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Abstract. Correlations between alleles after selection are an important
source of information. Such correlations should be exploited for further
search and thereby constitute the building blocks of evolutionary explo-
ration. With this background we analyze the structure of the offspring
probability distribution, or exploration distribution, for a simple GA with
mutation only and a crossover GA and compare them to Estimation-Of-
Distribution Algorithms (EDAs). This will allow a precise characteri-
zation of the structure of exploration w.r.t. correlations in the search
distribution for these algorithms. We find that crossover transforms, de-
pending on the crossover mask, mutual information between loci into
entropy. In total, it can only decrease such mutual information. In con-
trast, the objective of EDAs is to estimate the correlations between loci
and exploit this information during exploration. This may lead to an
effective increase of mutual information in the exploration distribution,
what we define correlated exploration.

1 Introduction

In the realm of evolutionary computation the notion of building blocks has been
developed in Holland’s original works [5,6] to describe the effect of crossover. In
that respect, building blocks are composed of genes with more or less linkage
between them. This is one to one with the notion of schemata and eventually
lead to the schema theories (also first developed in these papers) which describe
the evolution of these building blocks.

Since crossover is a biologically inspired concept, Holland’s notion of building
blocks is also relevant in understanding natural evolution. In the biology liter-
ature though, there exists a second notion of building blocks which has quite a
different connotation. As a paradigm we choose the following phenomenon. In
their experiments, Halder, Callaerts, & Gehring [4] forced the mutation of a sin-
gle gene, called eyeless gene, in early ontogenesis of a Drosophila Melanogaster
fly. This rather subtle genotypic variation results in a severe phenotypic vari-
ation: An additional functionally complete eye grows at some place it was not
supposed to. Here, the notion of a building block refers to the eye as a func-
tional module which can be grown phenotypically by triggering a single gene.
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In other words, a single mutation of a gene leads to a highly complex, in terms
of cell properties highly correlated phenotypic variation. Such properties of the
genotype-phenotype mapping are considered as the basis of complex adaptation
[12]. Recently, a theory on the evolution of complex phenotypic variability was
proposed [10].

Besides the discussion of crossover in GAs and that of functional modularity
in natural evolution, there is a third field of research that relates to the dis-
cussion of building blocks: Estimation-of-Distribution Algorithms (EDAs, [8]).
These algorithms are a direct implementation of the idea of correlated explo-
ration in the framework of heuristic search algorithms. They explicitly encode
the search distribution (i.e., offspring probability distribution) by means of some
chosen distribution model, e.g., a product of marginals (PBIL, [1]), dependency
trees [2], or a Bayesian network (BOA, [7]). To our point of view, the key of
these algorithms is that they are capable to induce this second notion of build-
ing blocks. For instance, consider a dependency tree where the leaves encode
the phenotypic variables. Offspring are generated by sampling this probabilistic
model, i.e., by first sampling the root variable of the tree, then, according to
the dependencies encoded on the links, sampling the root’s successor nodes, etc.
Now, if we assume that the dependencies are very strong, say, deterministic,
it follows that a single variation at the root leads to a completely correlated
variation of all leaves. Hence, we may define a set of leaves which, due to their
dependencies, always vary in high correlation as a functional phenotypic module
in the same sense as for the eyeless paradigm.

What is the principle difference in the exploration induced by crossover in a
simple GA and the one we exemplified in the context of biology and EDAs? We
will propose a criterion to distinguish these two kinds of exploration depending
on whether the exploration distribution can comprise more mutual information
than the parent population had. We show that this can never be the case for
crossover and mutation but give an example, similar to the one just mentioned,
where this is the case for an EDA.

After we setup our formalism in the next section, Sects. 3 and 4 will present
some theorems on the structure of the search distribution after mutation and
crossover. With structure we mean the correlational structure that we mea-
sure by means of mutual information. Many of our arguments will be based on
the increase and decrease of mutual information in relation to increase or de-
crease of entropy in the search distribution. Section 5 finally defines the notion
of correlated exploration and thereby pinpoints the difference between linkage
correlations in crossover GAs and correlated variability in EDAs.

