
Problem-Independent Schema Synthesis for
Genetic Algorithms

Yong-Hyuk Kim, Yung-Keun Kwon, and Byung-Ro Moon

School of Computer Science & Engineering, Seoul National University
Shilim-dong, Kwanak-gu, Seoul, 151-742 Korea

{yhdfly, kwon, moon}@soar.snu.ac.kr

Abstract. As a preprocessing for genetic algorithms, static reorder-
ing helps genetic algorithms effectively create and preserve high-quality
schemata, and consequently improves the performance of genetic algo-
rithms. In this paper, we propose a static reordering method indepen-
dent of problem-specific knowledge. One of the novel features of our
reordering method is that it is applicable to any problem with no infor-
mation about the problem. The proposed method constructs a weighted
complete graph from the gene distances calculated from solutions with
relatively high fitnesses, transforms them into a gene-interaction graph,
and finds a gene rearrangement. Extensive experimental results showed
significant improvement for a number of applications.

1 Introduction

By the schema theorem, Holland showed that highly fit schemata of short defin-
ing lengths and low orders have high probabilities of survival in the traditional
genetic framework [19]. High-quality schemata with the above features are called
building blocks. Building blocks are gene groups with high contribution to the
fitnesses that have mutually strong interactions. The performance of a genetic
algorithm highly depends on the survival environment and reproducibility of
building blocks.

The survival probability of a gene group through crossovers is strongly af-
fected by the positions of genes in the chromosome. Schemata consisting of widely
scattered specific positions have poor survival probabilities through crossovers
due to their long defining lengths. Thus, the strategy of locating genes signifi-
cantly affects the performance of genetic algorithms. Inversion is a genetic oper-
ator devised for changing the loci of genes dynamically [3]. The efforts to exploit
the loci of genes dynamically are called linkage learning [18]. Messy genetic al-
gorithm is an example that implicitly pursues dynamic gene repositioning [16].

It has been observed that the performance of genetic algorithms on problems
with locus-based encoding can be improved by statically reordering the indices of
the genes. The technique of static reordering for genetic algorithms was first sug-
gested in [6] [10], whose basic idea is to reassign the loci of genes in chromosomal
representation to help genetic algorithms effectively preserve good schemata. A
good reordering also leads to better creation of high-quality schemata than in

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2723, pp. 1112–1122, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: ¡M RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile (¡M) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

Problem-Independent Schema Synthesis for Genetic Algorithms 1113

the original ordering. A number of studies on static reordering of gene positions
in locus-based encodings showed performance improvement [6] [8] [10] [29].

However, previous reorderings depend on the specific information of their ap-
plication [6] [8] [10]. Hence, a new heuristic has to be derived for the reordering of
each new problem. In this paper, we describe a static reordering method which
is free from problem-specific knowledge. The method requires locus-based en-
codings for chromosomal representation. We perform experiments on three rep-
resentative combinatorial optimization problems that are NP-hard [15]: graph
bisection, linear arrangement, and traveling salesman problem. Our experiments
showed notable improvement when compared against the cases without reorder-
ing. In this paper, we use rearrangement, reordering, and preprocessing inter-
changeably.

The remainder of this paper is organized as follows. In Section 2, we summa-
rize three testbed problems. The genetic framework that we used in this work
is described in Section 3. In Section 4, we describe the problem-independent
schema preprocessing for general purpose. We present experimental results in
Section 5. Finally, we make our conclusions in Section 6.

2 Preliminaries

2.1 Graph Bisection

Let G = (V, E) be an unweighted undirected graph, where V is the set of n
vertices and E is the set of e edges. A bisection {C1, C2} of the graph G satisfies
C1, C2 ⊂ V , C1 ∪ C2 = V , C1 ∩ C2 = φ , and ||C1| − |C2|| ≤ 1. The cut size of
{C1, C2} is |{(v, w) ∈ E : v ∈ C1, w ∈ C2}|. The graph bisection problem is the
problem of finding a bisection with the minimum cut size. The problem has been
extensively studied in the past [10] [25] [4] [23]. It is known to be NP-hard [15].

