
Facts and Fallacies in Using Genetic Algorithms
for Learning Clauses in First-Order Logic

Flaviu Adrian Mărginean
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Abstract. Over the last few years, a few approaches have been proposed
aiming to combine genetic and evolutionary computation (GECCO) with
inductive logic programming (ILP). The underlying rationale is that evo-
lutionary algorithms, such as genetic algorithms, might mitigate the com-
binatorial explosions generated by the inductive learning of rich repre-
sentations, such as those used in first-order logic. Particularly, the binary
representation approach presented by Tamaddoni-Nezhad and Muggle-
ton has attracted the attention of both the GECCO and ILP communities
in recent years. Unfortunately, a series of systematic and fundamental
theoretical errors renders their framework moot. This paper critically
examines the fallacious claims in the mentioned approach. It is shown
that, far from restoring completeness to the learner progol’s search
of the subsumption lattice, the binary representation approach is both
overwhelmingly unsound and severely incomplete.

1 Introduction

Over the last few years there has been a surge of interest in combining the ex-
pressiveness afforded by first-order logic representations in inductive logic pro-
gramming with the robustness of evolutionary search algorithms [7,20,21,22]. It
is hoped that such hybrid systems would retain the powerful logic programming
formalism and its well-understood theoretical foundations, while bringing in to
the search the versatility of evolutionary algorithms, their inherent parallelism,
and their adaptive characteristics [21].

progol is a first-order inductive reasoner widely regarded as state of the
art. Owing to its relative importance, its soundness and completeness have been
the object of numerous theoretical studies [3,8,9,10,14,24]. progol has also been
investigated from the point of view of its tractability [16,17]. Search in first-order
logic is notoriously difficult because of the expressive power of the hypotheses
that generates combinatorial explosions.

Owing to these two issues, (in)completeness and (in)tractability, the an-
nouncement by Tamaddoni-Nezhad and Muggleton [20,21,22] that genetic al-
gorithms can solve both problems via a simple binary change of representation
has attracted interest. In this paper we demonstrate that, unfortunately, such
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hopes are unfounded. We review Tamaddoni-Nezhad and Muggleton’s aforemen-
tioned approach and show that it is provably flawed at every level. Specifically,
we consider the following claims by the authors, which are central to their ap-
proach:

Fallacy 1. The proposed binary representation for clauses is novel. It encodes
the subsumption lattice lower bounded by the bottom clause in a compact
and complete way.

Fallacy 2. A fast evaluation mechanism for clauses has been given.
Fallacy 3. The proposed task-specific genetic operators can be viewed as a form

of refinement, titled genetic refinement [20] or stochastic refinement [21].

Respectively, we show:

Fact 1. The proposed binary representations have been known for some time
[1,2] and shown to be incomplete for subsumption even for function-free lan-
guages. The binary encoding of the subsumption lattice is both incomplete
and unsound. Owing to unsoundness, for even a single shared variable in the

bottom clause, the proposed space of binary representations is 2(
n
2)

Bn
times

bigger than the number of valid clauses that it manages to encode, where
n

def= the number of predicates that share the variable and Bn is the n-th
Bell Number. Therefore the space of binary representations is not compact.
An infinity of good clauses are left out (the encoding is incomplete) and a
huge number of spurious binary strings get in (the encoding is unsound and
noncompact).

Fact 2. The proposed evaluation mechanism for clauses is provably unsound.
Fact 3. The proposed task-specific genetic operators are not refinement opera-

tors because of their being provably unsound and incomplete.

The errors that we pinpoint in this paper appear to have no easy fix. They
are very fundamental theoretical errors, which undermine the whole binary rep-
resentation approach. We wish to emphasise that the problem of combining
evolutionary computation with first-order logic learning is worth investigating,
and in this respect the binary representation attempt is meritorious. However,
the flaws need to be corrected. The paper is organised as follows. In Section 2
we review some preliminaries, such as inductive logic programming and inverse
entailment. In Section 3 we expose the fallacies undermining the binary repre-
sentation approach in correlation with our counter-arguments, while Sections 4
and 5 present the conclusions of this paper.

