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Abstract. Estimation of Distribution Algorithms (EDAs) are new
promising methods in the field of genetic and evolutionary algorithms.
In the case of conventional Genetic and Evolutionary Algorithm studies
to apply Constraint Satisfaction Problems (CSPs), it is well-known that
the incorporation of the domain knowledge in the CSPs is quite effective.
In this paper, we propose a hybridization method (memetic algorithm)
of Estimation of Distribution Algorithms with a repair method. Experi-
mental results on general CSPs tell us the effectiveness of the proposed
method.

1 Introduction

As the scale and the complexity of engineering problems increases, the dis-
tributed processing approaches inspired by the constraints-oriented problem
solving methods are now receiving attentions. The notion of Constraint Sat-
isfaction Problems (CSPs) provides us general framework adaptable to a wide
variety of problems in various fields [1,2]. The CSPs are a problem class which
consists of variables and constraints on the variables. Solving problems by using
Constraint-oriented approach is that, first, we have to describe constraints which
should satisfy between elements in the target environments. Then, we employ
“constraint satisfaction problem solver (CSP solver),” to find satisfied solutions
of the described problem instance such that all constraints in the problem are
satisfied. Recently, CSP solvers from genetic and evolutionary algorithms have
been broadly studied by many researchers [2]-[9]. These studies showed that the
uses of the domain knowledge in the CSPs, that is, the hybridization with lo-
cal search method (repair method) based upon the notion of Min-Conflict Hill
Climbing (MCHC) [10], and the utilization of constraint networks [6], are quite
effective.

Estimation of Distribution Algorithms (EDAs) are new promising methods
in the field of genetic and evolutionary algorithms [11,12]. The EDAs employ the
probabilistic model, which is constituted by a database containing the genetic
information of the selected individuals in the previous generation, to yield a

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2723, pp. 991–1002, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.2     Für schnelle Web-Anzeige optimieren: Ja     Piktogramme einbetten: Ja     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 600 600 ] dpi     Papierformat: [ 594.962 841.96 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 600 dpi     Downsampling für Bilder über: 900 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren     Methode: StandardArbeitsbereiche:     Graustufen ICC-Profil:  ¡M     RGB ICC-Profil: sRGB IEC61966-2.1     CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Nein     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: NeinANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ( ¡M)     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 600 600 ]>> setpagedevice



992 H. Handa

   Set of Units:  U = {w, x, y, z}  
   Set of Labels:  L = { r, g, b}
   Unit Constraint Relations:  T = { t1, t2, t3, t4, t5}
                 t1=(x,y), t2=(y,z), t3=(z,w), t4=(x,w), t5=(y,w)
   Unit-Label Constraint Relations::  R = { R1, R2, R3, R4, R5}
                 R1 = { (r,g), (r,b), (g,r), (g,b), (b,r), (b,g)}
                 R2 = { (r,g), (r,b), (g,r), (g,b), (b,r), (b,g)}
                 R3 = { (r,g), (r,b), (g,r), (g,b), (b,r), (b,g)}
                 R4 = { (r,g), (r,b), (g,r), (g,b), (b,r), (b,g)}
                 R5 = { (r,g), (r,b), (g,r), (g,b), (b,r), (b,g)}
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Fig. 1. An example of CSP: graph coloring problem

new population. Hence, in the EDAs, Genetic operations such like crossover and
mutation are not adopted.

In this paper, we propose a new evolutionary constraints satisfaction problem
solver incorporating a repair method into the EDA. Moreover, we also introduce
a manner which incorporates the knowledge of the constraint network to the
Bayesian Network structure search.

Related works are described as follows: Tsang wrote comprehensive text book
about CSPs which is also written about genetic approach for solving CSPs [1].
Eiben summarized how to solve several classes of CSPs by using GAs in [3,4].
Riff proposed a fitness function and genetic operators for solving CSPs effec-
tively, which are utilizing the knowledge with regard to the constraint network
[5,6]. Coevolutionary Evolutionary Computations were often adopted to solve
CSPs [2,9]. With respect to the EDAs, Larrañaga and Lozano edited a compre-
hensive book of the EDAs[12]. EDAs in section 3 are introduced by referring
to this textbook. Genetic algorithms with local search methods are often called
“memetic algorithms,” and have been studied by many researcher for the last
decade [13].

In the next section, the basics of the CSPS will be described. Then we will
briefly introduce three kinds of EDAs in section 3, which are employed for our
experiments. Section 4 will introduce the proposed method. Then, experiments
on general Constraint Satisfaction Problems will be carried out for conventional
GEA approach, EDAs introduced in section 3 and the proposed method. Section
6 will conclude this paper.

2 Constraint Satisfaction Problems

2.1 Formulation

Constraint Satisfaction Problems (CSPs) are a class of problems which consists
of variables and constraints on the variables [1]. In addition, the class of CSPs in
which each constraint in the problems is related only to two variables is called
binary CSPs. In this paper, we treat a class of discrete binary CSPs, where the
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Procedure Min-Conflict Hill Climbing
begin

e(i)← evaluate each variable i in the current solution
until Stopping criteria is hold

i∗ ← Select a variable with the worst evaluation
Re-evaluate e(i∗) for all labels in the variable i∗

Select a label in the variable i∗ with the best evaluation
Modify the current solution to the selected label
Re-evaluate the current solution with respect to the modification

end
end

Fig. 2. Pseudo code of Min-Conflict Hill Climbing

word ‘discrete’ means that each variable is associated with a finite set of discrete
values (labels) that are candidate values of the variable. An example of the
graph coloring problem [10], a binary CSP which is one of the benchmark CSP
is delineated in Fig. 1. As depicted in the figure, CSPs are defined by (U, L, T, R).
U , L, T and R denote a set of units (variables), a set of labels (values), unit
constraint relations and unit-label constraint relations, respectively.