2.2 Linear Arrangement

Let G = (V, E) be an unweighted undirected graph. The linear arrangement
problem is the problem of finding a permutation σ : V → V of vertices with the
minimum value of

∑
(u,v)∈E |σ(u) − σ(v)|. There have been a number of studies

for the problem [1] [12] [37]. It is also NP-hard [15].

2.3 Traveling Salesman Problem (TSP)

Let G = (V, E) be a complete graph with weights on the edges. A Hamiltonian
cycle of G is a cycle that visits every vertex of the graph exactly once. The
traveling salesman problem (TSP) is the problem of finding a Hamiltonian cycle
with the minimum weight. TSP is well known to be NP-hard [15]. It has been
extensively studied in the past due to its wide applications as well as for its
complexity. Genetic algorithms have been applied to TSP with varying degrees
of success [24] [32] [21] [38].

1114 Y.-H. Kim, Y.-K. Kwon, and B.-R. Moon

Preprocess;
Create an initial population;
repeat {

choose parent1 and parent2 from population;
offspring = crossover(parent1, parent2);
local-improvement(offspring);
replacement(population, offspring);

} until (stopping condition);
return the best solution;

Fig. 1. The framework of our hybrid genetic algorithm

3 A Hybrid Genetic Algorithm

A hybrid genetic algorithm is a genetic algorithm (GA) combined with a local
improvement heuristic. Some people call it a memetic genetic algorithm [34] [11]
[27] [28] [26] [5]. The general framework of hybrid steady-state genetic algorithm
is used in our GA as shown in Figure 1. In the following, we describe each part
of the GA that we used for this work.

– Locus-based encoding: Each solution in the population is represented by a
chromosome. A binary encoding is used for the graph bisection problem.
A gene has a value ‘0’ or ‘1’ depending on the side that the corresponding
vertex belongs to. We use a permutation encoding for the linear arrangement
problem. Each gene corresponds to a vertex in the graph and its value means
the position in the arrangement. We also use a permutation encoding for the
TSP. A gene corresponding a vertex v represents another vertex following
vertex v in the Hamiltonian cycle. These encodings, where each gene location
has an explicit meaning, are called locus-based encoding. It is necessary to
use the locus-based encoding since the preprocessing heuristic presented in
Section 4 is applicable only to locus-based encodings.

– Selection and crossover: To select two parents, we use a proportional selection
scheme where the probability for the best solution to be chosen is four times
higher than that for the worst solution. A crossover operator creates a new
offspring by combining parts of parents. In the graph bisection problem, we
use five-point crossover. After the crossover, an offspring may not satisfy
the balance. It selects a random point on the chromosome and changes the
required number of 1’s to 0’s (or 0’s to 1’s) from that point on. In the
permutation encoding, we use the partially matched crossover [17]. There is
no duplicated gene value in the offspring and it need not be repaired in case of
the linear arrangement problem. However, since it may consist of more than
one mutually disconnected subcycle, it may not be a proper Hamiltonian
cycle in case of TSP. To resolve this problem, we used the repair algorithm
introduced in [8].

– Local improvement: Hybrid genetic algorithms have been considered natu-
ral in solving a difficult problem to get desirable performance since genetic

Problem-Independent Schema Synthesis for Genetic Algorithms 1115

1. Generate M solutions with relatively high fitness;
2. Compute distance for each gene pair;
3. Make a gene-interaction graph;
4. Find a gene arrangement;

4 5

1

5

4

2

3

1 2 3

5134 2

3

1

5

4

2

3

2 45 1

Fig. 2. The structure of problem-independent schema preprocessing

algorithms are not so good at fine tuning near local optima. In this study,
we use one of the most basic local improvement heuristic, 2-Opt, which
has 2-exchange as its neighbor structure. It is applied to the offspring after
crossover in the GA.

– Replacement and stop condition: After generating an offspring, the GA re-
places the worse of the two parents with the offspring. It is called preselection
replacement. It stops after a fixed number of generations.

