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Abstract. The problem of designing symmetric key cryptography algo-
rithms based upon cellular automata (CAs) is considered. The reliability
of the Vernam cipher used in the process of encryption highly depends
on a quality of used random numbers. One dimensional, nonuniform CAs
is considered as a generator of pseudorandom number sequences (PNSs).
The quality of PNSs highly depends on a set of applied CA rules. To
find such rules nonuniform CAs with two types of rules is considered.
The search of rules is based on an evolutionary technique called cellular
programming (CP). Resulting from the collective behavior of the discov-
ered set of CA rules very high quality PNSs are generated. The quality of
PNSs outperform the quality of known one dimensional CA-based PNS
generators used in secret key cryptography. The extended set of CA rules
which was found makes the cryptography system much more resistant
on breaking a cryptography key.

1 Introduction

Confidentiality is mandatory for a majority of network applications including,
for example, commercial uses of the Internet. Two classes of algorithms exist
on the market for data encryption: secret key systems and public key systems.
An extensive overview of currently known or emerging cryptography techniques
used in both types of systems can be found in [14]. One of such a promising
cryptography techniques are cellular automata (CAs). An overview on current
state of research on CAs and their application can be found in [13].
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CAs were proposed for public-key cryptosystems by Guan [1] and Kari [5].
In such systems two keys are required: one key is used for encryption and the
other for decryption, and one of them is held in private, the other is published.
However, the main concern of this paper are secret key cryptosystems. In such
systems the same key is used for encryption and decryption. The encryption
process is based on the generation of pseudorandom bit sequences, and CAs can
be effectively used for this purpose. In the context of symmetric key systems, CAs
were first studied by Wolfram [17], and later by Habutsu et al. [3], Nandi et al.
[11] and Gutowitz [2]. Recently they were a subject of study by Tomassini and his
colleagues (see, eg. [16]). This paper extends these recent studies and describes
the application of one dimensional (1D) CAs for the secret key cryptography.

The paper is organized as follows. The following section presents the idea of
an encryption process based on Vernam cipher and used in CA-based secret key
cryptosystems. Section 3 outlines the main concepts of CAs, overviews current
state of applications of CAs in secret key cryptography and states the problem
considered in the paper. Section 4 outlines evolutionary technique called cellular
programming and Sect. 5 shows how this technique is used to discover new CA
rules suitable for encryption process. Section 6 contains the analysis of results
and the last section concludes the paper.

2 Vernam Cipher and Secret Key Cryptography

Let P be a plain-text message consisting of m bits p1p2...pm, and k1k2...km be
a bit stream of a key k. Let ci be the i − th bit of a cipher-text obtained by
applying a XOR (exclusive-or) enciphering operation:

ci = pi XOR ki.

The original bit pi of a message can be recovered by applying the same operation
XOR on ci with use of the same bit stream key k:

pi = ci XOR ki.

The enciphering algorithm called Vernam cipher is known to be [9,14] perfectly
safe if the key stream is truly unpredictable and is used only one time. From
practical point of view it means that one must find answers on the following
questions: (a) how to provide a pure randomness of a key bit stream and unpre-
dictability of random bits, (b) how to obtain such a key with a length enough
to encrypt practical amounts of data, and (c) how to pass safely the key from
the sender to receiver and protect the key.

In this paper we address questions (a) and (b). We will apply CAs to generate
high quality pseudorandom number sequences (PNSs) and a safe secret key.

3 Cellular Automata and Cryptography

One dimensional CA is in a simpliest case a collection of two-state elementary
automata arranged in a lattice of the length N, and locally interacted in a discrete
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time t. For each cell i called a central cell, a neighborhood of a radius r is defined,
consisting of ni = 2r +1 cells, including the cell i. When considering a finite size
of CAs a cyclic boundary condition is applied, resulting in a circle grid.

