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Abstract. This paper presents the virtual gene genetic algorithm
(vgGA) which is a generalization of traditional genetic algorithms that
use binary linear chromosomes. In the vgGA, traditional one point
crossover and mutation are implemented as arithmetic functions over
the integers or reals that the chromosome represents. This implemen-
tation allows the generalization to virtual chromosomes of alphabets of
any cardinality. Also, the sites where crossover and mutation fall can be
generalized in the vgGA to values that do not necessarily correspond
to positions between bits or digits of another base, thus implementing
generalized digits. Preliminary results that indicate that the vgGA out-
performs a GA with binary linear chromosomes on integer and real valued
problems where the underlying structure is not binary are presented.

1 Introduction

Traditional genetic algorithms evolve populations of individuals that are repre-
sented by linear chromosomes defined in a small cardinality alphabet, usually
binary [1,2]. Traditional crossover and mutation create new individuals by ma-
nipulating these bit strings. This paper shows that traditional one point crossover
and mutation can be simulated as arithmetic functions over the integers repre-
sented by the binary chromosomes. In this way, a genetic algorithm for integer
individuals where traditional operation are performed, not over the genotype,
but rather simulated over the phenotype, can be implemented.

Binary chromosomes can be used to represent real values in many ways; one of
the simplest is the use of a linear mapping [1, page 82]. If a linear mapping is used,
traditional one point crossover and mutation can also be simulated as arithmetic
functions over the reals represented by the binary chromosomes. Even though
there is a large body of work which explores the use of real valued individuals
in an evolutionary algorithm (see for example [3,4,5,6]), most of this work is
oriented at creating new operators with effects that cannot be easily seen as
manipulations of the bit representations of the individuals, and therefore is not
directly related to the work here presented.

The basic idea of the paper is then generalized. Points where crossover or
mutation can occur can be visualized not only as bit positions (or digit positions
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in the case of non-binary chromosomes) but rather as the value these bits or
digits represent, and therefore crossover and mutation can occur at generalized
values, what we will call, at generalized digits.

In the rest of this paper, we will see the mathematical basis of the virtual
gene genetic algorithm (vgGA), an algorithm that implements crossover and
mutation as arithmetic functions of the phenotype of the individuals, and pre-
liminary experiments that show that the vgGA can outperform a traditional
genetic algorithm in problems with an underlying that is not binary.

2 Traditional Crossover and Mutation

Let p be an integer represented by a binary chromosome of length N , where the
string of all zeros, 000 · · · 02, represents the integer zero, and the string of all
ones, 111 · · · 12, represents the integer 2N − 1. The lower part of p below and
including bit m can be obtained as

Lm(p) = p mod 2m, (1)

where

x mod y =
{

x − y�x/y�, if y �= 0;
x, if y = 0; (2)

The higher part of p above bit m can be obtained as

Hm(p) = p − Lm(p) = p − p mod 2m = 2m�p/2m�. (3)

By substituting an arbitrary base B for 2, the above formulas can be generalized
to chromosomes in an alphabet of cardinality B.

Lm(p) = p mod Bm. (4)

Hm(p) = p − p mod Bm = Bm�p/Bm�. (5)

Using the lower and higher parts of an integer individual, it is possible to extract
parts of a chromosome. The value represented by the digits of the higher part,
which we will call the higher part value of p above bit m can be obtained as

Ĥm(p) =
Hm(p)
Bm = �p/Bm�. (6)

The m-th digit (where the least significant digit is numbered 1, and the most
significant digit is numbered N) can be obtained as

digitm(p) = L1(Ĥm−1(p)) = Ĥm−1(Lm(p)). (7)

The segment of digits m1 + 1, m1 + 2, . . . , m2 can be obtained as
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segmentm1,m2
(p) = L∆m(Ĥm1(p)), (8)

where ∆m = m2 − m1.
With the definitions of lower part and higher part, we can now express the

crossover of two chromosomes over an alphabet of cardinality B as an arithmetic
operation over the integers these chromosomes represent. Let p1 and p2 be two
integers over base B, one point crossover produces two offspring h1 and h2 that
can be expressed in the following way:

h1 = crossoverm(p1, p2) = Lm(p1) + Hm(p2); (9)
h2 = crossoverm(p2, p1) = Lm(p2) + Hm(p1). (10)