4 Problem-Independent Gene Rearrangement

As mentioned in Section 3, we use locus-based encodings for GA and rearrange
the genes. Figure 2 shows the framework of the proposed schema preprocessing.
It does not depend on any problem-specific knowledge.

– Generating high quality solutions: First, it generates M solutions with rel-
atively high fitness. In this study, we generated 100 solutions using 2-Opt
heuristics.

– Computing the distance for each gene pair: From the generated solution set,
it computes the gene distance between each pair of genes according to its
encoding type. Figure 3 describes how to measure the distance D(gi, gj)
between two genes gi and gj . In the figure, fl(gi) means the value of gene
gi in the lth solution. As explained in Section 3, binary encoding is used
for graph bipartition problem. Sequential permutation encoding and cyclic
permutation encoding are used for linear arrangement problem and TSP,
respectively. Thus, we get a weighted complete graph with vertices and edges
corresponding to genes and gene distances, respectively.

– Making a gene-interaction graph: It transforms the obtained weighted graph
into unweighted sparse graph called gene-interaction graph. We assume that
the edge weights in the weighted graph has the Gaussian distribution. To get
the gene-interaction graph, it chooses only the heavy-weighted edges with
95% confidence level.

1116 Y.-H. Kim, Y.-K. Kwon, and B.-R. Moon

Binary encoding

D(gi, gj) =
1
M

M∑

l=1

I(fl(gi) �= fl(gj))

Sequential permutation encoding

D(gi, gj) =
1
M

M∑

l=1

|fl(gi) − fl(gj)|

Cyclic permutation encoding

D(gi, gj) =
1
M

M∑

l=1

argmink(gi = fk
l (gj) or gj = fk

l (gi))

Fig. 3. Gene-distance measure in locus-based encoding

Fig. 4. Reordering in graph bisection: instance U500.10

– Finding a gene arrangement: From the gene-interaction graph, it performs
gene rearrangement. Given the set of genes {g1, g2, . . . , gn}, a gene rear-
rangement {gσ(1), gσ(2), . . . , gσ(n)} is represented by a bijective map σ :
{1, 2, . . . , n} → {1, 2, . . . , n}. Gene vi is the jth gene in the gene rearrange-
ment if σ(j) = i. In general, the objective of gene rearrangement is to pre-
serve the clustering structure of the gene-interaction graph. In this paper,
we use three general graph-search methods: BFS, DFS, and Max-Adjacency
[2]. BFS and DFS reordering performs a breadth first search and a depth
first search, respectively, on the input graph starting at a random vertex.
The order in which the vertices are visited by the BFS or DFS is used to
reorder the vertices. In Max-Adjacency reordering [31], starting at a random
vertex, the vertex with the most edges incident to previously ordered vertices
is iteratively added to the ordering.

5 Experimental Results

5.1 Graph Bisection

We tested our approach on a total of 21 graphs which consist of three groups of
graphs: random graphs (Gn.d), random geometric graphs (Un.d), and caterpillar
graphs (cat.n and rcat.n). They have been used in a number of other studies

Problem-Independent Schema Synthesis for Genetic Algorithms 1117

Table 1. Experimental results in graph bisection problem

Graph Basic ordering BFS reordering DFS reordering Max-Adj reordering
G500.2.5 52.48 52.38 51.50 51.94
G500.05 220.96 220.58 221.12 220.84
G500.10 630.32 629.88 630.34 629.64
G500.20 1751.48 1749.12 1750.14 1748.84

G1000.2.5 101.08 99.96 101.64 100.02
G1000.05 455.28 454.72 456.20 454.90
G1000.10 1374.04 1374.62 1372.88 1372.18
U500.05 8.66 5.88 4.66 4.72
U500.10 34.24 28.06 26.74 26.38
U500.20 178.28 178.12 178.18 178.36
U500.40 412.00 412.00 412.00 412.00
U1000.05 26.18 15.00 16.24 12.80
U1000.10 72.26 56.82 44.98 48.44
U1000.20 239.50 231.62 228.16 230.32
U1000.40 737.00 737.00 737.00 737.00
cat.352 3.56 1.04 1.28 1.76
cat.702 7.64 8.60 4.36 5.60
cat.1052 12.32 15.84 9.76 8.40
rcat.134 1.00 1.00 1.00 1.00
rcat.554 2.48 1.92 1.52 1.32
rcat.994 3.64 2.44 2.48 2.68

Average over 100 runs.