2 Formalism

The Simple GA [11]. We represent a population as a distribution p ∈ ΛΩ over
genotype space Ω. In this paper we assume that a genotype is composed of a
fixed number of genes, Ω = Ω1 × · · · × ΩN , where the space Ωi of alleles of the
ith gene may be arbitrary. We represent also finite populations as a distribution
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p ∈ ΛΩ over Ω, namely, if the population is given as a multiset A = {x1, .., xµ},
we (bijectively) represent it as the finite distribution given by p = 1

µ

∑µ
i=1 δxi

where δx is the delta distribution at x, i.e., p(x) = |A∩{x}|
|A| = multiplicity of x in A

|A| .
Crossover and mutation are represented as operators ΛΩ → ΛΩ that map a
parental (finite or infinite) population to an offspring distribution. Given some
operator U : ΛΩ → ΛΩ we will use the notation ∆UB = B(Up)−B(p) to denote
the difference of a quantity B : ΛΩ → R under transition, e.g., the quantity may
be the entropy H(p) of a distribution.

In that framework we may write the evolution equation of a crossover GA as

p(t+1) = Sµ F (t) Sλ M C p(t) , (1)

with crossover C, mutation M, offspring sampling Sλ, fitness F , and parent
sampling Sµ. A sampling operator Sn : ΛΩ → ΛΩ draws n independent samples
from a distribution and maps this multiset of samples to the respective finite
distribution; note that limn→∞ Sn = id. The sampling operators are the only
stochastic operators in this equation. Fitness F (t) : ΛΩ → ΛΩ re-weights a
distribution proportional to some functional f (t) that gives the selection proba-
bility, (F (t)p)(x) = f(t)(x) p(x)∑

x′ f(t)(x′) p(x′) . (This presumes either “fitness-proportional”

selection or that f (t) may arbitrarily depend on the current offspring popula-
tion.) The concatenation Sµ F (t) is also called selection. We define mutation and
crossover more precisely as follows:

Definition 1 (Mutation). We define mutation as an operator M : ΛΩ → ΛΩ

defined by the conditional probability M(y|x) of mutating from x ∈ Ω to y ∈ Ω:

(Mp)(y) =
∑

x

M(y|x) p(x) .

A typical mutation operator fulfills the constraints of symmetry M(y|x) =
M(x|y) and component-wise independence M(x|y) =

∏N
i=1 Mi(xi|yi). In the

following we will refer to the simple mutation operator for which all component-
wise mutation operators are such that the probability of mutating from x to y is
constant for x �= y:

∀i : Mi = M∗ , ∀x �= y ∈ Ω∗ : M∗(x|y) =
α

n
, M∗(x|x) = 1 − α (n − 1)

n
,

where n = |Ω∗| and 0 < α ≤ 1 denotes the mutation rate parameter.

Definition 2 (Crossover). We define crossover as an operator ΛΩ → ΛΩ pa-
rameterized by a crossover mask distribution c ∈ Λ{0,1}N

over the space {0, 1}N

of bit-masks, where N is the number of loci (or genes) of a genome in Ω:

C : ΛΩ → ΛΩ , (Cp)(x) =
∑

x0,x1∈Ω

C(x|x0, x1) p(x0) p(x1) ,

C(x|x0, x1) =
∑

m∈{0,1}N

c(m) [x = x0 ⊗m x1] ,
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where the ith allele of the m-crossover-product x0 ⊗m x1 is the ith allele of the
parent xmi , i.e., (x0 ⊗m x1)i = (xmi)

i. The bracket expression [A = B] equals
1 for A = B and 0 for A �= B. We only consider symmetric crossover, where
c(m) = c(m̄) and m̄ is the conjugate of the bit-string m.

