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Abstract. An empirical study is performed on the local-optimum space
of graph bipartitioning. We examine some statistical features of the fit-
ness landscape. They include the cost-distance correlations and the prop-
erties around the central area of local optima. The study revealed some
new notable results about the properties of the fitness landscape; e.g.,
the central area yielded fairly good quality in the local-optimum space.
We performed an experiment on a spectrum of different exploitation
strengths of the central areas. From the results, it seems attractive to
exploit the central area, but excessive or insufficient exploitation is not
desirable.

1 Introduction

An NP-hard problem such as graph partitioning problem or traveling salesman
problem (TSP) has a finite solution set and each solution has a cost. Although
finite, the problem space is intractably large even for a small but nontrivial prob-
lem. It is almost impossible to find an optimal solution for those problems by
exhaustive or simple search methods. Thus, in case of NP-hard problems, heuris-
tic algorithms are being used. Heuristic algorithms provide reasonable solutions
in acceptable computing time but have no performance guarantee.

Consider a combinatorial problem C = (Ω, f) and a local optimization algo-
rithm Lc : Ω → Ω, where Ω is the solution space and f is the cost function. If a
solution s∗ ∈ Ω is in Lc(Ω), then s∗ is called a local optimum with respect to the
algorithm Lc. For each local optimum s∗ ∈ Lc(Ω), we define the neighborhood
set of s∗ to be a set N(s∗) ⊂ Ω such that, for every s in N(s∗), Lc(s) is equal to
s∗. That is, s∗ is the attractor of the solutions in N(s∗). We examine the space
Lc(Ω) and hope to get some insight into the problem space. This is an alterna-
tive for examining the intractably huge whole problem space. Good insight into
the problem space can provide a motivation for a good search algorithm.

A number of studies about the ruggedness and the properties of problem
search spaces have been conducted. Sorkin [21] defined the fractalness of a solu-
tion space and proposed that simulated annealing [18] is efficient when the space
is fractal. Jones and Forrest [14] introduced the fitness-distance correlation as a
measure of search difficulty. Manderick et al. [19] measured the ruggedness of a
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problem space by autocorrelation function and correlation length obtained from
a time series of solutions. Weinberger [23] conjectured that, if all points on a
fitness landscape are correlated relatively highly, the landscape is bowl shaped.
Boese et al. [3] suggested that, through measuring cost-distance correlations for
the TSP and the graph bisection problem, the cost surfaces are globally convex;
from these results they proposed an adaptive multi-start heuristic and showed
that the heuristic is efficient [3]. Kauffman [15] proposed the NK-landscape model
that can control the ruggedness of a problem space.

In this paper, we present a number of experiments to analyze problem spaces
more elaborately. We examine the cost-distance correlations and the proper-
ties around the central areas of local optima. Based on the empirical study,
we perform an experiment on a spectrum of different exploitation strengths of
the central areas under a genetic algorithm (GA) framework. We perform these
experiments on the graph bipartitioning problem.

The remainder of this paper is organized as follows. In Section 2, we summa-
rize the graph bipartitioning problem, the Fiduccia-Mattheyses algorithm (FM)
which is used as a major local optimization algorithm in this paper, and test
graphs. We perform various experiments and analyze fitness landscapes in Sec-
tion 3. In Section 4, we propose a multi-parent crossover for graph bipartitioning.
Finally, we make our conclusions in Section 5.

2 Preliminaries

2.1 Graph Bipartitioning

Let G = (V, E) be an unweighted undirected graph, where V is the set of vertices
and E is the set of edges. A bipartition (A, B) consists of two subsets A and B of
V such that A∪B = V and A∩B = φ. The cut size of a bipartition is defined to
be the number of edges whose endpoints are in different subsets of the bipartition.
The bipartitioning problem is the problem of finding a bipartition with minimum
cut size. If the difference of cardinalities between two subsets is at most one, the
problem is called graph bisection problem and if the difference does not exceed the
fixed ratio of |V |, the problem is called roughly balanced bipartitioning problem.
Without balance criterion, we can find the optimal solution in polynomial time
by maxflow-mincut algorithm [10]. In a roughly balanced bipartitioning problem,
10% of skewness is usually allowed [20]. Since it is NP-hard for general graphs
[11], heuristic algorithms are used practically. These include FM algorithm [9], a
representative linear time heuristic, PROP [5] based on probabilistic notion, LG
[17] based on lock gain, etc. In this paper, we consider only roughly balanced
bipartitioning problem allowing 10% of skewness.