[20] [7] [10] [4]. Table 1 shows the experimental results. In the table, “BFS,”
“DFS,” and “Max-Adj” represent the gene preprocessing methods. We should
note again that this preprocessing is performed on the gene-interaction graphs
which are independent of problems differently from previous static reordering
methods such as [6] and [10]. We arrange the genes randomly in “Basic order-
ing.” The GAs have the same framework except the preprocessing. Preprocessed
GAs significantly outperformed the GA in which genes are arranged randomly.
In particular, the preprocessing showed larger performance improvement on ge-
ometric graphs and caterpillar graphs. We should also note that we can get
improved solutions by using a stronger local optimization heuristic than 2-Opt.
Here, we fixed the local optimization with 2-Opt since our major concern is the
effect of the suggested reordering method.

To get visual insight into the reordering, we drew a problem instance and the
preprocessed order in Figure 4. Figure 4(a) shows the original graph. Figure 4(b)
and 4(c) were acquired by drawing segments between all consecutive vertices in
each ordering. Of course, randomly ordered genes do not reflect any relation
between most pair of vertices. We can observe that BFS helps highly related
genes to stay close in the chromosome.

1118 Y.-H. Kim, Y.-K. Kwon, and B.-R. Moon

Table 2. Experimental results in linear arrangement problem

Graph Basic ordering BFS reordering DFS reordering Max-Adj reordering
U500.05 162852.40 158473.18 159004.50 158562.42
U500.10 317022.28 306477.68 308955.18 307840.62
U1000.05 658743.66 643714.92 647381.98 643003.50
U1000.10 1355660.12 1333089.58 1339380.60 1335310.82

Average over 100 runs.

Table 3. Experimental results in TSP

Instance Basic ordering BFS reordering DFS reordering Max-Adj reordering
lin318 42499.67 42451.82 42404.98 42406.36
pcb442 51886.53 51476.48 51510.38 51489.06
att532 28629.40 28173.80 28209.30 28199.80
rat783 9304.47 9104.72 9111.20 9095.08

Average over 100 runs.

Fig. 5. Reordering in linear arrangement: instance U500.05

5.2 Linear Arrangement

To test our approach on the linear arrangement problem, we used sparse geo-
metric graphs out of the graphs used in Table 1. Table 2 shows the experimental
results. The three methods outperformed “Basic ordering” in all instances. In
particular, “BFS” showed the best performance on the average. We also drew in
Figure 5 the order of genes after a reordering on the linear arrangement problem.
We can also observe that highly related genes stay close in the chromosome.

5.3 Traveling Salesman Problem

Table 3 shows the experimental result on four instances of TSPLIB1. The re-
sults are consistent with the two previous experiments. GAs preprocessed by
BFS, DFS, and Max-Adj have more chances to find good solutions than the
basic ordering. Figure 6 shows the drawing of the gene orders on an instance
att532. We can observe that closely located cities tend to locate closely in the
1 http://www.iwr.uniheidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html

Problem-Independent Schema Synthesis for Genetic Algorithms 1119

Fig. 6. Reordering in TSP: instance att532

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(a) Tour found by Fig.6(b)
0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(b) Tour found by Fig.6(c)

Fig. 7. TSP solutions: instance att532

chromosome with the BFS reordering. We can also observe the effect of reorder-
ing by visualizing the TSP tour. Figure 7 shows representative tours of TSP by
GAs with the orderings of Figure 6. The GAs found considerably different tours
according to their orderings.