It is important to realize that, in our formalism, crossover and mutation are de-
terministic operators over the space of distributions. The stochasticity is solely
captured by the offspring sampling operator Sλ. Hence, when we will derive
statements about M and C in the following, they will not account for the stochas-
ticity of offspring sampling.

Estimation-Of-Distribution Algorithms. Concerning EDAs, we write their dy-
namics as

y(t+1) = H(F q̃(t), q̃(t), y(t)) where q̃(t) = Sλ Φy(t) ,

where, instead of a parent population, some other parameters y(t) (e.g., a
Bayesian graph or dependency tree) determine the offspring distribution Φy(t),
which is sampled to the offspring population q̃(t), evaluated, and, instead of a
simple parent sampling, mapped back on new parameters y(t+1) by some up-
date operator H. The operator H is called heuristic rule and, in the case of
Estimation-of-Distribution Algorithms, is such that the new search distribution
Φy(t+1) estimates the experienced fitness distribution F (t) Sλ Φy(t). The generic
implementation of this idea is

y(t+1) = y∗ = E(F (t) Sλ Φy(t)) , where E(p) = argmin
y∈Y

D
(
p

∣
∣
∣
∣ Φy

)
. (2)

We call E estimation, Y is the space of feasible parameters y, and D
( · ∣

∣
∣
∣ · )

denotes the Kullback-Leibler distance. In fact, the MIMIC algorithm [3], which
uses a dependency chain to parameterize the search distribution, realizes exactly
this scheme. Other algorithms [7,2,1] differ in some details, e.g., they use dis-
tance measures other than the Kullback-Leibler divergence or realize a gradual
adaptation of continuous parameters y of the style “y(t+1) = α y∗ + (1−α) y(t)”.
See [10] for a survey on the relation between EDAs and the evolution of genetic
representations (σ-evolution) in the context of non-trivial genotype-phenotype
mappings.

3 The Structure of the Mutation Distribution

This section derives a theorem that simply states that mutation increases entropy
and decreases mutual information. (It is surprising how non-trivial it is to prove
this intuitively trivial statement.)

Lemma 1 (Component-wise mutation). Consider the component-wise sim-
ple mutation operator M∗ as given in Definition 1. It follows that
a) M∗p(x) = (1−α) p(x) + α

1
n

,

which is a linear mixture between p and the uniform distribution (“ 1
n”) with

mixture parameter α.
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b) For every non-uniform population p, the entropy of M∗p is greater than the
entropy of p,

H(M∗p) > H(p) .

Proof. a)

M∗p(x) =
[ ∑

y

α

n
p(y)

]
− α

n
p(x) +

(
1 − α (n − 1)

n

)
p(x) =

α

n
+ (1−α) p(x) .

b) We generally show that the entropy increases if you mix a distribution with
the uniform distribution. We prove this by considering the first two derivatives
of the entropy functional with respect to the mixture parameter α. Let

q(x) = (1−α) p(x) +
α

n
,

and recall H(q) = − ∑
x q(x) ln q(x) and (X lnX)′ = X ′((lnX) + 1). It follows

∂

∂α
H(q) = −

∑

x

[
− p(x) +

1
n

]
(ln q(x) + 1) =

∑

x

[
p(x) − 1

n

]
ln q(x) ,

∂

∂α
H(q)

∣
∣
α=1 =

∑

x

[
p(x) − 1

n

]
ln

1
n

= 0 ,

∂2

∂α2 H(q) = −
∑

x

(p(x) − 1
n )2

q(x)
< 0 if p is non-uniform.

