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Abstract. When Genetic Algorithms (GAs) are employed in multi-
modal function optimization, engineering and machine learning, iden-
tifying multiple peaks and maintaining subpopulations of the search
space are two central themes. In this paper, an immune system model is
adopted to develop a framework for exploring the role of mate selection
in GAs with respect to these two issues. The experimental results re-
ported in the paper will shed more light into how mate selection schemes
compare to traditional selection schemes. In particular, we show that
dissimilar mating is beneficial in identifying multiple peaks, yet harmful
in maintaining subpopulations of the search space.

1 Introduction

In the setting of multimodal function optimization, engineering and machine
learning, there are two important issues when a GA is used: (1) how fast can a
GA discover one or several peaks? And (2) can a GA maintain diverse subpop-
ulations in different parts of the search space?1 In this paper, we intend to use
the mate-selection framework proposed in [7] and present the research work for
investigating these two themes. In [7], it was shown that mate selection plays
a crucial role in GA’s search performance. In a nutshell, the dissimilarity-based
mate selection schemes facilitate locating a single, best-so-far solution at the
expense of generating lethal offspring; and the similarity-based mate selection
schemes enhance selection pressure toward highly-fit individuals such that the
GA’s population converges rapidly to a certain region of a fitness landscape.
As such, for the first question, we would expect the dissimilarity-based mate
selection to improve the GA’s search performance with respect to that metric.
On the other hand, our empirical results so far have showed that simple GAs
with the mate selection schemes are all subject to convergence (i.e., the simple
1 The first issue was briefly discussed in [7]. For the second issue, there are some

practical problems where maintaining subpopulations are critical. An example is the
application of genetic approach to decentralized PI controller tuning for multivariable
processes in [12].
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GAs cannot maintain subpopulations). Thus for the second question, we intend
to employ Smith et al.’s immune system model [11], which was shown to be
able to maintain diverse subpopulations, in order to offer additional insights
into how the mate selection schemes compare to traditional selection schemes.
In particular, we are interested in studying how different mate choices affect
the capability of Smith et al’s approach for maintaining subpopulations. Since
it has been shown, in [7], that the dissimilar mating mechanisms are harmful in
the sense of producing more useless hybrids, we expect that such mating pref-
erences will reduce the proportions of individuals in subpopulations. If so, the
next question would be to study if reducing the probability of dissimilar mating
(or increasing the probability of similar mating) can improve the capability for
maintaining subpopulations.

This paper presents the preliminary results we obtained while investigat-
ing the role of mate selection in the two issues discussed above. Before delving
fully into this paper, however, it is important to briefly review Goldberg and
Richardson’s fitness sharing mechanism [3] that serves as an idealized approach
for maintaining population diversity, and present Smith et al.’s immune sys-
tem model to discuss how it implements a form of implicit fitness sharing so
as to facilitate formation of subpopulations. We then summarize the relevant
framework for studying mate selection proposed in [7]. Section 3 presents ex-
perimental results that answer the two questions mentioned above. Finally, this
paper is concluded with the insights obtained for the mate selection schemes and
future research lines.

2 Relevant Work in Prior GA Research

2.1 Fitness Sharing

Fitness sharing was an idea motivated by Holland’s discussion [6] in which the
number of individuals occupying a niche is limited to that niche’s carrying capac-
ity. Goldberg and Richardson [3] then introduced a fitness sharing mechanism
that induces population diversity by penalizing individuals for the presence of
similar individuals in the population. The technique they proposed was shown to
be an effective method for maintaining subpopulations over several high-fitness
regions of the search space. However, it has two serious limitations: (1) the peaks
must be equidistant or nearly so, and (2) setting σs (a critical parameter in the
fitness sharing scheme that represents a cutoff distance, beyond which no sharing
will occur) requires knowledge about the number of peaks in the search space.
These limitations arise from the fact that fitness sharing is defined explicitly.