It is assumed that a state qt+1
i of a cell i at the time t + 1 depends only on

states of its neighborhood at the time t, i.e. qt+1
i = f(qt

i , q
t
i1, q

t
i2, ..., q

t
ni), and a

transition function f , called a rule, which defines a rule of updating a cell i. A
length L of a rule and a number of neighborhood states for a binary uniform
CAs is L = 2n, where n = ni is a number of cells of a given neighborhood, and a
number of such rules can be expressed as 2L. For CAs with e.g. r = 2 the length
of a rule is equal to L = 32, and a number of such rules is 232 and grows very
fast with L. When the same rule is applied to update cells of CAs, such CAs are
called uniform CAs, in contrast with nonuniform CAs when different rules are
assigned to cells and used to update them.

S. Wolfram was the first to apply CAs to generate PNSs [17] . He used
uniform, 1D CAs with r = 1, and rule 30. Hortensius et al. [4] and Nandi et al.
[11] used nonuniform CAs with two rules 90 and 150, and it was found that the
quality of generated PNSs was better than the quality of the Wolfram system.
Recently Tomassini and Perrenoud [16] proposed to use nonuniform, 1D CAs
with r = 1 and four rules 90, 105, 150 and 165, which provide high quality PNSs
and a huge space of possible secret keys which is difficult for cryptanalysis.
Instead to design rules for CAs they used evolutionary technique called cellular
programming (CP) to search for them.

In this study we continue this line of research. We will use finite, 1D, nonuni-
form CAs. However, we extend the potential space of rules by consideration of
two sizes of rule neighborhood, namely neighborhood of radius r = 1 and r = 2.
To discover appropriate rules in this huge space of rules we will use CP.

4 Cellular Programming Environment

4.1 Cellular Programming

CP is an evolutionary computation technique similar to the diffusion model of
parallel genetic algorithms and introduced [15] to discover rules for nonuniform
CAs. Figure 1 shows a CP system implemented [10] to discover such rules. In
contrast with the CP used in [16] the system has a possibility to evaluate nonuni-
form rules of two types. The system consists of a population of N rules (left)
and each rule is assigned to a single cell of CAs (right). After initiating states of
each cell, i.e. setting an initial configuration, the CAs start to evolve according
to assigned rules during a predefined number of time steps. Each cell produces
a stream of bits, creating this way a PNS.

After stopping evolving CAs all PNSs are evaluated. The entropy Eh is used
to evaluate the statistical quality of each PNS. To calculate a value of the entropy
each PNS is divided into subsequences of a size h. In all experiments the value
h = 4 was used. Let k be the number of values which can take each element of
a sequence (in our case of binary values of all elements k = 2) and kh a number
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Fig. 1. CP environment for evolution of rules of nonuniform CAs.

of possible states of of each sequence (kh = 16). Eh can be calculated in the
following way:

Eh = −
kh∑

j=1

phj
log2 phj

,

where phj
is a measured probability of occurrence of a sequence hj in a PNS.

The entropy achieves its maximal value Eh = h when the probabilities of the kh

possible sequences of the length h are equal to 1/kh. The entropy will be used
as a fitness function of CP.

A single PNS is produced by a CA cell according to assigned rules and
depends on a configuration ci of states of CAs. To evaluate statistically reliable
value of the entropy, CAs run with the same set of rules C times for different
configurations ci, and finally the average value of entropy is calculated and serves
as a fitness function of each rule from the population of rules.

After evaluation of a fitness function of all rules of the population genetic
operators of selection, crossover and mutation are locally performed on rules.
The evolutionary algorithm stops after some predefined number of generations
of CP. The algorithm can be summarized in the following way:

1: initiate randomly population of N rules of type 1 (r = 1) or type 2 (r = 2),
or both types, and create CAs consisting of N cells

2: assign k − th rule from the CP population to k − th cell of CAs
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3: for i=1 .. C do
{ create randomly configuration ci of CAs

evolve CAs during M time steps
evaluate entropy of each PNS }

4: Evaluate fitness function of each rule

5: Apply locally to rules in a specified sequence genetic operators of
selection, crossover and mutation

6: if STOP condition is not satisfied return to 2.

4.2 Genetic Operators

In contrast with the standard genetic algorithm population, rules – individu-
als of CP population occupy specific place in the population and have strictly
defined neighborhood. For example, the rule 11 (see Fig. 1) (also indexed by
k) corresponds to k − th cell of CAs, and rules 46 and 105 are its immediate
neighbors. All rules shown in this figure belong to the first type of rules with
r = 1, i.e. a transition function of the rule depends on 3 cells, a given cell and
two cell-neighbors. However, in more general case considered in the paper, we
assume that rules are either of type 1 (r = 1, short rules) or of type 2 (r = 2,
long rules).