2 Preliminaries

The reader is assumed to be familiar with the basic formalism of first-order
clausal logic. The paragraphs below are intended as brief reminders. A good
general reference for inductive logic programming is [15] and Muggleton’s seminal
paper on progol is [13].
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2.1 Inductive Logic Programming (ILP)

Under ILP’s normal setting (also called the monotonic setting, or the learning-
from-entailment setting) one considers background knowledge B, positive and
negative examples E+ and E−, and a hypothesis H. B, E+, E− and H are all
finite sets of clauses (theories). Further restrictions can be applied, for instance
by requiring that B, H, E+, E− are logic programs, rather than general the-
ories, or imposing that positive examples are ground unit definite clauses and
negative examples are ground unit headless Horn clauses. The central goal is to
induce (learn) H such that the following two conditions are satisfied:{

B ∧H |= E+

B ∧H ∧ E− �|= �

This looks rather much like solving a system of inequations (logical entailment
|= is a quasi-order, i.e. reflexive and transitive), except that it is a rather com-
plicated one. However, if one only considers the positive examples, in the first
instance, the following simpler system is obtained:{

B ∧H |= E+

B ∧H �|= �

Progress has been made towards characterising the solutions to this system as
follows:

2.2 Inverse Entailment

Definition 1 (Subsumption). Let C and D be clauses. Then C θ-subsumes
D, denoted by C � D, if there exists a substitution θ such that Cθ ⊆ D (i.e.
every literal in Cθ is also a literal in D).

Definition 2 (Inverse Entailment). Inverse Entailment is a generic name
for any computational procedure that, given B, E+ as input, will return a bottom
clausal theory ⊥(E+, B) as output, such that the following condition is satisfied:

H |= ⊥(E+, B)⇐⇒
{

B ∧H |= E+

B ∧H �|= �
, ∀H

Inoue (2001) has provided the only known example of Inverse Entailment in
the general case (under the name of Consequence-Finding). It was hoped that
entailment on the left-hand side might be replaced with subsumption or an-
other decidable quasi-order, as entailment is only semidecidable in the general
case. However, this hope was largely unfulfilled. In more restricted settings, the
following results have been obtained:

For H, E restricted to be clauses rather than theories, Yamamoto (1997)
gives a computational procedure that computes a bottom clause ⊥(E+, B) such
that the following condition is satisfied:

H � ⊥(E+, B)⇐⇒
{

H �B E+

H ��B �
, ∀H
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Note that entailment has been replaced with the more restricted subsumption
on the left-hand side and Plotkin’s relative subsumption on the right-hand side.

For H, E restricted to be function-free clauses and B a function-free Horn
theory, Muggleton (1998) gives a computational procedure that computes a bot-
tom clause ⊥(E+, B) such that the following condition is satisfied:

H � ⊥(E+, B)
�=⇒⇐=

{
B ∧H |= E+

B ∧H �|= �
, ∀H

Note that entailment has been replaced with the more restricted subsumption
on the left-hand side but the soundness of Inverse Entailment (=⇒) has been
lost.

For H, E restricted to be function-free Horn clauses and B a function-free
Horn theory, Muggleton (1995) gives a computational procedure that computes
a bottom Horn clause ⊥(E+, B) such that the following condition is satisfied:

H � ⊥(E+, B)
�⇐=

=⇒
{

B ∧H |= E+

B ∧H �|= �
, ∀H

Note that entailment has been replaced with the more restricted subsumption
on the left-hand side but the completeness of Inverse Entailment (⇐=) has this
time been lost. Completeness can be restored to this version if either entailment
is restored on the left-hand side or the unique bottom clause is replaced with
a family {⊥i(E+, B)}i of bottom clauses (subsaturants of the unique bottom
clause computed by Muggleton’s procedure):

∨
i

[
H � ⊥i(E+, B)

]⇐⇒
{

B ∧H |= E+

B ∧H �|= �
, ∀H

Subsumption is, in general, preferred to entailment on the left-hand side since it
is decidable. However, as apparent from before, it only guarantees completeness
and soundness of Inverse Entailment when the general ILP setting is restricted
and multiple bottom clauses are generated.