To avoid the difficulty of appropriately choosing σs Smith, Forrest and Perel-
son [11] introduced an algorithm that does not require explicit construction of
the sharing function. Their approach can implicitly achieve fitness sharing that
discovers for itself how many peaks are in the search space (including the case of
not equally spaced peaks), and allocate trials appropriately. The idea is to use
the metaphor of biological immune systems which can maintain the diversity
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needed for it to detect multiple antigens. Then the GA, combined with the im-
mune system idea, effectively distributes the population over several high-fitness
areas of the search space.

2.2 Binary Immune System Model

The immune system model considered in this paper is based on a model intro-
duced by Farmer et al. [1], where both antigens and antibodies are represented
by binary strings. It is a simplification from the real biology in which genes
are specified by a four-letter nucleic acid alphabet and recognition between an-
tibodies and antigens is based on their three-dimensional shapes and physical
properties. However, this abstract model of binary strings is rich enough for ex-
ploring how a relatively small number of recognizers (the antibodies) can evolve
to recognize a much larger number of different patterns (the antigens).

In this binary immune system model, recognition is evaluated through a
string matching procedure. The antigens are considered fixed, and a population
of N antibodies is evolved to recognize the antigens using a GA. For any set
of antigens, the goal is to obtain an antibody cover—a set of antibodies such
that each antigen is recognized by at least one antibody in the population.
Maintaining diverse antibodies is crucial for obtaining a cover [11].

An antibody is said to match an antigen if their bit strings are complemen-
tary (maximally different). Since each antibody may have to match against sev-
eral different antigens simultaneously, we do not require perfect bit-wise match-
ing. Many possible match rules are plausible physiologically (See [10] for ex-
amples). The degree of match is quantified by a class of match score functions
M : Antigen × Antibody → �. For instance, M can simply count the number
of complementary bits or M can identify contiguous regions of complementary
bitwise matches within the string.

Smith et al. [11] adopted a model in which a fixed set of antigens is given,
and the antibodies are initialized either to be completely random (to see if the
GA can learn the correct antibodies) or initially given the answer by setting the
population to include the correct antibodies (to test the stability of the answer).
Their mechanism for fitness scoring is as follows:

1. A single antigen is randomly selected from the antigen population.
2. From the population of N antibodies a randomly selected sample of size σ

is taken without replacement.
3. For each antibody in the sample, match it against the selected antigen, de-

termine the number of bits that match, and assign it a match score.
4. The antibody in the sample population with the highest match score is

determined. Ties are broken at random.
5. The match score of the winning antibody is added to its fitness. The fitness

of all other antibodies remains unchanged.
6. This process is repeated for C cycles (typically one to three times the number

of antibodies).
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In this scheme, since an antibody’s fitness is increased only if it is the best
matching antibody in the sample, the fitness values of antibodies are interde-
pendent. In [11] Smith et al. showed analytically how this procedure implicitly
embodies fitness sharing. Furthermore, Forrest et al. [2] reported that this scheme
can maintain subpopulations of antibodies that cover a set of antigens.

2.3 Mate Selection Schemes

Based on the idea of “assortative mating” used in biology, [7] proposed a frame-
work to investigate the role of mate selection in GA’s search power.2 Simply
stated, the goal was to shed more light into how specific mate selection schemes
compare to traditional selection schemes. In case of similar mating, similar indi-
viduals are chosen for mating; in case of dissimilar mating, dissimilar individuals
will mate with each other. That is, the selection-for-mating step of a simple GA
[9] is modified as:

During each mating event, a binary tournament selection3—with probability
one the fitter of the two randomly sampled individuals is chosen—is run to
pick out the first individual, then choosing the mate according to the following
schemes:

Tournament Selection (TS): Run the binary tournament selection again to
choose the mate.

Tournament Dissimilar Mating (TDM): Run the binary tournament se-
lection two more times to choose two candidate partners; then the one more
dissimilar to the first individual is selected for mating.