Therefore, one point crossover is simply the exchange between two integers of
their lower and higher parts at a given crossover point. A simplified expression
for crossover can be obtained by substituting the expressions for lower and higher
part, obtaining the following:

h1 = crossoverm(p1, p2) = p2 + χm(p1, p2); (11)
h2 = crossoverm(p2, p1) = p1 − χm(p1, p2); (12)

where χm(p1, p2) = p1 mod Bm − p2 mod Bm = −χm(p2, p1).
In traditional mutation for binary chromosomes, mutation of a bit is the same

as complementing its value, in other words, flipping the bit from 1 to 0, or from 0
to 1. For alphabets of higher cardinality, the most natural definition of mutation
of a digit is to replace it with a random value that is not the original value in that
position. To facilitate its application when non-binary chromosomes are used, we
define mutation in a slightly different manner. We will define mutation as the
operation that given an integer p, removes a segment of consecutive digits, and
replaces it with a random segment of the same number of digits. The mutation
of the segment of digits m1 + 1, m1 + 2, . . . , m2 of an integer p can be expressed
as

mutationm1,m2(p) = Lm1(p) + Hm2(p) + Bm1
⌊
B∆mrand()

⌋
, (13)

where ∆m = m2 −m1 and rand() is a function that generates a random number
in [0, 1) with uniform distribution.

3 Generalized Crossover and Mutation

The concepts of lower part and higher part presented above were defined in terms
of the m-th digit. The formulas include the term Bm, which is the weight of bit
m + 1. A generalization of these formulas can be produced by substituting Bm

with n, an integer that is not necessarily an integer power of B. Let us define
generalized lower part and generalized higher part as follows:

L(p, n) = p mod n; (14)

H(p, n) = p − p mod n = n�p/n�. (15)
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Notice that L(p, n) and H(p, n) refer to the generalized lower and higher parts,
and that Lm(p) and Hm(p) refer to the lower and higher parts.

We can also find an expression for the generalized higher part value in the
following way:

Ĥ(p, n) =
H(p, n)

n
= �p/n�. (16)

Note what n means: digit m has a weight of Bm−1 in the value of p, i.e., if digit
m has a value of dm, it will contribute with dmBm−1 to the value of p. We will
call generalized digit n of base B what is obtained when the following operation
is performed:

digit(p, n, B) = L(Ĥ(p, n/B), B). (17)

This generalized digit has a weight of n/B in the value of p. To avoid the use
of traditional digits, we define generalized segment in terms of an initial value
and a segment width. The generalized segment of width δ starting at value n is
given by the following expression:

segment(p, n, δ) = L(Ĥ(p, n), δ), (18)

where δ is an integer greater or equal than B. These definitions modify the
meaning of parts of a chromosome to the point where it is more useful to think
about chromosomes, not as strings of characters, but rather as integer values.

We can now express crossover and mutation in terms of the generalized op-
erations defined above. The generalized crossover of integers p1 and p2 at value
n results in two offspring that can be expressed as

h1 = crossover(p1, p2, n) = L(p1, n) + H(p2, n); (19)
h2 = crossover(p2, p1, n) = L(p2, n) + H(p1, n). (20)

This can also be written as the following:

h1 = crossover(p1, p2, n) = p2 + χ(p1, p2, n); (21)
h2 = crossover(p2, p1, n) = p1 − χ(p1, p2, n); (22)

where χ(p1, p2, n) = p1 mod n − p2 mod n = −χ(p2, p1, n).
The generalized mutation for a segment of width δ starting at value n is

defined as the following:

mutation(p, n, δ) = L(p, n) + H(p, nδ) + n�δ rand()�. (23)

It can be shown that traditional operators are a special case of generalized op-
erators by substituting Bm for n. For crossover and mutation we have that

crossoverm(p1, p2) = crossover(p1, p2, B
m); (24)

χm(p1, p2) = χ(p1, p2, B
m); (25)

mutationm1,m2(p) = mutation(p, Bm, B∆m+1). (26)

In the rest of this paper we will only be using the generalized expressions and
therefore we will drop the word generalized.
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4 Real Valued Individuals

We now proceed to adapt the formulas developed before for real valued individ-
uals. Let r be a real number in the interval [rmin, rmax). Using a linear mapping
r can be represented by a chromosome of N digits. We can see this chromosome
as an integer p that can take a value in the set {0, 1, 2, 3, . . . , BN − 1}. The
transformation between p and r is given by the following formula:

r = p∆r + rmin, (27)

where ∆r = (rmax − rmin)/BN . We define lower part, higher part, and segment
of a real individual r in terms of those same operations over the corresponding
integer p. In this way, the lower part of r is given by

L(r, k, rmin) = L(p, n)∆r + rmin; (28)
= (r − rmin) mod (k − rmin) + rmin. (29)

The higher part of a real number is given by

H(r, k, rmin) = H(p, n)∆r + rmin; (30)
= r − (r − rmin) mod (k − rmin) . (31)