3 The Binary Representation Approach: Facts and
Fallacies

In the context of the Inverse Entailment procedure discussed in the preceding
section, Tamaddoni-Nezhad and Muggleton consider the case where one has a
function-free bottom Horn clause ⊥(E+, B) and claim that the space of solutions
{H | H � ⊥(E+, B), H is a function−free Horn clause} can be described as a
boolean lattice obtained from the variable sharing in the bottom clause according
to a simple procedure (Fig. 1).

3.1 Fallacy 1 — Fact 1

We first give a description of the proposed binary representation. In [20,21] the
following definition is given:
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Fig. 1. Tamaddoni-Nezhad and Muggleton’s “subsumption lattice” bounded below by
the bottom clause p(U, V )←− q(U, X), r(X, V )

Definition 3 (Binding Matrix). Suppose B and C are both clauses and there
exists a variable substitution θ such that Cθ = B. Let C have n variable occur-
rences representing variables 〈v1, v2, . . . , vn〉. The binding matrix of C is an n×n
matrix M in which mij is 1 if there exist variables vi, vj and u such that vi/u
and vj/u are in θ and mij is 0 otherwise. We write M(vi, vj) = 1 if mij = 1
and M(vi, vj) = 0 if mij = 0.

This definition is unsound because the binding matrix of C is defined with
respect to an arbitrary clause B. It is obvious that such a binding matrix may not
be unique. We therefore assume that the authors meant B to be a fixed bottom
clause and the binding matrix of C was defined with respect to this fixed bottom
clause. Let us consider the bottom clause p(U, V )←− q(U, X), r(X, V ) in Fig. 1.
Using the equality predicate we can re-write the clause as follows:

p(X1, X2)←− q(X3, X4), q(X5, X6), X1 = X3, X2 = X6, X4 = X5

We note that the variable sharing in the bottom clause is now completely de-
scribed by the three equalities. Any other clause in Fig. 1 can be re-written as
a combination of the common factor p(X1, X2) ←− q(X3, X4), q(X5, X6) and a
subset of the three equalities {X1 = X3, X2 = X6, X4 = X5} that describe
the variable sharing in the bottom clause. For instance, clause p(U, V ) ←−
q(U, X), r(Y, Z) will become:

p(X1, X2)←− q(X3, X4), q(X5, X6), X1 = X3
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It is now clear that we do not need the common factor, every clause in Fig. 1
being describable by simply noting which of the three equalities in the bottom
clause it sets off. If we use the binary string (1, 1, 1) to indicate that the bottom
clause satisfies all three equalities, then the second clause above may be encoded
as (1, 0, 0). This is the binary representation approach, an instantiation of a
technique more commonly known as propositionalisation. This approach was
first investigated rigorously within the European ILP2 project supported by
ESPRIT Framework IV, which ended in 1999. The deliverables of the ILP2
project [1,2] showed clearly that the approach could not yield completeness for
subsumption, not even in the simple case of function-free (Datalog) languages
[1]. We now show that this is indeed the case for subsumption lattices bounded
below by bottom clauses.

Binary Representation Space is Incomplete. The following clauses are
missing from Tamaddoni-Nezhad and Muggleton’s subsumption lattice, as
pictured in Fig. 1:

←−, the empty clause, subset of the bottom clause
p(U, V )←−, subset of the bottom clause
q(U, X)←−, subset of the bottom clause
r(X, V )←−, subset of the bottom clause
p(U, V )←− q(W, X), maps into the bottom clause by substitution θ = {W/U}
p(U, V )←− r(X, Z), maps into the bottom clause by substitution θ = {Z/V }
←− q(U, X), r(Y, V ), maps into the bottom clause by substitution θ = {Y/X}

These clauses, together with the ones in Fig. 1, are the ones that weakly
subsume the bottom clause1, i.e. those that map literals injectively to the bot-
tom clause. In addition, an infinity of other clauses that subsume p(U, V ) ←−
q(U, X), r(X, V ) are also missing, for instance: p(U, V )←− {q(U, Xi), r(Xj , V ) |
i �= j, 1 ≤ i, j ≤ n} for n ≥ 2, which maps onto the bottom clause by substi-
tution {Xi/X}1≤i≤n. We may wonder whether completeness has instead been
achieved under subsumption equivalence, i.e. one clause from each equivalence
class under subsumption is present in the search space. However, this is not
the case: neither of the exemplified missing clauses are subsume-equivalent with
any of the clauses already in the search space, nor are they subsume-equivalent
between themselves.