Additionally to a neighborhood associated with two types of rules we use
also an evolutionary neighborhood, i.e. the neighborhood of rules which are
considered for mating when genetic operators are locally applied to a given rule.
The size and pattern of this neighborhood may differ from the neighborhood
associated with types of rules. Figure 1 shows an example of the evolutionary
neighborhood for the rule k which is created by rules k − 2, k − 1, k, k + 1, k + 2.
It is assumed that the pattern of such a neighborhood is the same for all rules
and is a predefined parameter of an experiment.

A sequence of genetic operators performed locally on a given rule depends
on values of fitness function of rules (numbers on the right side of rule names,
see Fig. 1) from the evolutionary neighborhood of this rule. Genetic operators
are applied in the following way:

1. if the k − th rule is the best (the highest value of the fitness function) in
its evolutionary neighborhood then the rule survives (selection) and remains
unchanged for the next generation; no other genetic operators are performed

2. if in the evolutionary neighborhood of the rule k only one rule exists which
is better than considered rule then the rule k is replaced by the better rule
(selection) only if both rules are of the same type, and next mutation on
this rule is performed; the rule remains unchanged if the better rule is of the
other type

3. if two rules better than the rule k exist in the neighborhood then a crossover
on the pair of better rules is performed; a randomly selected child from a
pair of children replaces rule k, and additionally a mutation is performed
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Fig. 2. Example of crossover resulting in a short child rule.

4. if more than two rules better than the rule k exist in the neighborhood then
two randomly selected better rules create (crossover) a pair of children; on a
randomly selected child a mutation is performed, and the child replaces the
rule k.

Two types of rules existing in a CP population can be considered as two
species of a coevolutionary algorithm. Therefore to perform a crossover between
rules special regulations are required. It is assumed that two parental rules of
the same species create a single child rule of the same species, which can replace
either the first type of a rule or the second type of the rule. If rules of different
types take part in the mating then a species of a child depends on species of
a replaced rule, and is the same as a species of a rule to be replaced. Figure 2
shows a crossover between a short rule 156 (r = 1) and a long rule 617528021
(r = 2), and the result of crossover – a short rule 154.

The short rule P1 taking part in crossover consists of 8 genes (n = 0, ..., 7)
which values correspond to values of transition function defined on 8 neighbor-
hood states {000, 001, ..., 111} existing for r = 1. The long rule P2 consists of 32
genes, each corresponding to values of transition function defined on 32 neigh-
borhood states existing for r = 2. The long rule is folded because there is a strict
relation between a state order number which corresponds to j − th gene of P1
and states’ order numbers corresponding to genes 2j, 2j+1 and 2j+16, 2j+17 of
P2. These order numbers of states of P2 are just an extension of corresponding
order number of a gene from P1. For example, the gene n = 7 of P1 corresponds
to the neighborhood state {111}, and genes 15, 14 and 31, 30 of P2 correspond
to states respectively {01111, 01110} and {11111, 11110} containing the state
of P1 (marked in bold).
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Fig. 3. Example of crossover resulting in a long child rule.

As Fig. 2 shows both rules P1 and P2 are crossed between genes 2 and 3
and a child Ch corresponding to a short rule (r = 1) is created. For this purpose
the left part of the short rule is copied to the left part of the child. The right
part of Ch is created according to the right part of P2 on the basis of majority
of 0’s or 1’s in the corresponding genes. Figure 3 shows the crossover of two
rules resulting in a long child rule. Last genetic operator is a flip-bit mutation
performed with the probability pm − 0.001.

5 Discovery of Rules in 1D, Nonuniform CAs

In all conducted experiments a population of CP and the size of nonuniform
CAs were equal to 50 and the population was processing during 50 generations.
The CAs with initial random configuration of states and a set of assigned rules
evolved during M = 4096 time steps. Running CAs with a given set of rules
was repeated for C = 300 initial configurations. Figure 4 shows an example of
running CP for the evolutionary neighborhood i − 3, i − 2, i, i + 2, i + 3. One can
see that whole CAs is able to produce very good PNSs after about 40 generations
(see, the average value avg of the entropy close to 4).