We define the crossover of two real valued individuals r1 and r2 as

h1 = crossover(r1, r2, k, rmin) = (L(p1, n) + H(p2, n)) ∆r + rmin; (32)
h2 = crossover(r1, r2, k, rmin) = (L(p2, n) + H(p1, n)) ∆r + rmin; (33)

where h1 and h2 are the offspring produced. Simplifying, the above can also be
written in the following way:

h1 = crossover(r1, r2, k, rmin) = r2 + χ(r1, r2, k, rmin); (34)
h2 = crossover(r2, r1, k, rmin) = r1 − χ(r1, r2, k, rmin); (35)

where

χ(r1, r2, k, rmin)
= (r1 − rmin) mod (k − rmin) − (r2 − rmin) mod (k − rmin) (36)
= −χ(r2, r1, k, rmin). (37)

The mutation of a real valued individual r, at value k, with a mutation width
of δ is given as

mutation(r, k, δ, rmin) = (mutation(p, n, δ)) ∆r + rmin. (38)

Simplifying we arrive at the following:

mutation(r, k, δ, rmin) = L(r, k, rmin) + H(r, δ[k − rmin] + rmin, rmin)
+ (k − rmin)�δ rand()� − rmin. (39)
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We can treat integer individuals as a special case of real valued individuals. and
thus, the formulas presented above can be also applied to integers.

Not all values of δ produce valid results. If we want mutation to produce only
individuals in the interval [rmin, rmax), the following condition must be met:

L(r, k, rmin) + H(r, (k − rmin)δ + rmin, rmin) ≤ r + rmin, (40)

for δ > 1. Substituting the expression for lower part and higher part, and sim-
plifying the following is arrived at:

δ

⌊
r − rmin

(k − rmin)δ

⌋
≤

⌊
r − rmin

k − rmin

⌋
. (41)

This inequality is satisfied in the general case only if δ is an integer.

5 Generating Crossover Points

In the formulas developed to perform crossover, n for integers and k for reals
is a random number with a given probability function. In a traditional genetic
algorithm, crossover falls between traditional digits, i.e., at integer powers of B.
Crossover sites that have this distribution can be produced as n = B�N rand()�.
A probability function that has the same form but uses generalized digits can
be obtained if the crossover sites are generated by n =

⌊
BN rand()

⌋
.

For real valued individuals, we can find similar formulas to those developed
for integers, but additionally, we have the option of having continuous distri-
butions by dropping the use of the floor function. Table 1 summarizes possible
ways to generate crossover sites. Figures 1 and 2 show the cumulative distri-
bution function for the crossover point distributions for integer and real valued
individuals mentioned above.

If traditional digits are being used, crossover cannot produce invalid results,
but for generalized digits it is possible that the result is greater than rmax. Given
that for integers the sum of the offspring is equal to the sum of the parents,
p1 + p2 = h1 + h2, we know that a condition that insures that crossover will

Table 1. Different ways to produce crossover sites

crossover points (integers) (reals)
distribution n k

traditional B�N rand()� B�N rand()�∆r + rmin

generalized
⌊
BN rand()

⌋ ⌊
BN rand()

⌋
∆r + rmin

continuous BN rand()∆r + rmin
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produce valid individuals for any crossover site is the following:

p1 + p2 < BN . (42)

If the above condition is not met, we apply crossover with traditional digits to
insure that the result will be valid. We call this the crossover overflow correction.
The condition for reals is as follows:

r1 + r2 − rmin < rmax. (43)

6 Generating Mutation Sites

It is known that the implementation efficiency of a binary genetic algorithm can
be increased if mutation is controlled by means of a mutation clock [7]. According
to the mutation clock idea, instead of generating a random number for each bit
in the population to decided if it should be mutated, a random number with the
proper probability distribution is generated so that it tells in how many bits the
next mutation should occur. A mutation clock for the vgGA for traditional and
generalized digits, and for integer and real valued individuals, was developed.