The quasi-order used in Fig. 1 is therefore not subsumption but the much
weaker atomic subsumption �a as defined in [15, p. 244]. If, as before, we denote
entailment by |=, subsumption by �, weak subsumption by �w and the atomic
subsumption by �a, we have the following relationship between the four orders:

�a
�⇐=

=⇒�w
�⇐=

=⇒� �⇐=
=⇒|=

Consequently, we have:
1 See [3] for a complete and sound encoding of the weak subsumption lattice with a

refinement operator.
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H�a
� H�w

� H� � H|=

where

H�i

def= {H | H �i ⊥(E+, B), H is a function−free Horn clause}
for �i∈ {�a,�w,�, |=}. progol’s existing refinement encodes H�w

, which is
incomplete with respect to subsumption: H�w � H�. However, the binary
representation approach only captures H�a , which is even more incomplete:
H�a

� H�w .

Binary Representation Space is Unsound. As mentioned before, the in-
completeness of propositionalisation for subsumption is known. Now we show
that the binary representation is also unsound, i.e. a counter-example may be
given wherein the binary representation codifies binary strings that do not cor-
respond to any clause in the subsumption lattice. The bottom clause chosen in
Fig. 1 is well-behaved, in the sense that all three equalities involve distinct vari-
ables. This was the original example given in [21]. Let us consider, however, the
following bottom clause:

p(U, U)←− q(U, X), r(Y, Z)

Using equality to re-write the clause we arrive at:

p(X1, X2)←− q(X3, X4), q(X5, X6), X1 = X2, X1 = X3, X2 = X3

If we describe this bottom clause by (1, 1, 1) as the binary representation ap-
proach prescribes, then (1, 1, 0), (1, 0, 1) and (0, 1, 1) will correspond to no clause.
Because of the transitivity of equality, when one has X1 = X2, X1 = X3 for in-
stance, one will also have X2 = X3. In other words, a certain number of binary
strings will be spurious. Interestingly, in [21] definitions 3, 4 and 5 capture pre-
cisely the space of binary strings that are mapped to valid clauses, i.e. those
corresponding to normalised binding matrices or, in the language of this paper,
those subsets of binary equalities that are closed under the transitivity of equal-
ity. However, it appears from [20,21] that the authors’ encoding of the search
space used in implementations is not the set of normalised binding matrices or
corresponding normalised strings but the unsound space of all boolean binary
strings. Now we show that the number of such spurious strings can grow wildly
compared to the number of valid clauses encodable by this approach.

Binary Representation Space is Not Compact. Let us consider a bottom
clause that has n predicates, all sharing the first variable. For simplicity we
assume that all the other variables are distinct:

p0(X, . . . )←− p1(X, . . . ), p2(X, . . . ), . . . , pn−1(X, . . . )

Using equality to re-write the clause we arrive at:

p0(X0, . . . )←− p1(X1, . . . ), . . . , pn−1(Xn−1, . . . ), X0 = X1 · · · = Xn−1
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Note that we have slightly abused the notation in order to write the clause more
compactly. The number of binary equalities X0 = X1, X0 = X2, . . . etc. is now(
n
2

)
, which will yield 2

n(n−1)
2 binary strings upon encoding. On the other hand,

the number of clauses that can be obtained by anti-unification of variables (as we
have seen, Tamaddoni-Nezhad and Muggleton do not consider adding/dropping
literals, thereby generating incompleteness) is given by the n-th Bell number, i.e.
the number of all partitions of the set of variables {X0, . . . , Xn−1}. The space of

encodings will therefore be 2(
n
2)

Bn
times bigger than the number of valid clauses

that it encodes. To get a feeling for this difference, for n = 12 the space of
encodings will contain