2.2 Fiduccia-Mattheyses Algorithm (FM)

Fiduccia and Mattheyses [9] introduced a heuristic for roughly balanced bipar-
titioning problem. The FM algorithm as well as the Kernighan-Lin algorithm
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do {
Compute gain gv for each v ∈ V ;
Make gain lists of gvs;
Q = φ;
for i = 1 to | V | −1 {

Choose vi ∈ V −Q such that gvi
is maximal and

the move of vi does not violate the balance criterion;
Q = Q ∪ {vi};
for each v ∈ V −Q adjacent to vi

Update its gain gv and adjust the gain list;
}
Choose k ∈ {1, . . . , | V | −1} that maximizes

∑k

i=1
gvi

;
Move all the vertices in the subset {v1, ..., vk} to their opposite sides;

} until (there is no improvement)

Fig. 1. The Fiduccia-Mattheyses algorithm (FM)

(KL) [16] is a traditional iterative improvement algorithm. The algorithm im-
proves on an initial solution by single-node moves. The main difference between
KL and FM lies in that a new partition in FM is derived by moving a single
vertex, instead of KL’s pair swap. The structure of the FM algorithm is given in
Figure 1. FM proceeds in a series of passes. In each pass, all vertices are moved
in chain and then the best bipartition during the pass is returned as a new so-
lution. The algorithm terminates when one or a few passes fail to find a better
solution. With an efficient data structure, each pass of FM runs in Θ(|E|) time.

2.3 Test Beds

We tested on a total of 17 graphs which consist of two groups of graphs. They
are composed of 17 graphs from [13] (9 random graphs and 8 geometric graphs).
The two classes were used in a number of other studies [20] [4] [1] [17]. The
classes are briefly described below.

1. Gn.d: A random graph on n vertices, where an edge is placed between any two
vertices with probability p independent of all other edges. The probability p is
chosen so that the expected vertex degree, p(n − 1), is d.

2. Un.d: A random geometric graph on n vertices that lie in the unit square and
whose coordinates are chosen uniformly from the unit interval. There is an edge
between two vertices if their Euclidean distance is t or less, where d = nπt2 is the
expected vertex degree.

3 Investigation of the Problem Space

In this section, we first extend the experimentation of Boese et al. [3] to ex-
amine the local-optimum space. We denote by local-optimum space the space
consisting of all local optima with respect to a local optimization algorithm.
Next, we examine the area around the “central point” of local optima. In our
experiments, we use a sufficiently large number of local optima. We do not care
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about solutions other than local optima. The local optimizer in our experiments
is the FM algorithm.

In the graph bipartitioning problem for a graph G = (V, E), each solution
(A, B) is represented by a |V |-bits code. Each bit corresponds to a vertex in
the graph. A bit has value zero if the vertex is in the set A, and has value
one otherwise. In this encoding, a vertex move in the FM algorithm changes
the solution by one bit. Thus, it is natural to define the distance between two
solutions by the Hamming distance. However, if the Hamming distance between
two solutions is |V |, they are symmetric and equal. We hence define the distance
between two solutions as follows.

Definition 1 Let the universal set U be {0, 1}|V |. For a, b ∈ U , we define the
distance between a and b as follows:1

d(a, b) = min(H(a, b), |V | − H(a, b))

where H is the Hamming distance.

By the definition, 0 ≤ d(a, b) ≤ �|V | /2� while 0 ≤ H(a, b) ≤ |V |.

3.1 Cost-Distance Correlation

Given a set of local minima, Boese et al. [3] plotted, for each local minimum,
i) the relationship between the cost and the average distance from all the other
local minima, and ii) the relationship between the cost and the distance to the
best local minimum. They performed experiments for the graph bisection and
the traveling salesman problem, and showed that both problems have strong
positive correlations for both i) and ii) in the above. This fact hints that the best
local optimum is located near the center of the local-optimum space. From their
experiments, they conjectured that cost surfaces of both problems are globally
convex. In this subsection, we repeat their experiments for other graphs and
extend their study to get more insight.