As in crossover, mutation at generalized digits could produce invalid results.
Mutation removes a segment of the individual and substitutes it with a random
segment in the set of all possible values. If we call γ the maximum value the
segment can have so that the result is still valid, then the following equation
expresses the relation between an integer p and its γ:

L(p, n) + H(p, δn) + nγ = BN . (44)

From the above, we can obtain γ as

γ =
BN − L(p, n) − H(p, nδ)

n
. (45)

Now, we define mutation for integers with the gamma correction as

mutation(p, n, δ) = L(p, n) + H(p, nδ) + n�γ rand()�. (46)

For real valued individuals the value of γ is given by

γ =
rmax + rmin − L(r, k, rmin) − H(r, [k − rmin]δ + rmin, rmin)

k − rmin
. (47)

Mutation of reals with the gamma correction is defined as the following:

mutation(k, r, δ, rmin) = L(r, k, rmin)
+ H(r, [k − rmin]δ + rmin, rmin) + (k − rmin)�γ rand()� − rmin. (48)
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7 Experiments

One could expect the vgGA that implements generalized digits to outperform a
traditional GA on problems where the underlying representation is not binary.
To test this assumption, a generalization of the well known one-max problem
was defined. In the consecutive one-max problem, or c-one-max problem, the
evaluation depends on the lengths groups of consecutive digits that are equal to
one when the individual is expressed in given base. Each group contributes to
the fitness function with its length to a power α. For example, for α = 2, an
individual with phenotype of 41228110, which can be expressed as 1011431115,
has an evaluation 12 + 22 + 32 = 14 in the c-one-max problem of base 5 as
shown in Fig. 3. For binary GAs, the c-one-max problem in any base that is not
a multiple of 2 should be a relatively hard problem (at least harder than the
problem in base 2). On the other hand, since the vgGA is not tied to a given
base, its performance on this problem should be higher.

A vgGA, where individuals are vectors of integers or reals, was implemented
in MATLAB, and tested with the c-one-max problem of base 2 and base 5 (this
is the base of the problem and not of the individuals in the vgGA) and α = 2.
Table 2 summarizes the parameters of the vgGA used for these tests. Binary
tournament selection [8] was used. Figures 4 and 5 shows the results for the c-
one-max problem of base 2 and base 5, respectively. These plots are the average
of the best-found-so-far of 100 runs. For the base 2 problem, traditional digits,
i.e. a traditional genetic algorithm, outperform generalized digits. For the base
5 problem the results are the opposite, as expected.

A real valued version of the c-one-max problem can be obtained if the evalua-
tion depends on the number of digits that are equal to those of a given irrational
constant, expressed on a given base. The c-pi-max problem will be defined as the
problem of finding the digits of π where the evaluation depends on the number

Table 2. Parameters of the vgGA used in all experiments

runs 100
generations 150

population size 20
N 40
pc 1.0
pm 0.1
B 2
δ 2

1︸︷︷︸
12

0 1 1︸︷︷︸
22

4 3 1 1 1︸ ︷︷ ︸
32

Fig. 3. Example of c-one-max base 5 problem. The evaluation of 41228110 =
1011431115 is 12 + 22 + 32 = 14
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Fig. 6. Example of c-pi-max base 10 problem. The evaluation of 03.0150926010 is 22 +
22 + 32 = 17
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Fig. 7. Average of 100 runs of the best-found-so-far for the c-pi problem of base 5

of consecutive digits on a given base as described for the c-one-max problem.
For example, an individual with phenotype of 03.0150926010 has an evaluation
of 22 + 22 + 32 = 17 for the c-pi-max problem with α = 2, base 10, and consid-
ering two digits to the left and eight digits to the right of the decimal point as
shown in Fig. 6. Figure 7 shows the results for the c-pi-max problem of base 10
with 2 integer positions and 49 decimal positions. The vgGA implements real
valued individual in [0, 5). As the figure shows, the vgGA that uses a continuous
distribution of crossover points and mutation sites has the best performance on
this problem.

8 Conclusions

This paper shows that traditional one point crossover and mutation can be
mapped to arithmetic operations over integers, the formulas found can be gen-
eralized to chromosomes of any base, and also, to real valued individuals rep-
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resented by a linear mapping. A virtual gene genetic algorithm (vgGA) which
works on the phenotype and can produce the same results as a traditional binary
GA, has been implemented in MATLAB.

The vgGA is a generalization of a traditional GA with binary linear chro-
mosomes. It is a generalization because by mapping traditional crossover and
mutation to operations over the phenotype, it can simulate linear chromosomes
of any integer base, not necessarily binary. Additionally, the vgGA extends where
crossover and mutation sites may fall, allowing the simulation of generalized dig-
its.

The sites where crossover and mutation fall in a traditional GA can be gen-
eralized to values that do not correspond to integer powers of a given base, thus
implementing generalized digits. Preliminary results indicate that a vgGA using
generalized digits can outperform a traditional binary GA on an integer prob-
lem where the underlying structure does not depend on a binary representation.
When solving a real valued problem, the vgGA can implement a continuous dis-
tribution of crossover and mutation sites. An experiment where this continuous
distribution produces better results than the traditional discrete distribution was
presented. The experiments presented in this paper are admittedly very limited
and should be extended to other problems.
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