What we found is that (i) the entropy is maximal for the extreme case α = 1 since
its derivative w.r.t. α at this point vanishes (of course, this corresponds to the
case where q becomes the uniform distribution) and (ii) the second derivative is
always negative if p is non-uniform. Hence, the plot of H versus α is comparable
to an upside-down parabola with maximum at α = 1. It follows that for all
α < 1 (to the left of the maximum) the derivative ∂

∂αH(q) is positive. Entropy
continuously increases with α. And hence, for every 0 < α ≤ 1 and every non-
uniform population p, H(M∗p) > H(p). ��

Theorem 1. Consider the simple mutation operator M(x|y) =
∏

i M∗(xi|yi)
as given in Definition 1. If p ∈ ΛΩ is non-uniform it follows that entropy in-
creases, H(Mp) > H(p), and mutual information decreases, I(Mp) < I(p).

Proof. We first prove that the cross entropy decreases. Assuming only two genes,
the compound mutation distributions reads

Mp(x, y) = (1−α)2 p(x, y) + (1−α) α p(x)
1
n

+ (1−α) α
1
n

p(y) + α2 1
n

1
n

= (1−α)
[
(1−α) p(x, y) + α

1
n

p(x)
]

+ α
1
n

[
(1−α) p(y) + α

1
n

]

= (1−α) q(x, y) + α
1
n

q(y) ,

where q(x, y) = (1−α) p(x, y)+
α

n
p(x) , q(x) = p(x) , q(y) = (1−α) p(y)+

α

n

We call q a one-component α-mixture since only in one component the uniform
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distribution was mixed to p. This shows that the compound distribution Mp
for two genes is a one-component α-mixture of a distribution q, which is itself
a one-component α-mixture. For compound distributions with more than two
genes this will be recursively the case and generally the mutation operator can
be expressed as concatenation of one-component α-mixtures. Hence, it suffices
when we prove that the mutual information decreases for one such step of one-
component α-mixing.

We use the same technique of calculating derivatives with respect to the
mixture parameter to prove decreasing cross entropy. To simplify the notation
we use the abbreviations:

A=q(x, y) , A
∣
∣
α=1 =

α p(x)
n

, A′ =
∂

∂α
A=−p(x, y)+

p(x)
n

, A′′ =0 , B′′ =0 ,

B=q(x) q(y)=p(x)
[
(1−α) p(y)+

α

n

]
, B

∣
∣
α=1 =A

∣
∣
α=1 , B′ =p(x) (−p(y)+

1
n

) .

With these abbreviations (keeping the dependencies on x, y, and α in mind) we
can write:

I(q) =
∑

x,y

A ln
A

B
,

∂

∂α
I(q) =

∑

x,y

[
A′ ln

A

B
+ A′ − A B′

B

]

∂

∂α
I(q)

∣
∣
α=1 =

∑

x,y

[

A′∣∣
α=1 ln 1 +

[
− p(x, y) +

p(x)
n

]
−

[
p(x) (−p(y) +

1
n

)
]]

= 0

∂2

∂α2 I(q) =
∑

x,y

[

A′ B

A

[A′

B
− A B′

B2

]
+ 0 − A′B′

B
+

A (B′)2

B2

]

=
∑

x,y

[ (A′)2

A
− 2

A′ B′

B
+

A (B′)2

B2

]
=

∑

x,y

[ (B A′ − AB′)2

A B2

]
≥ 0

So, what we found is that (i) for α = 1 the cross entropy is minimal since
its derivative w.r.t. α at this point vanishes (of course, this corresponds to the
case where q(x, y) = p(x) 1

n ) and (ii) for all other points the second derivative
is positive. The plot of I versus α is comparable to an upwards parabola with
minimum at α = 1. It follows that for α < 1 (to the left of the minimum) the
derivative ∂

∂αI(q) is negative and thus the cross entropy continuously decreases
with increasing α.

Concerning increasing entropy, it is obvious that the marginals of the mu-
tation distribution Mp are simply (Mp)i = M∗pi. For the component-wise
mutation operators we proved that entropy increases (for non-zero α and non-
uniform p) and thus ∆MHi > 0. Consequently, ∆MH =

∑
i ∆MHi−∆MI > 0.