Tournament Similar Mating (TSM): Run the binary tournament selection
two more times to choose two candidate partners; then the one more similar
to the first individual is selected for mating.

Random Dissimilar Mating (RDM): Randomly choose two candidate
partners; then the one more dissimilar to the first individual is selected for
mating.

Random Similar Mating (RSM): Randomly choose two candidate part-
ners; then the one more similar to the first individual is selected for mating.

We use the Hamming distance as the similarity metric. Notice that in the
mate selection schemes above if the two candidates are of the same Hamming
distance to the first individual, then one of them is randomly selected.

In the five approaches above, the first individual is always sampled by the
regular tournament selection. For TDM and TSM, there are two ways to affect
an individual’s probability of being selected. The first results from the fitness
evaluation explicitly defined by a given test function. The second is from the
preference of each individual over other individuals that possess certain char-
acteristics. The two sources complicate the probability of an individual being
2 See [7] for a comprehensive literature review of the relating mate-selection work in

prior GA research and a detailed discussion on why the framework was proposed.
3 Tournament selection is employed here for low computational cost.
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selected for actual mating. It is expected that tournament selection contributes
more selection pressure toward highly-fit individuals, and the mate preference
refines the searching for mates. As for RDM and RSM, the selection pressure is
reduced by removing the tournament selection acting upon the candidate mates.
The only source that affects the mate selection probability is precisely the mat-
ing preference, which exerts a selection pressure on the population based on
genotype.

3 Experimental Results

To illustrate the effects of mate selection on the subpopulation-maintaining abil-
ity of Smith et al.’s immune system algorithm (we call it the diversity algorithm
from here on), we use a simple example in which antigen populations cannot
be matched by a single antibody type. Consider an antigen population that is
composed of 50% 000 . . . 000 (all 0’s) and 50% 111 . . . 111 (all 1’s). In order for
an antibody population to recognize these antigens, there would need to be some
antibodies that are all 1’s and others that are all 0’s. Thus, a solution to this
problem requires the GA to maintain two different solutions simultaneously. This
is an example of a “multiple peaks” problem because there are two incompatible
solutions that are maximally different. Typically, on multiple-peaks problems
it is difficult for simple GAs to distribute the population over several peaks of
a fitness landscape (two different subpopulations of antibodies that match two
types of antigens, in this case). This is because the selection pressure in a simple
standard GA usually entails strong convergence tendency to only one peak. Even
without selection pressure, genetic drift due to sampling error can still lead the
GA to converge on one of the peaks [4].

Forrest et al. [2] reported in their numerical experiments that the GA with
the diversity algorithm can effectively avoid strong convergence to one peak
and distribute the population over multiple peaks. As has been discussed in the
beginning of this paper, we expect the mate selection schemes play an important
role in maintaining subpopulations. In particular, our objective is to address the
following questions concerning the capability of the GA, along with Smith’s
algorithm, for maintaining subpopulations:

– Can the GA with different mate selection schemes maintain stable subpop-
ulations of antibodies for recognizing different antigens, or does it always
converge on one peak? If it can maintain diverse subpopulations, then

– Is the proportion of antibodies in each subpopulation being affected by dif-
ferent mating preferences?4

– Do different mating preferences have influence on the discovery time of anti-
gens?

In light of pattern-recognition, Forrest et al. [2] pointed out that the immune
system needs to recognize bacteria partially on the basis of the existence of
4 How many antibody representatives must be in the population for an antigen to be

identified is critical. See [2] for a detailed discussion.
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certain unusual molecules that are inherently different from human cells, since
many bacteria have cell walls made from polymers that do not occur in humans.
With this as motivation, we study the GA’s ability to detect common patterns
(building blocks) in the antigen population and adopt the building-block idea in
[6] to calculate fitnesses of antibodies.