A typical result of a single run of an evolutionary process starting with a
random rules assigned to cells of CAs is discovering by CP a small set of good
rules which divide the cellular space of CAs into domains – areas where the same
rules, short (r = 1) or long (r = 2), live together. Evolutionary process is contin-
ued on borders of domains where different rules live. This process may result in
increasing domains of rules which are only slightly better than neighboring rules,
which domains will decrease and finally disappear. This happens in particular
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Fig. 4. A single run of CP evolutionary process.

when two neighboring domains are occupied respectively by the same short rules
and the same long rules. The search space of short rules is much smaller than the
search space of the long rules. Therefore better short rules are discovered faster
than better long rules, and for this reason long rules are gradually replaced by
short rules. To limit this premature convergence of short rules, the short and
long rules are initially randomly assigned to cells in the proportion of 1:3 in all
subsequent experiments.

The purpose of the experiments which followed was to discover an enlarged
set of rules (to enlarge the key space of cryptography system) which working
collectively would produce very high quality PNSs. It was noticed that in a single
run of CP the evolutionary algorithm produces typically a small set of rules with
a very high value of the entropy. In the result of evolutionary searching process
a set of 8 short rules (including 5 rules found by [16]) and a set of 39 long rules
was found.

6 Analysis and Comparison of Results

The entropy used as the fitness function for evolution CA rules producing high
quality PNSs is only one of existing statistical tests of PNSs. None of them is
enough strong to claim statistical randomness of a PNS in the case of passing
a given test. For this purpose uniform CAs consisting of 50 cells evolved during
65536 time steps with each single discovered rule. Each PNS produced by CAs
was divided into 4-bit words and tested on general statistical tests such as the
entropy, χ2 test, serial correlation test [6] (some weaker rules after this testing
were removed), and next on a number of statistical tests required by the FIPS
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140-2 standard [12], such as monobit test, poker test, runs test, and long runs
test.

Figure 5 shows results of testing rules against the FIPS 140-2 standard. The
best scores were achieved by rules 30, 86, 101, 153 and by 8 long rules. Rules 90,
105, 150 and 65 [16] working separately in uniform CAs obtained good results
in test of entropy and long runs test, quite good results in serial correlation test
and monobit test but were weak in χ2 test, poker test and runs test. However
this set of rules working collectively in nonuniform CAs achieves good results
(see Fig. 6).

For this reason only 10 rules were removed from discovered set of rules
which have passed the FIPS 140-2 standard testing. These rules were worse
than Tomassini & Perrenoud rules. However passing all statistical tests does not
exclude a possibility that the PNS is not suitable for cryptographic purposes.
Before a PNS is accepted it should pass special cryptographic tests.

Therefore rules which passed tests were next submitted to a set of Marsaglia
tests [7] – a set of 23 very strong tests of randomness implemented in the Diehard
program. Only 11 rules passed all 23 Marsaglia tests. These are short rules
30, 86, 101, and long rules 869020563, 1047380370, 1436194405, 1436965290,
1705400746, 1815843780, 2084275140 and 2592765285.

The purpose of the last set of experiments was a selection of a small set
of short and long rules for nonuniform CAs which working collectively would
provide a generation of very high quality PNSs suitable for the secret key cryp-
tography. Simple combination of different rules which passed all Marsaglia tests
in nonuniform CAs have shown that resulting PNSs may have worse statistical
characteristic than PNSs obtained using uniform CAs. On the other hand, ex-
periments with Tomassini & Perrenoud rules show that rules that separately are
working worse can provide better quality working collectively. For these reasons
rules 153 and some long rules which obtained very good results in general tests
but not passed all Marsaglia tests were also accepted for the set of rules to search
a final set of rules.