The solution space for the experiment is selected as follows. First, we choose
thousands of random solutions and obtain the corresponding set of local optima
by locally optimizing them. Next, we remove the duplicated solutions in the set
if any. Figure 2 shows the plotting results for the graph U500.10. It is consistent
with Boese et al.’s results with strong cost-distance correlation. More statistics
for a number of graphs are given in Table 1. The meaning of each item in the ta-
ble is as follows. “Population size” means the number of local optima we used for
each graph. “Best cut” is the cost of the best local optimum. “Average cut” is the
average cost of the local optima. “Cost-distance correlation” is the correlation
1 Given an element a ∈ U , there is only one element such that it is different from a

and the distance d to a is zero. If the distance between two elements is equal to zero,
we define them to be in relation R. Then, the relation R is an equivalence relation.
Suppose Q is the quotient set of U by relation R, it is easily verified that (Q, d) is a
metric space.
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Fig. 2. Relationship between cost and distance: U500.10 (see Table 1)

Table 1. The results for each graph

Items G250.10 G500.2.5 G1000.2.5 U500.05 U500.10 U1000.05
Population size 9877 10000 10000 10000 9302 10000
Best cut 352 52 103 5 24 16
Average cut 367.65 64.58 128.17 35.62 83.58 70.76
Cost-distance correlation 0.77 0.78 0.83 0.89 0.91 0.88
Central point cut (CP) 380 60 118 5 24 17
CP + FM 352 51 99 5 24 16
Average distance 102.94 217.11 453.44 215.63 192.83 448.09
Population size : the number of local optima
Best cut : the minimum cost
Average cut : the average cost
Cost-distance correlation : correlation coefficient between cost and average distance

from each local optimum to others

Central point cut (CP) : the cost of the approximate central point in solution space
CP + local opt : the cost after local optimization on the approximate central point
Average distance : the average value of distances between a pair of local optima

coefficient between the costs of local optima and the average distances from the
other local optima. “Central point cut (CP)” is the cost of the approximate cen-
tral point of the local-optimum space (see Section 3.2 for the approximate central
point). “CP + local opt” is the cost after local optimization on the approximate
central point. Finally, “Average distance” means the average distance between a
pair of local optima. Overall, each graph showed strong positive correlation. De-
pending on graphs, correlation coefficients were a bit different. Geometric graphs
showed larger correlation coefficients than random graphs. In the statistical data
of Table 1, each population was obtained from 10,000 random initial solutions.
Among the six graphs, four graphs had no duplications and the other two graphs
had 123 and 698 duplications, respectively. It is surprising that there were no
duplications in the first 10,000 attractors for four of them. It seems to suggest
that the number of all possible local optima with respect to FM is immeasurably
large.

Figure 3, Table 2, and Table 3 compare the data with different local opti-
mizers. A greedy local optimizer which moves only vertices with positive gain
was named GREEDY. Its principle is the same as that of the steepest descent
algorithm in the differentiable cases. NONE means a set of random solutions
without any local optimization. From the cut sizes in Table 2 and Table 3, FM
is clearly stronger than the GREEDY algorithm. The stronger the local opti-
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Fig. 3. Relationship between cost and distance with different local optimizer in the
graph U500.05 (see Table 3)

Table 2. The data comparison with different local optimizer in the graph G500.10

Local opt FM GREEDY NONE
Population size 2000 2000 2000
Best cut 623 666 1101
Average cut 648.60 706.26 1178.00
Cost-distance correlation 0.77 0.81 −0.02
Central point cut (CP) 659 670 1138
CP + local opt 623 643 −
Average distance 218.58 229.71 241.09