Table 1. Building blocks of antigens

b1 = 11111***************; s1 =10
b2 = *****11111**********; s2 =10
b3 = **********11111*****; s3 =10
b4 = ***************11111; s4 =10
b5 = 00000***************; s5 =10
b6 = *****00000**********; s6 =10
b7 = **********00000*****; s7 =10
b8 = ***************00000; s8 =10

Table 1 illustrates the building blocks of antigens 111 . . . 1 and 000 . . . 0 (string
length is of 20 bits5). An antibody is said to match an antigen if its bit string
is complementary to the antigen at certain building blocks. Specifically, the
match score function Mb is to identify the building blocks for which an antibody
matches an antigen, and then assign corresponding scores to that antibody. For
example, given an antigen 111 . . . 1, an antibody with the first five and the last
five bits being all 0’s will receive score s1 + s4 = 20, since these ten bits are
complementary to those of the antigen.

Smith et al. [11] considered two cases for the score calculation of antibodies—
perfect match and partial match. In case of perfect match, an antibody receives
a non-zero score only if it perfectly matches the antigen. In case of partial match,
an antibody receives a non-zero score if it partially matches the antigen. In terms
of the distance dij between antibody i and antigen j, partial match indicates
the degree by which an antibody matches an antigen—i.e., the number of bits
of an antibody that are complementary to the corresponding bits of an antigen.
The degree of match determines the specificity of an antibody. For example, if
dij = 0, the matching is completely specific (that is, the antibody must perfectly
match the antigen), but if dij �= 0, it is partially matched. The consequence of a
partial matching rule is that there is a trade-off between the number of antibodies
used and their specificity—as the specificity of antibodies increases, so does the
number of antibodies required to achieve a certain level of detection [5].

For the scoring rule discussed in the building-block-based recognition prob-
lem, we can also expand its definition by allowing partial match. In other words,
5 The small string length here serves well for illustrating the effect of the mate selection

schemes. We current have some results for larger string lengths that are consistent
with the results obtained for the small string length.
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Table 2. Illustration of the immune-based GAs.

1. Randomly generate an initial population of n antibodies.

2. Evaluate antibodies’ fitnesses by the six steps of the diversity algorithm.

3. Repeat until n offspring have been created.

a. select a pair of parents for mating by particular selection schemes;
b. apply crossover operator;
c. apply mutation operator.

4. Reset all the new individuals’ fitnesses to zero and replace the current
population with the new population.

5. Go to Step 2 until terminating condition.

if an antibody matches an antigen at all the bits of a building block, it is a perfect
building-block match; if not all the bits of that building block are required for
matching, it constitutes a partial building-block match. Therefore, the prefect
building-block match case is that an antibody scores if all of its bits at a building
block are complementary to those of an antigen. On the other hand, a case for
partial match could allow an antibody to score with only 80% bits (i.e., 4 bits
in case of the building blocks shown in Table 1) of a building block at which it
matches an antigen. The result of this flexible scoring is a smaller population size
required to achieve a certain level of recognition performance. In this paper, we
mostly concentrate on this latter case for calculating antibody scores. (In case
of 100% building-block match, a few experiments conducted so far have shown
similar qualitative results as the 80% building-block match case, but it requires
much larger population sizes, i.e., much higher computational costs, to achieve
similar levels of performance.)

3.1 Effects of Mate Selection on Maintaining Subpopulations

To address the questions mentioned in the beginning of this section we conduct
a series of GA experiments using the diversity algorithm. The illustration of the
immune-based GAs is shown in Table 2.6 Our first objective is to investigate
effects of mate selection on the diversity algorithm’s subpopulation-maintaining
6 Since in the diversity algorithm the match scores of winning antibodies are contin-

uously accumulated, after each generation their fitness values can be large. Thus at
step 4 of Table 2 we reset the fitnesses of the new population’s individuals to zero
after each generation to prevent fitnesses from unlimited increase.
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ability. Unless stated otherwise, these experiments use an antibody population
size of 100, crossover rate of 0.7, mutation rate of 0.005, and ran for 150 gen-
erations. The antigen population is 50% 000 . . . 0 and 50% 111 . . . 1, and both
antigens and antibodies are binary strings of length 20. The number of samples,
σ, is 10, which is 10% of the population size. We choose this value because Smith
et al.’s analysis suggests that too small or too large a sample size cannot show
fitness sharing’s effect. In addition, as mentioned in the preceding section, the
number of cycles (C) does not have a bearing on the antibodies’ expected fit-
nesses, 100 cycles (i.e., population size) used for each generation turned out to
serve well for displaying subpopulation-maintaining results. Thus the total func-
tion evaluations for each run are generations×cycles×sample size, which equal
150,000.