6 Conclusions

In this paper, we proposed a static reordering framework of genes in locus-
based encodings. It showed consistent performance improvement over genetic
algorithms without reordering. One may be able to devise a better reordering,
as a result of exploiting problem-specific knowledge, as far as each problem is
concerned. The most notable feature of the suggested method is that it does
not need any problem-specific information during the reordering process. When
a new problem is given for GA, we do not have to devise a new preprocessing
heuristic. The only thing we need is a measure of gene interaction for each
problem. However, it may not be a big burden since most problem encodings
can be classified into a number of representative encodings. Moreover, there exist
useful studies on gene interactions [13] [35] [36] [14] [30] [33].

We considered only the linear encoding in this study. Although it is tra-
ditional and the most popular encoding, multi-dimensional encodings are also
becoming common in the GA community [9] [22]. The proposed reordering frame-
work has a limitation that it can be just applied to the linear encoding. Extending
the reordering to multi-dimensional encodings seems to be a topic worth trying.

1120 Y.-H. Kim, Y.-K. Kwon, and B.-R. Moon

Acknowledgment. This work was partly supported by Optus Inc. and Brain
Korea 21 Project. The RIACT at Seoul National University provided research
facilities for this study.

References

1. D. Adolphson and T. Hu. Optimal linear ordering. SIAM J. Appl. Math.,
25(3):403–423, 1973.

2. C. Alpert and A. B. Kahng. A general framework for vertex orderings, with applica-
tions to netlist clustering. In IEEE/ACM International Conference on Computer-
Aided Design, pages 63–67, 1994.

3. J. Bagley. The Behavior of Adaptive Systems Which Employ Genetic and Corre-
lation Algorithms. PhD thesis, University of Michigan, Ann Arbor, MI, 1967.

4. R. Battiti and A. Bertossi. Greedy, prohibition, and reactive heuristics for graph
partitioning. IEEE Trans. on Computers, 48(4):361–385, 1999.

5. M.J. Blesa, P. Moscato, and F. Xhafa. A Memetic Algorithm for the Minimum
Weighted k-Cardinality Tree Subgraph Problem. In 4th Metaheuristics Interna-
tional Conference, volume 1, pages 85–90, 2001.

6. T. N. Bui and B. R. Moon. Hyperplane synthesis for genetic algorithms. In Fifth
International Conference on Genetic Algorithms, pages 102–109, July 1993.

7. T. N. Bui and B. R. Moon. A genetic algorithm for a special class of the quadratic
assignment problem. The Quadratic Assignment and Related problems, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 16:99–116,
1994.

8. T. N. Bui and B. R. Moon. A new genetic approach for the traveling salesman
problem. In IEEE Conference on Evolutionary Computation, pages 7–12, June
1994.

9. T. N. Bui and B. R. Moon. On multi-dimensional encoding/crossover. In Sixth
International Conference on genetic Algorithms, pages 49–56, 1995.

10. T. N. Bui and B. R. Moon. Genetic algorithm and graph partitioning. IEEE Trans.
on Computers, 45(7):841–855, 1996.

11. E. K. Burke, J. P. Newall, and R. F. Weare. A memetic algorithm for university
exam timetabling. In 1st International Conference on the Practice and Theory
of Automated Timetabling (ICPTAT’95, Napier University, Edinburgh, UK, 30th
Aug – 1st Sept 1995), pages 496–503, 1995.

12. C. Cheng. Linear placement algorithms and applications to VLSI design. Networks,
17:439–464, 1987.

13. Y. Davidor. Epistasis variance: A viewpoint on ga-hardness. In Foundations of
Genetic Algorithms 3, pages 23–35. Morgan Kaufmann, 1991.

14. Cyril Fonlupt, Denis Robilliard, and Philippe Preux. A bit-wise epistasis measure
for binary search spaces. Lecture Notes in Computer Science, 1498:47ff., 1998.

15. M. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, 1979.

16. D. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis,
and first results. Complex System, 3:493–530, 1989.

17. D. Goldberg and R. Lingle. Alleles, loci, and the traveling salesman problem.
In First International Conference on Genetic Algorithms and Their Applications,
pages 154–159, 1985.