��

4 The Structure of the Crossover Distribution

What is the structure of the crossover search distribution Cp, given p ∈ ΛΩ and
c ∈ Λ{0,1}N

? The first theorem can directly be derived from our definition of
the crossover operator. It captures the most basic properties of the crossover
operator with respect to the correlations it destroys in the search distribution:
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Theorem 2. Let H(p), pi, Hi(p) = H(pi), and I(p) =
∑

i Hi(p)−H(p) denote
the entropy, the ith marginal distribution, the marginal entropies, and the mutual
information of a distribution p. For any crossover operator C and any population
p it holds
a) ∀i : (Cp)i = pi, ∆CHi = 0, i.e., the marginals and hence their entropies

do not change,
b) ∆CI = −∆CH ≤ 0, i.e., the increase of entropy is equal to the decrease of

mutual information.

Proof. Let us first calculate the marginals after crossover. Let a be an allele of
the ith gene.

(Cp)i(a) =
∑

x0,x1

∑

m

c(m) [a = (xmi)
i] p(x0) p(x1) ,

=
∑

x0,x1

[ ∑

m:mi=0

c(m) [a = (x0)i] +
∑

m:mi=1

c(m) [a = (x1)i]
]
p(x0) p(x1) ,

= pi(a)
[ ∑

m:mi=0

c(m)
]

+ pi(a)
[ ∑

m:mi=1

c(m)
]

= pi(a) .

Since the marginals are not changed by crossover, the marginal entropies do not
change either. Statement b) follows from the definition of the mutual information:

∆CH + ∆CI = H(Cp) − H(p) + I(Cp) − I(p)

= H(Cp) − H(p) +
∑

i

Hi(Cp) − H(Cp) −
[ ∑

i

Hi(p) − H(p)
]

=
∑

i

Hi(Cp) −
∑

i

Hi(p) = 0 . ��
The following theorem makes this more concrete when focusing on two specific
genes (generally, two arbitrary subparts of arbitrary length) of a genome. We
calculate the mutual information between these two genes in the search distri-
bution Cp—which is a measure for the linkage between them. Let it be the ith
and jth gene. We use a and b as alleles; pij(a, b) =

∑
x∈Ω [xi = a] [xj = b] p(x)

denotes the probability that the ith gene has allele a and the jth gene allele
b. Analogously, let cij be the marginal of the crossover mask distribution with
respect to the two genes, i.e., cij

01 =
∑

m∈{0,1}N [mi = 0] [mj = 1] c(m).

Theorem 3. For any crossover operator C and any population p it holds:
a) The compound distribution of two genes after crossover is given by

(Cp)ij(a, b) = 2 cij
00 pij(a, b) + 2 cij

01 pi(a) pj(b) ,

i.e., a linear combination of the original compound distribution pij(a, b) and
the decorrelated product distribution pi(a) pj(b).

b) The mutual information I(Cp)ij in the compound distribution of two specific
genes is

I(Cp)ij =
∑

a,b

(
2cij

00 pij(a, b) + 2cij
01 pi(a)pj(b)

)
ln

(
2cij

00
pij(a, b)

pi(a)pj(b)
+ 2cij

01

)
,
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c) and we have

0 ≤ 2cij
00

(
I(p)ij + ln(2cij

00)
)

≤ I(Cp)ij ≤ I(p)ij .

The two left ≤ are exact for complete crossover, cij
00 = 0, cij

01 = 1
2 , the right

≤ is exact for no crossover, cij
00 = 1

2 , cij
01 = 0.