Fig. 1 illustrates the experimental results of the diversity algorithm (averaged
over 50 runs), evolved by the GAs with TS, TDM, TSM, RDM and RSM.
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Fig. 1. The number of antibodies that correctly recognize antigens

These are the results for the numbers of antibodies that recognize antigens
when all four building blocks are 80% correctly matched. Note that only the
curves with small error bars (95% confidence intervals7) can be used for reliable
judgements (we will discuss the reason for the larger error bars shortly), and
thus the results for TS, TDM and RDM can be compared. It is clear that the

7 The vertical bars overlaying the metric curves throughout this paper represent the
95-percent confidence intervals calculated from Student’s t-statistic [8].
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dissimilar mating schemes, TDM and RDM, generate less desired antibodies
than the regular tournament selection. The reason is in the following:

When crossover is turned on (crossover rate is .7, in this case), the
dissimilarity-based mate selection increases the probability of producing useless
hybrids—e.g., given an individual 111 . . . 1, and two candidate mates 111 . . . 1
and 000 . . . 0, the GAs with the dissimilar mating schemes tend to choose 000 . . . 0
for mating with 111 . . . 1, and the crossing-over between these two strings gener-
ates offspring that fall into the valley between the two peaks. Therefore, TDM
and RDM maintain a smaller fraction of desired antibodies.

On the other hand, we see that TDM generates a larger fraction of desired
antibodies than RDM. The difference between theses two schemes is the method
of selecting the second individual for mating—that is, in TDM fitter individuals
have higher probabilities of being selected as mates, but this is not the case for
RDM. As a result, TDM can pick out more individuals from the two peaks than
RDM, which in turn increases the proportion of desired antibodies.

A remedy for the problem of producing useless hybrids would be to reduce
dissimilar mating rates. In terms of the example above, the regular tournament
selection confers 111 . . . 1 and 000 . . . 0 with equal probability of being selected for
mating, thereby reducing the likelihood of two mating individuals chosen from
the two peaks. However, if individuals tend to select similar mates, the selection
pressure toward these individuals may be strong enough that the GA’s popu-
lation converges on only one peak. If this is the case, the diversity algorithm’s
capability for maintaining subpopulation is degraded.

The larger error bars for TSM and RSM in Fig. 1 illustrate this situation.
Since TSM and RSM induce too strong a selection pressure, most of the GA’s
population members converge to only one peak. At generation 150, the GA with
TSM has 20 (out of 50) runs in which most of the individuals converge to all
1’s, and in 14 (out of 50) runs most of the individuals converge to all 0’s, and
there are 16 runs in which the two peaks are present, simultaneously. In case of
RSM, there are 17 runs in which most of the individuals converge to all 1’s, 21
runs in which most of the individuals converge to all 0’s, and 12 runs where the
two peaks are lost.

As a further illustration, Fig. 2 is the experimental results of a typical run
for the number of desired antibodies obtained based on TSM. This figure shows
that 000 . . . 0 are drown out by 111 . . . 1 after generation 60, although they do
show up in earlier generations. This is because in TSM, similar individuals are al-
ways chosen as mates (with probability one)—a selection pressure toward similar
mates enhances the convergence on one peak.