Table 3. The data comparison with different local optimizer in the graph U500.05

Local opt FM GREEDY NONE
Population size 2000 2000 2000
Best cut 7 34 562
Average cut 35.86 65.16 640.89
Cost-distance correlation 0.88 0.79 −0.02
Central point cut (CP) 5 33 581
CP + local opt 5 30 −
Average distance 215.71 222.58 241.08

mizer, the smaller the average distance between two local optima and the more
sharing among local optima. However, from Tables 1–3, it is surprising that,
differently from our expectation, the average distance between two arbitrary
local optima is nearly 80% ∼ 90% of the possible maximum distance �|V |/2�.
This is an evidence of the huge diversity of local optima. In Figure 3, a stronger
local optimization shows stronger cost-distance correlation. Since the average
distances in graphs are various, these values may have some potential to be used
as measures of the problem difficulty with respect to a local optimizer.2

3.2 Approximate Central Point

The results of Boese et al. [3] for the TSP and the graph bisection problem sug-
gest that the best solution is located near the center of the local-optimum space.
As a result of this, given a subspace of local optima for a problem, the “central
2 This is not a simple issue, though.
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point”3 of the subspace may be near the optimal solution. Hence, computing
the “central point” not only supports the results of Boese et al. but may also be
helpful for obtaining the optimal solution.

Given a subspace Ω′ of the whole solution space in the graph bipartitioning
problem, the “approximate central point”4 is computed as follows. Let one of
the two encodings of the best solution in Ω′ be pbest. First, since each solution
has a pair of encodings, we make a set SΩ′ that contains only one encoding e
for each solution in Ω′ so that the Hamming distance between e and pbest is
not greater than �|V | /2�. Next, for each position, count the number of 0’s and
that of 1’s for all elements of SΩ′ . Make the approximate central point c so that
each position of c has the more-frequently-appeared bit. Then, the approximate
central point c is closer to the center5 of Ω′ than pbest.6 That is, we have the
following proposition.

Proposition 1 ∀pbest ∈ SΩ′ , let SΩ′ = {s1, s2, . . . , sn}. Then,

n∑

i=1

d(pbest, si) ≥
n∑

i=1

d(c, si).

Proof: Let Bj(x) be the jth value of x.

n∑

i=1

d(pbest, si) =
n∑

i=1

H(pbest, si)

=
n∑

i=1

|V |∑

j=1

|Bj(pbest) − Bj(si)|

=
|V |∑

j=1

n∑

i=1

|Bj(pbest) − Bj(si)|

=
|V |∑

j=1

|{s ∈ SΩ′ : Bj(s) �= Bj(pbest)}|

3 We define “central point” to be the nearest solution to the center of local-optimum
space.

4 In this problem, it is not easy to find the exact central point by a simple computation.
Each solution has two different encodings. In order to get the distance to other
solution, we select one to which the Hamming distance is smaller than the other.
The more the solutions, the more complex the whole phase about which encoding is
used to calculate the distance.

5 Here, the center of Ω′ is defined to be the point that has the minimum average
distance from the other solutions in Ω′.

6 Since the approximate central point obtained in this way can violate balance crite-
rion, adjustment is required. Although not mentioned, the experimental data showed
that most of adjusted approximate central points were closer to the center of Ω′ than
pbest.
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≥
|V |∑

j=1

|{s ∈ SΩ′ : Bj(s) �= Bj(c)}|

=
n∑

i=1

H(c, si)

≥
n∑

i=1

d(c, si).

Q.E.D.

Although the approximate central points are calculated through a simple
computation, it turned out that the costs of the approximate central points
are quite attractive (see Tables 1–3). It is amazing that the cut size of the
approximate central point without any fine-tuning was sometimes equal to or
better than that of the best solution (see the cases of U500.05 and U500.10 in
Table 1). In order to check the local optimum near the center, we applied local
optimization to the approximate central point. The results are in the row “CP
+ local opt” of Tables 1–3. In all of the ten cases, the costs of the local optima
near the approximate central points were at least as good as those of the best
solutions; surprisingly enough, they were better than those of the best solutions
in five cases of them. This shows the attractiveness of the central area of the
local-optimum space, and provides a motivation for intensive search around the
central area.

4 Exploiting Approximate Central Points

We observed in Section 3.2 that the approximate central points obtained by
simple computation are quite attractive. In this section, we propose a pseudo-
GA that exploits the areas around the approximate central points. Based on the
GA, we perform an experiment on how strong exploitation of the central area is
desirable.