Proof. a)

Cpij(a, b) =
∑

x0,x1

∑

m

c(m) [(xm0)
0 =a] [(xm1)

1 =b] p(x0) p(x1)

=
∑

x0,x1

(
cij
00 [(x0)0 =a][(x0)1 =b] + cij

01 [(x0)0 =a][(x1)1 =b] +

cij
10 [(x1)0 =a][(x0)1 =b] + cij

11 [(x1)0 =a][(x1)1 =b]
)

p(x0) p(x1)

= 2
∑

x0

cij
00 [(x0)0 =a][(x0)1 =b] p(x0)

+ 2
∑

x0,x1

cij
01 [(x0)0 =a][(x1)1 =b] p(x0) p(x1)

= 2 cij
00 pij(a, b) + 2 cij

01 pi(a) pj(b) .

b&c)

I(Cp)ij = H(Cpi) + H(Cpj) − H(Cp) = H(pi) + H(pj) − H(Cp)

≤ H(pi) + H(pj) − H(p) = I(p)ij

H(Cp) = −
∑

a,b

(Cp)ij(a, b)
[
ln

(
2cij

00
pij(a, b)

pi(a)pj(b)
+ 2cij

01

)
− ln pi(a) − ln pj(b)

]

= −
∑

a,b

(Cp)ij(a, b)
[
ln

(
2cij

00
pij(a, b)

pi(a)pj(b)
+ 2cij

01

)]
+ H(pi) + H(pj)

I(Cp)ij =
∑

a,b

(
2 cij

00 pij(a, b) + 2 cij
01 pi(a) pj(b)

)
ln

(
2cij

00
pij(a, b)

pi(a)pj(b)
+ 2cij

01

)

≥
∑

a,b

(
2 cij

00 pij(a, b)
)

ln
(
2cij

00
pij(a, b)

pi(a)pj(b)

)
= 2cij

00

(
I(p)ij + ln(2cij

00)
)

��

Let us summarize what we actually found in the above theorems:
• The marginal distributions do not change at all. There is no exploration

w.r.t. the alleles of single genes.
• The more entropy crossover introduces in a population, the more the mutual

dependencies between alleles are destroyed. Actually, crossover destroys mu-
tual information in the parent population by transforming it into entropy
in the crossed population. In particular, if there is no mutual information in
the parent population, crossover will not generate any more entropy. That’s
linkage equilibrium.
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• The last theorem shows how the crossover mask distribution c determines
which correlations are destroyed and transformed into entropy.

The purpose of these theorems is to propose a probably non-standard point of
view on what crossover actually does: Actually, a non-crossover GA comprises
the strongest and most natural building blocks; individuals as such are the build-
ing blocks that carry the mutual information between their alleles. Crossover is
a means to break these maximal building blocks apart into smaller pieces by
converting mutual dependencies into entropy. As a result it induces smaller,
more fine-grained building blocks with, in total, less mutual information in the
crossed population. Hence, the correlational structure in the crossed population
is not more complex—it is simpler since it carries less information. In the limit
of linkage equilibrium (or uniform c), all correlations have been destroyed and
the crossed population becomes a product distribution.

5 Correlated Exploration and EDAs

Exploration essentially means to add entropy to the search distribution, ∆H >
0. For instance, mutation typically adds entropy to the search distribution by
adding independent noise to each marginal. However, adding independent noise
reduces the mutual information between alleles, ∆I < 0, see Lemma 1. Using
crossover to add entropy, Theorem 2b tells us that all the entropy is added
at the expense of mutual information, ∆H = −∆I > 0. Generally, it seems
difficult to add entropy to a distribution without destroying mutual information.
But, instead of only preserving the mutual information that exists in the parent
population, we could go even further and ask: How could one extrapolate this
mutual information from the parent population to the new explorations, i.e.,
how could one ensure that the exploration, measured by ∆H > 0, comprises
the same structural correlations that have been present in the parent population
such that in total ∆I > 0? A possibility is to first estimate the structure of
the mutual information in the parent population and then to add entropy while
respecting that same structure. In our view, this is the core of EDAs (except for
those that do not estimate correlations, like the PBIL [1]).