In the result of combining rules into sets of rules and testing collective be-
havior of these sets working in nonuniform CAs the following set of rules has
been selected: 86, 90, 101, 105, 150, 153, 165 (r = 1), and 1436194405 (r = 2).
Among the rules are 4 rules discovered in [16]. The set of found rules have been
tested again on statistical and cryptographic tests using nonuniform CAs with
random assignment of rules to CA cells. Figure 6 shows results of testing this
new set of rules and compares the results with ones obtained for Tomassini &
Perrenoud rules. One can see that results of testing both sets on general tests
and FIPS 140-2 tests are similar. However, the main difference between these
results can be observed in passing Marsaglia tests: while the new discovered set
of rules passes all 23 Marsaglia tests, the Tomassini & Perrenoud set of rules
passes only 11 tests. Figure 7 shows a space-time diagram of both set of rules
working collectively.

The secret key K which should be exchanged between two users of considered
CA-based cryptosystem consists of a pair of randomly created vectors: the vector
Ri informing about assigning 8 rules to N cells of CAs and the vector C(0)
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No Rules Monobit Test Poker Test Run Test Long Run Test
Rules found by Tomassini & Perrenoud

1 30 50 50 50 50
2 90 46 0 23 50
3 105 41 0 4 50
4 150 45 0 12 50
5 165 46 0 14 50

Rules of radius r = 1 (No 6, 7, 8) and r = 2
6 86 50 50 50 50
7 101 50 50 50 50
8 153 50 50 50 50
11 728094296 50 5 17 50
12 869020563 50 50 49 50
13 892695978 50 2 9 50
14 898995801 50 0 4 50
15 988725525 50 11 16 50
17 1042531548 38 0 12 50
18 1047380370 50 50 47 50
19 1367311530 50 5 5 50
20 1378666419 42 3 16 50
21 1386720346 50 20 32 50
22 1403823445 50 19 32 50
23 1427564201 46 1 27 50
24 1436194405 50 50 50 50
25 1436965290 50 50 50 50
27 1457138022 50 0 0 50
28 1470671190 50 50 49 50
29 1521202561 40 0 3 50
30 1537843542 50 48 37 50
31 1588175194 50 21 27 50
32 1704302169 50 50 50 50
33 1705400746 50 50 50 50
35 1721277285 49 1 4 50
37 1721325161 50 50 50 50
38 1746646725 49 6 2 50
39 1755030679 50 49 34 50
43 1815843780 50 50 50 50
45 2036803240 50 0 0 50
46 2084275140 50 50 50 50
47 2592765285 50 50 49 50

Fig. 5. Testing rules against the FIPS 140-2 standard
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Test Tomassini & Perrenoud
Rules (90, 105, 150, 165)

Discovered Rules
(86, 90, 101, 105, 150, 153,
165, 1436194405)

Min entropy 3,9988 3,9987
Max entropy 3,9998 3,9997
Min χ2 5,0254 6,998
Max χ2 26,396 30,805
Min correlation 0,00007 -0,00006
Max correlation 0,02553 0,01675
Monobit test 50 50
Poker test 50 50
Run test 50 50
Long run test 50 50
Number of passed
Marsaglia tests

11 23

Fig. 6. Comparison of rules found by Tomassini & Perrenoud [16] and new set of
discovered rules.

a) b)

Fig. 7. Space-time diagram of CAs with N = 100 and M = 200 time steps working
collectively with (a) randomly assigned Tomassini & Perrenoud [16] rules, and (b) with
new set of discovered rules.

describing an initial binary state of CA cells. The whole key space has therefore
the size 8N ∗ 2N . The key space is much larger than the key space (4N ∗ 2N ) of
1D CA-based system [16]. Therefore the proposed system is much more resistant
for cryptographic attacks.
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7 Conclusions

In the paper we have reported results of the study on applying CAs to the secret
key cryptography. The purpose of the study was to discover a set of CA rules
which produce PNSs of a very high statistical quality for a CA-based cryptosys-
tem which is resistant on breaking a cryptography key. The main assumption
of our approach was to consider nonuniform 1D CAs operating with two types
of rules. Evolutionary approach called CP was used to discover suitable rules.
After discovery of a set of rules they were carefully selected using a number of
strong statistical and cryptographic tests. Finally, the set consisting of 8 rules has
been selected. Results of experiments have shown that discovered rules working
collectively are able to produce PNSs of a very high quality outperforming the
quality of known 1D CA-based secret key cryptosystems, which also are much
more resistant for breaking cryptography keys that known systems.
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