4.1 A Pseudo-GA That Exploits the Central Areas

Multi-parent crossover is a generalization of the traditional two parent recombi-
nation. It was first introduced by Eiben et al. [8] and has been extensively studied
in the past [7] [6] [22]. But, it is not adequate for problems with multiple rep-
resentations for a solution like the graph partitioning problem. Unlike previous
works, our multi-parent crossover is designed based on the statistical features of
problem spaces. The offspring of our multi-parent crossover is exactly the approx-
imate central point of the solutions in the population. Formally, the process of
our multi-parent crossover is as follows. Consider the distance measure d defined
in Section 3, the parent set P , and a parent pk in P .7 For each parent a ∈ P , if
7 Assume that the distance d between any two elements in P is larger than zero.
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H(pk, a) > �|V |/2�, make a transition that interchanges 0 and 1 at every gene po-
sition of a. Let the new set resulted from the transitions be P ′ = {p1, p2, . . . , pn}.
Then, for each i = 1, 2, . . . , n (pi �= pk), 0 < H(pk, pi) ≤ �|V |/2�. Now, generate
an offspring c such that for each j = 1, 2, . . . , |V |

Bj(c) =
{

1, if |{p ∈ P ′ : Bj(p) = 1}| > �n/2�
0, otherwise

where Bj(x) is the jth gene value of x.
Figure 4 shows the template of pseudo-GA that is designed to exploit the

central areas. It is a type of hybrid steady-state genetic algorithm using the
multi-parent crossover described above.

– Initialization and genetic operators: The GA first creates K local optima at
random. We set the population size K to be from 10 to 100. Simply, the
total population is selected as the parent set and the GA performs K-parent
crossover on them. Then the mutation perturbs the offspring by R percent.
Mutation is important in this model since the crossover strongly drives the
offspring to the central area; thus an appropriate degree of perturbation is
needed.

– Local optimization: One of the most common local optimization heuristic for
graph partitioning is the FM algorithm. We apply it to the offspring after
mutation.

– Replacement and stopping condition: After generating an offspring and ap-
plying a local optimization on it, the GA replaces the most similar member
of the population with the offspring. Maintaining population diversity, a
randomly generated local optimum replaces the most similar member of the
population per generation. It stops after a fixed number, (M − K)/2, of
generations.

4.2 Experimental Results

We tested the GA with a number of different population sizes. The population
size is denoted by K. K is also the number of parents for crossover; in other
words, it is the degree of exploitation around the central area. The values of
K represent a spectrum of the exploitation strengths of the central area. If K
is equal to M , since it just generates initial population without genetic search,
the heuristic equals the multi-start heuristic. The multi-start heuristic returns
the best local optimum among a considerable number of local optima fine-tuned
from random initial solutions. Although the multi-start heuristic is simple, it has
been useful in a number of studies [12] [2].

The experimental results are given in Table 4. We used the FM algorithm as
the local optimizer. We set M and R to 1,000 and 20 respectively in all cases
and performed 100 runs for each case.

Overall, one can observe that it is helpful to exploit the central areas to
some extent. Figure 5 shows two sample plottings, which have roughly bitonic
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MPGA(M , K, R)
// M : running time budget, K: population size, and R: perturbation rate
{

for each i = 1, 2, . . . , K // Generate initial population with size K
{

Generate a random individual Pi;
Pi ← local opt(Pi);

}
B ← the best among population;
do {

Make an offspring C using K-parent crossover from population;
C ← R% random mutation(C);
C∗ ← local opt(C);
Replace the most similar individual from population with C∗;
Generate a random individual T ;
T ← local opt(T );
Replace the most similar individual from population with T ;
B ← the best among B, C∗, and T ;

} until (the number of generations is (M −K)/2)
return B;

}

Fig. 4. A simple genetic algorithm using multi-parent crossover

spectra of performance. The results of Table 4 and Figure 5 show that it is useful
to exploit the central area, but that excessive or insufficient exploitation is not
desirable.
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Fig. 5. Two sample spectra extended from Table 4