3.2 Effects of Mate Selection on the Discovery of Peaks

In the immune system problem considered, thus far we have been concerned with
maintaining desired antibody subpopulations. However, there is another relevant
issue we have not yet studied: the formation of the antibody subpopulations
requires these antibodies to be discovered first. This is equivalent to the problem
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Fig. 2. The number of antibodies that correctly recognize antigens (based on the
tournament similar mating), where all portion of the solid line (i.e., corresponding
to 000 . . . 0) after generation 10 is on the 0 level

of finding multiple peaks. Since it has been shown, in [7], that the dissimilarity-
based mate selection facilitates locating a single, best-so-far solution, we are
interested in investigating if dissimilar mating is also more beneficial in finding
multiple peaks than traditional selection schemes.

Table 3 displays the averaged mean function evaluations (over 50 runs) of
discovering 111 . . . 1 and 000 . . . 0. These results show no obvious difference be-
tween various mate selection schemes for finding the two peaks, except that
there are two runs where 000 . . . 0 was not found by the RSM GA, and this GA
used a bit more evaluations to locate 111 . . . 1 than the other GAs. A closer
inspection again shows the selection pressure toward similar individuals led the
two particular runs of the GA to converge on 111 . . . 1, thereby precluding the
discovery of the other peak. However, as population size decreases, the discrep-
ancies between these mating schemes become more obvious. Table 4 illustrates
the results for the number of runs (out of 50) in which antibodies 111 . . . 1 and
000 . . . 0 are discovered, respectively, based on population size 20 and sample size
2 (other parameter values remain unchanged). It is clear that the dissimilarity-
based mating preferences facilitate locating two peaks. This is again because
the similar mating schemes introduce a selection pressure strong enough that
the corresponding GAs show inferior performance. All this confirms with our
expectation that the dissimilarity-based mate selection is beneficial in locating
multiple peaks.
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Table 3. The mean function evaluations of discovering antibodies 111 . . . 1 and 000 . . . 0
(over 50 runs)

Antibody TS TDM RDM TSM RSM
111 . . . 1 2340 (368) 2460 (333) 2460 (272) 2440 (204) 3060 (338)
000 . . . 0 2300 (206) 2540 (323) 2320 (270) 2180 (224) 48 runs reached

Table 4. The number of runs (out of 50) in which antibodies 111 . . . 1 and 000 . . . 0
are discovered

Antibody TS TDM RDM TSM RSM
111 . . . 1 20 34 40 18 23
000 . . . 0 28 37 34 23 23

4 Conclusions and Future Work

In this paper, we have described Smith et al.’s immune system model in
which subpopulations can be maintained through specific interactions among the
strings. We have emphasized the performance of the GA in the binary immune
system model, investigating how mate selection affects the GA’s subpopulation-
maintaining ability and the effects of mate selection on the discovery of multiple
peaks. Both of these issues are important in the setting of multimodal function
optimization, engineering and machine learning.

In studying the subpopulation-maintaining problem, the results illustrate
that the dissimilar mating schemes are harmful in the sense of producing more
lethal offspring. Consequently, the proportion of individuals that are representa-
tives of different antibodies is reduced. We then showed that reducing the prob-
ability of dissimilar matings can remedy this problem. We also hoped to improve
the GAs’ performance by further increasing similar mating rates. However, as
shown by the results obtained for TSM and RSM, they introduce a selection
pressure strong enough that the population converges on only one peak.

In studying the peaks-identifying problem, we showed that the dissimilarity-
based mate selection schemes facilitate locating multiple peaks of the fitness
landscape. This is a crucial extension of the results obtained in [7], where dis-
similar mating is shown to be more advantageous in finding a single, best-so-far
solution.

Since the pattern-recognition strategy in our approach was based on schema
detection, it is worth further exploration because in real problems when there
are many more antigens than antibodies, antibodies need to detect common re-
gions. In future work, we also hope to extend the results of schema detection and
multiple-peaks identification to more realistic scale of antigens and antibodies.
Finally, we would like to develop an analytical analysis to enhance our under-
standing for mate selection in the context of the immune-GA-based system.
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