Let us consider a simple example that shows how an EDA, similar to the
MIMIC [3], can in principle realize this latter kind of correlated exploration:

Example 1. Consider a two gene scenario with Ω = Ω∗ × Ω∗, Ω∗ =
{0, 1, 2, 3, 4}. As a distribution model consider the dependency chain p(x0, x1) =
p(x0) p(x1|x0) ∈ ΛΩ with two parameters α ∈ Ω∗, β ∈ [0, 1] and

p(x0) =
{

1/2 x0 = α
1/8 otherwise , p(x1|x0) =

{
1 − 4β x1 = x0

β otherwise .

Let the parent population comprise the three individuals {(0, 0), (1, 1), (3, 3)}. An
EDA would estimate a deterministic dependence β = 0 and α = 0, 1, or 3, which
lead to the same minimal Kullback-Leibler divergence within the distribution
model. The mutual information in the parent population is I = H0 + H1 −
H = log2 3 + log2 3 − log2 3 ≈ 1.6. The EDA search distribution p has mutual
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individuals in the finite parent population p

0 1 2 3 4
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1
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0

individuals in the crossed population Cp

exploration distribution MCp respectively Φ(E(p)), radius ≈ probability

4

3

2

1

0

Fig. 1. Illustration of the types of correlations in GAs with and without crossover in
comparison to correlated exploration in EDAs. The search space Ω = {0, 1, 2, 3, 4}2

is composed of two genes (in the case of bit-strings these loci would refer to several
bits and c01 denoted the probability for 1-point crossover between these groups of
bits). The radius of the gray shade circles indicates the probabilities in the exploration
distribution. The degree to which the gray shading is aligned with the bisecting line
indicates correlatedness. The crossover GA in the middle destroys correlations whereas
EDAs may induce high correlations, see Example 1

information I = H0 + H1 − H = 2 + 2 − 2 = 2. Hence the mutual information
as well as entropy is increased, ∆I > 0, ∆H > 0.

The example is illustrated and compared to crossover and mutation in Fig. 1.
In a finite population of 3 individuals, marked by crosses, the values at the two
loci are correlated, here illustrated by plotting them on the bisecting line. The
crossed population Cp comprises at most 9 different individuals; in the special
cases cij

01 = 0 and cij
01 = 1

2 the population is even finite and comprises 3 respec-
tively 9 equally weighted individuals marked by circles. Mutation adds indepen-
dent noise, illustrated by the gray shading, to the alleles of each individual. The
two illustrations for the GA demonstrate that crossover destroys correlations
between the alleles in the initial population: the gray shading is not focused on
the bisecting line. Instead, an EDA can first estimate the distribution of the
individuals in p. Depending on what probabilistic model is used, this model can
capture the correlations between the alleles; in the illustration the model could
correspond to Example 1 and the estimation of the correlations in p leads to the
highly structured search distribution which comprises more mutual information
than the parent population.

We capture this difference in the following definition:

Definition 3 (Correlated exploration). Let U : ΛΩ → ΛΩ be an operator.
The following conditions need to hold for almost all p ∈ Ω which means: for all
the space Ω except for a subspace of measure zero. We define

• U is explorative ⇐⇒ ∆UH > 0 for almost all p ∈ Ω,
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• U is marginally explorative ⇐⇒ U is explorative and ∃i : ∆UHi > 0 for
almost all p ∈ Ω,

• U is correlated explorative ⇐⇒ U is explorative and ∆UI > 0, or equiva-
lently 0 < ∆UH <

∑
i ∆UHi, for almost all p ∈ Ω.

Corollary 1. From this definition it follows that
a) If and only if there exist two loci i and j such that the marginal crossover

mask distribution cij
01 for these two loci is non-vanishing, cij

01 = cij
10 > 0, then

crossover C is explorative. For every mask distribution c ∈ Λ{0,1}N

, crossover
C is neither marginally nor correlated explorative.

b) Simple mutation M is marginally but not correlated explorative.
c) M ◦ C is marginally but not correlated explorative.
d) EDAs can be correlated explorative.