Problem-Independent Schema Synthesis for Genetic Algorithms 1121

18. G. R. Harik and D. E. Goldberg. Learning linkage. In Foundations of Genetic
Algorithms 4, pages 247–262. 1996.

19. J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

20. D. S. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization by simulated
annealing: An experimental evaluation, Part 1, graph partitioning. Operations
Research, 37:865–892, 1989.

21. S. Jung and B. R. Moon. Toward minimal restriction of genetic encoding and
crossovers for the 2D Euclidean TSP. IEEE Transactions on Evolutionary Com-
putation, 6(6), 2002.

22. A. B. Kahng and B. R. Moon. Toward more powerful recombinations. In Sixth
International Conference on genetic Algorithms, pages 96–103, 1995.

23. Y. H. Kim and B. R. Moon. A hybrid genetic search for graph partitioning based on
lock gain. In Genetic and Evolutionary Computation Conference, pages 167–174,
2000.

24. P. Merz and B. Freisleben. Genetic local search for the TSP: New results. In IEEE
Conference on Evolutionary Computation, pages 159–164, 1997.

25. P. Merz and B. Freisleben. Memetic algorithms and the fitness landscape of the
graph bi-partitioning problem. In Proceedings of the 5th International Confer-
ence on Parallel Problem Solving From Nature, 1998. Lecture Notes in Computer
Science, 1498:765–774, Springer-Verlag.

26. P. Merz and B. Freisleben. Fitness landscape analysis and memetic algorithms for
the quadratic assignment problem. IEEE-EC, 4(4):337, November 2000.

27. Peter Merz and Bernd Freisleben. A comparison of memetic algorithms, tabu
search, and ant colonies for the quadratic assignment problem. In Proceedings
of the Congress on Evolutionary Computation, volume 3, pages 2063–2070. IEEE
Press, 6-9 1999.

28. Peter Merz and Bernd Freisleben. Fitness landscapes and memetic algorithm de-
sign. In David Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in
Optimization, pages 245–260. McGraw-Hill, 1999.

29. B. R. Moon and C. K. Kim. A two-dimensional embedding of graphs for genetic
algorithms. In International Conference on Genetic Algorithms, pages 204–211,
1997.

30. M. Munetomo and D. Goldberg. Identifying linkage by nonlinearity check, 1998.
31. H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs and

capacitated graphs. Siam J. of Disc. Math, 5(1):54–66, Feb 1992.
32. Y. Nagata and S. Kobayashi. Edge assembly crossover: A high-power genetic

algorithm for the traveling salesman problem. In 7th International Conference on
Genetic Algorithms, pages 450–457, 1997.

33. Martin Pelikan, David Goldberg, and Fernando Lobo. A survey of optimization by
building and using probabilistic model. Technical Report 99018, IlliGAL, Septem-
ber 1999.

34. Nicholas J. Radcliffe and Patrick D. Surry. Formal memetic algorithms. In Evolu-
tionary Computing, AISB Workshop, pages 1–16, 1994.

35. Colin Reeves and Christine Wright. An experimental design perspective on ge-
netic algorithms. In Foundations of Genetic Algorithms 3, pages 7–22. Morgan
Kaufmann, 1995.

36. Colin Reeves and Christine C. Wright. Epistasis in genetic algorithms: An exper-
imental design perspective. In Proceedings of the Sixth International Conference
on Genetic Algorithms, pages 217–224. Morgan Kaufmann, 1995.

1122 Y.-H. Kim, Y.-K. Kwon, and B.-R. Moon

37. Y. Saab and C. Chen. An effective solution to the linear placement problem. VLSI
Design Journal, 2(2):117–129, 1994.

38. D. I. Seo and B. R. Moon. Voronoi quantized crossover for traveling salesman
problem. In Genetic and Evolutionary Computation Conference, pages 544–552,
2002.

	Introduction
	 Preliminaries
	 Graph Bisection
	 Linear Arrangement
	 Traveling Salesman Problem (TSP)

	A Hybrid Genetic Algorithm
	Problem-Independent Gene Rearrangement
	Experimental Results
	Graph Bisection
	Linear Arrangement
	Traveling Salesman Problem

	Conclusions