5 Conclusions

The fitness landscape of the problem space is an important factor to indicate
the problem difficulty, and the analysis of the fitness landscape helps efficient
search in the problem space. In this paper, we made a number of experiments
and got some new insights into the global structure of the graph-partitioning
problem space. We extended previous works and observed that the central area
of multiple local optima is quite attractive.
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Table 4. The comparison of cut sizes

K = 2 K = 5 K = 10 K = 20
Graphs Ave† CPU‡ Ave† CPU‡ Ave† CPU‡ Ave† CPU‡

G500.2.5 52.82 1.56 52.32 1.51 52.08 1.56 51.56 1.63
G500.05 216.09 2.13 215.10 2.09 214.54 2.13 214.70 2.19
G500.10 622.28 3.41 621.46 3.36 620.64 3.41 619.96 3.45
G500.20 1729.13 6.77 1728.77 7.53 1728.27 7.62 1727.46 7.20

G1000.2.5 105.51 3.51 104.28 3.46 103.79 3.53 102.72 3.66
G1000.05 445.68 4.81 454.79 4.76 452.82 4.87 451.53 5.02
G1000.10 1363.76 8.63 1361.27 10.02 1359.44 9.65 1358.09 8.59
G1000.20 3357.62 27.04 3353.72 28.13 3350.87 26.45 3349.23 28.37
U500.05 7.64 1.95 7.22 1.83 7.06 1.92 6.67 1.98
U1000.05 24.60 4.84 25.73 4.51 24.35 5.30 22.81 4.87
U1000.10 41.84 7.18 41.68 6.78 40.64 9.84 40.31 7.35

K = 50 K = 100 K = 200 K = 500 Multi-Start§

Graphs Ave† CPU‡ Ave† CPU‡ Ave† CPU‡ Ave† CPU‡ Ave† CPU‡

G500.2.5 50.87 1.92 50.82 2.40 50.41 3.22 50.64 4.64 53.06 1.63
G500.05 214.12 2.45 213.95 2.92 213.92 3.75 213.78 5.19 217.23 2.20
G500.10 619.55 3.71 619.38 4.24 619.38 5.06 619.94 6.58 623.07 3.54
G500.20 1726.93 9.11 1727.03 8.38 1727.06 8.45 1727.20 11.60 1730.35 8.46

G1000.2.5 100.19 4.25 99.20 5.19 98.38 7.04 97.95 10.30 105.99 3.64
G1000.05 449.27 5.69 448.86 6.59 447.58 8.45 448.15 11.62 457.34 4.95
G1000.10 1356.30 10.10 1354.35 11.20 1354.69 12.17 1355.46 18.19 1365.14 10.21
G1000.20 3346.51 27.57 3345.77 27.56 3344.67 30.15 3345.18 33.71 3363.30 26.80
U500.05 5.60 2.24 5.04 2.71 4.98 3.55 4.87 5.06 7.98 2.07
U1000.05 20.12 5.40 17.28 6.38 14.72 8.28 12.74 11.50 24.09 5.16
U1000.10 40.13 7.74 40.55 8.48 40.86 10.51 40.97 13.58 42.89 8.43

§ K = M(= 1000).

† Average over 100 runs.

‡ CPU seconds on Pentium III 750 MHz.

For the other geometric graphs (U500.10, U500.20, U500.40, U1000.20, and U1000.40)

not shown here, all the methods always found the best known.

It seems clear that there are high-quality solutions clustered near the central
area of local optima. Hence, it is attractive to exploit the central area. Too much
exploitation of the central area perhaps makes the search diversity low. It seems
desirable to exploit the central area avoiding excessive or insufficient exploitation.
We showed that the performance of search could be improved by a multi-parent
crossover based on the exploitation of the central area. The results presented in
this paper can also be good supporting data for the previous studies on multi-
parent crossover [8] [7] [6] [22]. More theoretical arguments for our empirical
results are left for future study.

Our results were achieved in a specific problem, the graph partitioning prob-
lem. However, we expect that many other hard combinatorial optimization prob-
lems have similar properties. For example, in case of cost-distance correlation,
TSP showed similar property to the graph partitioning problem [3]. We hope
this study provides a good motivation for the investigation of problem spaces
and the design of more effective search algorithms.
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