Proof. a) That C is neither marginally nor correlated explorative follows directly
from Theorem 2a, which says that for every c ∈ Λ{0,1}N

and any population p ∈
ΛΩ the marginals of the population do not change under crossover, ∆CHi = 0.
But under which conditions is C explorative?

If, for two loci i and j, cij
01 is non-vanishing, it follows that C reduces the

mutual information between these two loci (Theorem 3c). The subspace of pop-
ulations p that do not have any mutual information Iij between these two loci is
of measure zero. Hence, for almost all p, ∆CIij < 0 and, following Theorem 2b
this automatically leads to an increase of entropy ∆CHij > 0 in the compound
distribution of the two loci and, since ∆CH ≥ ∆CHij , also of the total entropy.

The other way around, if, for every two loci i and j, cij
01 vanishes it follows

that there is no crossover, i.e., only the all-0s and all-1s crossover masks have
non-vanishing probability. Hence, C = id and is not explorative.

b) In Lemma 1 we prove that for every non-uniform population p ∆MH > 0,
∆MHi > 0, and ∆MI < 0.

c) Since both mutation and crossover are not correlated explorative, it follows
that their composition is also not correlated explorative:

∆CI ≤ 0 , ∆MI ≤ 0 ⇒ ∆MCI ≤ 0 .

d) Example 1 demonstrates this possibility. ��
Finally, if crossover and mutation cannot be correlated exploration, how can
biology realize correlated exploration as we mentioned it in the introduction?
In nature there exists a non-trivial genotype-phenotype mapping (see [10] for
the concept of non-trivial genotype-phenotype mappings). The assumptions we
made about the mutation operator (component-wise independence) refer to the
genotype space, not to the phenotype space: On the genotype space mutation
kernels are product distributions and mutative exploration is marginally explo-
rative but not correlated; projected on phenotype space, the mutation kernels
are in general not anymore product distributions and hence phenotypic muta-
tive exploration can be correlated. The same arguments hold for crossover. In
the language of [10], the definition of mutation and of crossover do not com-
mute with phenotype equivalence. Thus, mutation as well as crossover can be
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phenotypically correlated explorative. See [9] for a demonstration of evolution of
complex phenotypic exploration distributions.

6 Conclusions

The evolutionary process, as given in Eq. (1) is a succession of increase and
decrease of entropy in the population. The fitness operator adds information
to the process by decreasing the entropy (it typically maps a uniform finite
distribution on a non-uniform with same support). And crossover and mutation
add entropy in order to allow for further exploration.

If the crossover mask distribution is well adapted to the problem at hand,
crossover can be understood as a tool to freely regulate where mutual information
between loci is preserved and where it is decreased. However, we proved that
crossover can never increase the mutual information between loci in the search
distribution compared to what has been present in the parent population.

Why should one intent to increase the mutual information? The idea is that
the mutual information in the parent population, which is an important source of
information about the problem at hand, can be exploited for further exploration.
One way of exploitation is to extrapolate this mutual information from the parent
populations to search distribution. This means, that the exploration, measured
by ∆H > 0, exhibits the same correlational structure as the parent population
such that in total the mutual information in the search distribution will be
greater than the one in the parent population.

Our definition of correlated exploration distinguishes algorithms depending
on whether they can or cannot increase the mutual information. We proved that
crossover and mutation cannot be correlated explorative while EDAs can.

There is another (well-known) difference between EDAs and (crossover) GAs
with respect to the self-adaptation of the exploration distribution. EDAs always
adapt their search distribution (including correlations) according to the distribu-
tion of previously selected solutions. In contrast, the crossover mask distribution,
that determines where correlations are destroyed or not destroyed, is usually not
self-adaptive.

Finally, we mentioned how correlated exploration by means of mutation and
crossover is possible (e.g., in natural evolution) when accounting for non-trivial
genotype-phenotype mappings. In [10,9] we present a theory and a demonstration
of the self-adaptation of complex phenotypic exploration distributions.
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