observe much smaller drops in individual fitness after target changes
and variations in individual length that are less clearly correlated with target
changes. Average fitness remains comparable to the fitness achieved in the other
three experiments.

We further evaluate the adaptability of our GAs to changing environments
by examining the probability of finding valid solutions within the interval of
two consecutive target changes. The results, given in Table 2, are collected from
twenty runs in each test case. Results show that variable length GAs, as ex-
pected, are more adaptable than fixed length GAs. Surprisingly, not resetting
era actually results in much better adaptation for both the variable length and
the fixed length GAs, showing more chances of finding valid solutions after tar-

Table 2. The probability of finding a valid solution between target changes

Test Cases The Probability of Finding a Valid Solution
Between Target Changes

Variable length GA (era not reset) 97.5%
Variable length GA (era reset) 87.1%
Fixed length GA (era not reset) 72.9%

Fixed length GA (era reset) 59.3%

Adaptation of Length in a Nonstationary Environment 1549

get changes. This result was unexpected as we expected the era counter to guide
the GA in finding a solution by rewarding for partial solutions.

5.2 Variable Length Dynamics

Our original hypothesis was that average length would increase following each
target change to provide the GA search process with more resources in the form
of longer individuals. Our variable length GA runs with no resetting era, however,
exhibit completely opposite behavior. Closer examination reveals that the GA
is, in fact, selecting for better resources instead of more resources.

We examine the distribution of fitness with respect to length in the genera-
tions immediately preceding and following a target change. Figure 8 shows this
data for a sample run. Within a GA run, we take all individuals that are in
populations immediately preceding a target change (in our case, generations 99,
199, 299, etc.), group those individuals by length, and plot the average fitness of
each group. Similarly, we plot the fitness distribution of all individuals that are
in generations immediately following a target change (generations 100, 200, 300,
etc.). Immediately before a target change (generation “X99”), longer individuals
have higher average fitness than shorter individuals. Immediately after a target
change (generation “X00”), shorter individuals appear to be fitter than longer
individuals. This same dynamic is seen to a stronger degree in similar plots of
the coding length of a population. Figure 9 shows the distribution of fitness with
respect to coding length.

Examination of individual members of the population provides an explana-
tion. Both target problems used here consist of fifteen tasks. Thus, individuals
must have coding lengths of at least fifteen to encode a complete solution. As
expected, the data in Fig. 9a indicates that the average fitness peaks at coding
lengths that are just slightly longer than fifteen and levels off with increasing
length. For lengths shorter than fifteen, there is a steady linear decrease in fit-
ness. Immediately before a target change, the GA has had time (in the runs

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

A
ve

ra
ge

 F
itn

es
s

B
ef

or
e

P
ro

bl
em

 C
ha

ng
e

Individual Length

Average Fitness for Individual Length

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

A
ve

ra
ge

 F
itn

es
s

A
fte

r
P

ro
bl

em
 C

ha
ng

e

Individual Length

Average Fitness for Individual Length

a b

Fig. 8. Distribution of average fitness of individuals of equal length before (a) and after
(b) a target change

1550 H. Yu et al.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

A
ve

ra
ge

 F
itn

es
s

B
ef

or
e

P
ro

bl
em

 C
ha

ng
e

Coding Gene Length

Average Fitness for Coding Gene Length

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

A
ve

ra
ge

 F
itn

es
s

A
fte

r
P

ro
bl

em
 C

ha
ng

e

Coding Gene Length

Average Fitness for Coding Gene Length

a b

Fig. 9. Distribution of average fitness of individuals of equal coding length before (a)
and after (b) a target change

Proc 1 5 8 Proc 1 5 14 13 15
Proc 2 3 5 Proc 2 1 3 2 6 4 5
Proc 3 7 11 Proc 3 7 6 9 8 12 11 10 13
Proc 4 4 Proc 4 4 9 12

(a) (b)

Fig. 10. Small (a) and large (b) solutions from generation 299 of sample run

here, 99 generations) to evolve towards the current target. Most individuals in
the population will have some characteristics of the current target. Longer in-
dividuals are more likely to contain complete solutions, and therefore, are also
more likely to be specialized towards the current target.

Figure 9b shows the fitness distribution in the generations immediately fol-
lowing a target change. Individuals with coding lengths less than fifteen tend to
have higher relative fitness while individuals with longer coding lengths exhibit
steadily decreasing fitness values. Immediately after a target change, much of the
population still consists of individuals that have been evolved towards the previ-
ous target. Individuals with long coding lengths are more likely to be specialized
to the previous target and, thus, more likely to have low fitness with respect to
a new target. Individuals with short coding lengths, on the other hand, are more
likely to contain less specific building blocks that may be applicable to more
target solutions.

Examination of specific individuals from a population supports the above
explanation. Figures 10a,b show a small and a large solution, respectively, from
generation 299 of a sample run.

The target solution for generations 200 to 299 is problem G1. Accordingly,
all task sequences in both solutions are valid with respect to G1. With respect
to problem G2, all task sequences in the smaller solution are valid, but only the
following subset of task sequences (18 out of 52 total) from the longer solution
are valid:

Adaptation of Length in a Nonstationary Environment 1551

[14-13] [1-3] [3-2] [1-3-2] [6-4] [4-5] [6-4-5] [7-6] [6-9] [9-8] [7-6-9] [6-9-8] [7-6-9-8]
[8-12] [12-11] [11-10] [12-11-10] [4-9]

The longer solution is a complete solution to problem G1. It is very specialized
for G1, and consequently, noticeably less fit for G2. The shorter solution does not
specify a complete solution for either G1 or G2, but is equally fit for both. With
respect to the percent of valid sequences, the shorter solution actually scores
higher than the longer solution and consequently appears fitter immediately
after a target change.