266 = 73786976294838206464

binary strings, while the space of clauses will contain B12 = 4213597 valid
clauses, i.e. about 1 good encoding for every 17.5 trillion spurious ones. In ILP
it is not uncommon for bottom clauses to contain tens or hundreds of predicates
with complex variable sharing. It can be shown that, as n grows, this gets worse

and worse, i.e. the asymptotic behaviour confirms this tendency: 2(
n
2)

Bn

n→∞−→ ∞.
Because of the sheer number of spurious binary encodings that parasitise

the representation space even for low values of n, the search domain may be-
come unsamplable. Furthermore, the authors observe in footnote 4 of [21, p.
642] and paragraph following Example 2 in [20, p. 249] that certain operations
on binding matrices may result in matrices that are not normalised, this lead-
ing to unsoundness (‘inconsistency’ in their language). They say that this does
not affect the genetic search in practice and could be avoided by normalisation
closure. However, this is not the case. We have shown above that unsoundness
can cause serious computational problems. Normalisation closure, on the other
hand entails itself computational difficulties: in order to be able to compute
normalisation closures, one has to revert to variables or keep a separate list of
normalisation rules, valid for the bottom clause at hand. For instance, to in-
fer X2 = X3 from X1 = X2 and X1 = X3 one has to encode the variables.
Otherwise, if X1 = X2, X1 = X3, X2 = X3 are encoded as 3-bit binary strings
(Y1, Y2, Y3), then one needs to know that Y1 = 1 ∧ Y2 = 1 =⇒ Y3 = 1 etc.
However, the real problem is that, with the proposed encoding, normalisation
closures are syntactically computable but meaningless from a semantic point of
view. Suppose that, as in our example before, we get by random sampling (seed-
ing) the string (1, 1, 0). The 0 bit in the string does not mean that we do not
know that X2 = X3. It means that we know that X2 �= X3. This is because the
encoding is made under a Closed World Assumption: it is assumed that a binary
string encodes the variable sharing information completely. If this were not so,
encodings would not represent clauses but subsets of clauses, i.e. all clauses in
the search domain that are compatible with the variable sharing described by
the 1-bits in the binary string. Since a 0 does not reflect incomplete information
in the binary string but encodes negative information, normalisation by closure
does not fulfill its intended meaning, which is to fill in inferred information.
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Normalisation by closure remains to be but one of many alternative ways of re-
solving inconsistency. It proceeds by switching the minimum number of 0-bits to
1-bits that allows the consistency rules to be satisfied. To resolve inconsistency
we can proceed with any other algorithm that, switching a number of bits, would
achieve consistency under the normalisation rules. For instance, we can decide
that, instead of switching 0-bits to 1-bits, we switch 1-bits to 0-bits. While we
can choose, for instance, that the number of bits so changed be minimal (i.e.
we determine all valid clauses at minimal Hamming distance), or some other
criterion, we do not have any rational basis for preferring one criterion over an-
other. The normalisation by closure is therefore syntactically computable but
semantically undefined.

3.2 Fallacy 2 — Fact 2

Let us consider Example 2 in [21]. It is claimed that the clause p(U, V ) ←−
q(U, X), r(X, Z) is the mgi2 of the clauses p(U, V ) ←− q(U, X), r(Y, Z) and
p(U, V ) ←− q(W, X), r(X, Z) under subsumption �. However, this is not true.
The mgi of the two clauses under �, according to [15, p. 251], is p(U, V ) ←−
q(U, X), q(W, X ′), r(Y, Z), r(X ′, Z ′). We may wonder if this is not subsume-
equivalent with p(U, V )←− q(U, X), r(X, Z). Suppose, by reductio ad absurdum,
that the latter clause subsumes the former. Then there should be a substitu-
tion mapping it onto a subset of the former. Necessarily, {U/U, V/V } because
of the common head. Then q(U, X) is mapped to some q(U, ) and the only
such literal available is q(U, X), therefore {X/X}. Then r(X, Z) is mapped to
some r(X, ) but there are no such literals in the former clause, contradiction.
In fact the mgi given in [21] is computed under atomic subsumption �a. Cru-
cially, for mgi ’s under �a Theorem 4 in [21] does not hold, i.e. one may not
compute coverages of such mgi ’s by intersecting the coverages of the parent
clauses as described in [21]. This is because coverages of clauses are computed
under entailment |= (or, in some circumstances, subsumption �) but not un-
der the much weaker atomic subsumption �a. For instance, consider the clause
p(U, V )←− q(U, X), q(W, X ′), r(Y, Z), r(X ′, Z ′) referred to above. Under � it is
covered by both p(U, V )←− q(U, X), r(Y, Z) and p(U, V )←− q(W, X), r(X, Z),
therefore it belongs to the intersection of their coverages. However, as shown, it
is not covered by the clause p(U, V )←− q(U, X), r(X, Z), the alleged mgi . This
renders the proposed fast evaluation mechanism unsound and therefore moot.