Thus, the sharp drops in average population length seen in Fig. 6 appear to
be due to selection for more general building blocks following a target change.
In this particular problem encoding, shorter individuals tend to consist of more
general building blocks, longer individuals tend to consist of problem specific
building blocks. By selecting for shorter individuals immediately after a target
change, the GA increases its population resources by increasing the number of
more general building blocks.

The above study also explains why there are no evident drops in individual
length due to a problem change in Fig. 7. In GAs where era is reset, the fitness
function is again checking the order of every two adjacent tasks after each target
change. Long individuals, though more specialized to the previous target, are still
likely to contain short task sequences that are valid. As a result, long individuals
drop less in fitness than they do in GAs where era is not reset and remain compet-
itive with shorter, more general individuals. Surprisingly, resetting era is not ben-
eficial in this problem as it actually retards a GA’s adaptation to a new target.

6 Conclusions

In this paper, we investigate the behavior of a variable length GA in a nonsta-
tionary problem environment. We examine how variations in length can help a
GA adapt to new environments.

We perform our experiments on a task scheduling problem under an oscillat-
ing environment. Experimental results indicate that a variable length GA has
better and quicker adaptation to a new environment than a fixed length GA.

An interesting and somewhat surprising result shows the variable length GA
undergoing sharp drops in length after each target change. This behavior is the
opposite of what was expected based on previous work. Closer analysis reveals
that the fitness function favors short individuals after a target change because
short individuals contain more general building blocks. Long individuals, on
the other hand, are more likely to contain very specific solutions adapted to the
previous target. Our GA successfully exploits the flexibility of its variable length
representation to better recognize and retain good building blocks.

Our study indicates that variable length representation provides a flexible
way for GA to reorganize building blocks after problem changes. A good fitness
function, where building blocks are properly defined, is able to reinforce this
flexibility and improve a GA’s adaptation to changing environments.

1552 H. Yu et al.

Acknowledgments. This research is supported in part by the Air Force Re-
search Laboratory.

References

1. Burke, D.S., De Jong, K.A., Grefenstette, J.J., Ramsey, C.L., Wu, A.S.: Putting
more genetics into genetic algorithms. Evolutionary Computation 6 (1998) 387–410

2. Langdon, W.B., Poli, R.: Fitness causes bloat. Soft Computing in Engineering
Design and Manufacturing (1997) 13–22

3. Wu, A.S., Jin, S., Schiavone, G., Lin, K.C.: An incremental fitness function for
partitioning parallel tasks. In: Proc. Genetic and Evolutionary Computation Con-
ference. (2001)

4. Smith, S.F.: A learning system based on genetic adaptive algorithms. In: PhD
thesis, Dept. Computer Science, University of Pittsburgh. (1980)

5. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis,
and first results. Complex Systems 3 (1989) 493–530

6. Koza, J.R.: Genetic programming. MIT Press (1992)
7. Harvey, I.: Species adaptation genetic algorithms: A basis for a continuing saga.

In: Proceedings of the First European Conference on Artificial Life. (1992) 346–354
8. Soule, T., Foster, J.A., Dickinson, J.: Code growth in genetic programming. In:

Proc. Genetic Programming(GP). (1996) 400–405
9. Soule, T., Foster, J.A.: Effects of code growth and parsimony pressure on popula-

tions in genetic programming. Evolutionary Computation 6 (1998) 293–309
10. Branke, J.: Evolutionary approaches to dynamic optimization problems - updated

survey. In: Genetic and Evolutionary Computation Conference Workshop Program.
(2001) 27–30

11. Grefenstette, J.J.: Genetic algorihtms for changing environments. Parallel Problem
Solving from Nature (PPSN) 2 (1992) 137–144

12. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive oper-
ator in genetic algorithms having continuous, time-dependent nonstationary envi-
ronments. Technical Report AIC-90-001, Naval Research Laboratory (1990)

13. Grefenstette, J.J.: Evolvability in dynamic fitness lanscapes: a genetic algorithm
approach. In: Congress on Evolutionary Computation. (1999) 2031–2038

14. Mori, N., Kita, H., Nishikawa, Y.: Adaptation to a changing environment by means
of the thermodynamical genetic algorithm. In: PPSN. (1996) 513–522

15. Kita, H., Yabumoto, Y., Mori, N., Nishikawa, Y.: Multi-objective optimization by
means of the thermodynamical genetic algorithm. In: PPSN IV. (1996) 504–512

16. Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic
algorithms with dominance and diploidy. In: Intl. Conf. on Genetic Algorithms
(ICGA). (1987) 59–68

17. Ng, K.P., Wang, K.C.: A new diploid scheme and dominance change mechanism
for non-stationary function optimization. In: Proc. 6th ICGA. (1995) 159–166

18. Smith, R.E.: Diploidy genetic algorithms for search in time varying environments.
In: Annual Southeast Regional Conference of the ACM. (1987) 175–179

19. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: CEC. (1999) 1875–1882

20. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, University of Michigan (1975)

21. Deb, K., Goldberg, D.E.: An investigation of niche and species formation in genetic
function optimization. In: Proc. ICGA. (1989) 42–50

Adaptation of Length in a Nonstationary Environment 1553

22. Liles, W., De Jong, K.: The usefulness of tag bits in changing envrionments. In:
CEC. (1999) 2054–2060

23. El-Rewini, H., Lewis, T.G., Ali, H.H.: Task scheduling in parallel and distributed
systems. Prentice Hall (1994)

	Introduction
	Related Work
	Problem Description
	Implementation Details
	Variable Length Problem Representation
	Modified Genetic Operators
	Fitness Function
	System Parameter Settings

	Experimental Results
	Fixed versus Variable Length
	Variable Length Dynamics

	Conclusions