3.3 Fallacy 3 — Fact 3

According to the theory of refinement in ILP [11,15], refinement operators main-
tain the search space implicitly. Various qualities may be required of any well-
defined refinement operator, such as soundness, completeness (weak or strong),
local finiteness, properness, minimality etc. Soundness and completeness are min-
imal requirements. However, we have seen in the preceding sections that the
2 most general instantiation
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search space explored by the task-specific genetic operators in [20,21] is both
unsound and incomplete. The most we could hope for is that such operators,
once applied to valid encodings, will produce a valid encoding. However, this is
not the case. Both mgi and mutation may produce spurious outcomes starting
from valid parent strings, for instance taking mgi of (1, 0, 0) and (0, 1, 0) in our
running counter-example will give the inconsistent (1, 1, 0), while 1-bit mutation
applied to (1, 0, 0) will yield two inconsistent strings and a consistent one.

4 Potential Solutions

This paper was initially written and reviewed in a two-part format, containing
both our criticism of the binary representation approach and our alternative
thereto. Unfortunately, for reasons strictly connected with the 12-page limit
allowed for full papers in the conference proceedings, the second part had to
be dropped. The author plans to submit an extended version of this paper to
a journal in the Artificial Intelligence field, including our proposed solution to
the binary representation flaws described in this paper. The interested reader is
invited to contact the author for details.

5 Conclusions

Although combining genetic algorithms with inductive logic programming is po-
tentially a valuable approach, it is not straightforward. Inductive logic program-
ming owes its existence both to the first-order representations that it uses, but
also to the recognition of the fact that it employs search mechanisms that are not
easily translatable in the propositional domain. Even when such transformations
can be made, it is usually under heavy restrictions or at the expense of expo-
nential blow-ups in complexity [6]. It is why the inductive logic programming
community has painstakingly developed inductive mechanisms that work with
first-order representations directly. Particularly, refinement operators defined on
clauses lie at the core of many inductive logic programming systems.

Tamaddoni-Nezhad and Muggleton have proposed [20,21] an approach that
recycles some well-known propositionalisation techniques under the name of bi-
nary representations. Although it is claimed that this approach achieves com-
pleteness in respect of progol’s search, it is in fact even more incomplete than
progol’s existing search. Although they use the phrases “genetic refinement”
in [20] and “stochastic refinement” in [21] to name this type of search, no def-
inition of these terms is given and no explanation on how they relate to the
very consistent body of research on refinement [11,12,15,23]. At present it is not
possible to determine with enough precision how the flaws in their theoretical
framework affect their implementation since they do not give the algorithm on
which the implementation is based, nor enough detail regarding their experi-
mental settings. It is therefore not possible to either replicate or criticise their
experimental evidence. However, in [20] the authors state:
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“In our first attempt, we employed the proposed representation to
combine Inverse Entailment in c-progol4.4 with a genetic algorithm.
In this implementation genetic search is used for searching the subsump-
tion lattice bounded below by the bottom-clause (⊥). According to The-
orem 3 the search space bounded by the bottom clause can be
represented by S(⊥).”

However, a careful consideration of Theorem 3 given in their paper will show
that the theorem’s statement does not entail the identity between H� and S(⊥).
Furthermore, the argument can not be repaired: S(⊥) is the space of binary
representations shown in this paper to be incomplete, unsound, and noncompact
with respect to H�. Since, by the results of this paper, the statement quoted
above does not hold, we should conjecture that caution is needed in accepting the
authors’ alleged experimental results until such time that the flaws unearthed in
this paper are given a proper solution.
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