In this paper, we use two indices, tightness and density to analyse the diffi-
culty of CSPs [1]. The tightness of an edge ij is given as the ratio of the number
of satisfying 2-compound labels (in unit-label constraint relations) on the edge
ij over the number of all 2-compound labels on the edge ij. Furthermore, the
tightness of a problem is given by the averaged value of tightness of the edges
in the problem. The density of a problem indicates the proportion of constraint
relations that actually exist between any pair of nodes. Furthermore, the number
of 2-compound labels on the edge XY is the same as the product of the number
of labels on each nodes, that is, 3 × 3.

2.2 Min-Conflict Hill Climbing

This local search method, often called heuristic repair method, is adopted not
only from genetic and evolutionary algorithms but also from approximation al-
gorithms for solving CSPs. The procedure of the MCHC is described in Fig. 2:
The MCHC begins with a given solution. First, the solution is evaluated. In that
time, the number of constraint violations for each variable is memorized. Then,
the variable which have the most constraint violations, i.e., the least evaluation,
is chosen. If some variables tie with each other, the variable is randomly chosen
among them. For the selected variable, all the labels are examined and evalu-
ated. In similar to the variable selection, one of labels with the least constraint
violations is chosen (randomly in the case of tie). Re-evaluation for above mod-
ification is carried out, and the process returns to the variable selection phase.
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Procedure Estimation of Distribution Algorithm
begin

initialize D0

evaluate D0

until Stopping criteria is hold
DSe

l−1 ← Select N individuals from Dl−1

pl(x)← Estimate the probabilistic model from DSe
l−1

DSe
l ← Sampling M individuals from pl(x)

end
end

Fig. 3. Pseudo code of Estimation of Distribution Algorithms

3 Brief Introduction of the Estimation of Distribution
Algorithms

3.1 General Framework of EDAs

The Estimation of Distribution Algorithms are a class of evolutionary algorithms
which adopt probabilistic models to reproduce the genetic information of the
next generation, instead of conventional crossover and mutation operations. The
probabilistic model is represented by conditional probability distributions for
each variable (locus). This probabilistic model is estimated from the genetic
information of selected individuals in the current generation. Hence, the pseudo-
code of EDAs can be written as Fig. 3, where Dl, DSe

l−1, and pl(x) indicate the
set of individuals at lth generation, the set of selected individuals at l − 1th
generation, and estimated probabilistic model at lth generation, respectively
[12]. The representation and estimation methods of the probabilistic model are
devised by each algorithm. The following subsections will overview some EDAs.
For a more thorough overview, see [12,14].

3.2 UMDA

UMDA (Univariate Marginal Distribution Algorithm) was introduced by Mühle-
nbein [12]. As indicated by its name, the variables of the probabilistic model in
this algorithm is assumed to be independent from other variables. That is, the
probability distribution pl(x) is denoted by a product of univariate marginal
distributions, i.e.,

pl(x) =
n∏

i=1

pl(xi),

where pl(xi) denotes the univariate marginal distribution Xi = xi at a vari-
able Xi at generation l. This univariate marginal distribution is estimated from
marginal frequencies:

pl(xi) =
the number of solutions, where Xi = xi in the selected individuals

N
,

where N denotes the number of selected individuals, which is fixed in advance.
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3.3 MIMIC

De Bonet et al. proposed MIMIC [12,17], a kind of EDAs whose probabilistic
model is constructed with bivariate dependency such like COMIT [18]. While
the COMIT generates a tree as dependency graph, the probabilistic model of
the MIMIC is based upon a permutation π.

pl(x) =
n−1∏

j=1

pl(xin−j
|xin−j+1) · pl(xin),

where the permutation π is represented by (i1, i2, . . . , in). The permutation π is
decided in each generation such that the following Kullback-Leibler divergence
Hπ

l (x) is minimized:

Hπ
l (x) = hl(Xin

) +
n−1∑

j=1

hl(Xij
|Yij+1),

where hl(X) = − ∑
x p(X = x) log p(X = x), and hl(X|Y ) = −∑

x

∑
y p(Y =

y)p(X = x|Y = y) log p(X = x|Y = y). However, such minimization is NP so
that this minimization is carried out by greedy search.

3.4 EBNA

Like BOA and LFDA [15,16], The EBNA (Estimation of Bayesian Networks
Algorithms) adopts Bayesian Network (BN) as the probabilistic model, which
is proposed by Larrañaga et al. [12,19]. They proposed several kinds of EBNAs,
such as EBNAPC , EBNAK2+pen, EBNABIC , and so on. Here, we introduce only
EBNABIC used in our experiments. EBNABIC searches for the better structure
of BN by using search+score method. In the case of the EBNABIC , scoring is
achieved by penalized maximum likelihood BIC(S, D) for a given structure S
and a dataset D, called Bayesian Information Criteria, denoted by the following
equation:

BIC(S, D) =
n∑

i=i

qi∑

j=1

ri∑

k=1

Nijk log
Nijk

Nij
− 1

2
log N

n∑

i=1

qi(ri − 1),

where the structure S is represented by Direct Acyclic Graphs, n is the number
of variables of the Bayesian Network, ri is the number of different values that
variable Xi can take, qi is the number of different values that the parent variables
of Xi in the structure S can take, Nij is the number of individuals in D in which
the parent variables of variable Xi take their jth value, and Nijk is the number
of individuals in D in which variable Xi takes its kth value and the parent
variables of the variable i take their jth value [12]. As the search method in
the EBNABIC , an arc-based local search is adopted due to the NP property of
searching the best structure for BNs.
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Procedure EDA for CSP
begin

initialize D0

evaluate D0

until Stopping criteria is hold
DSe

l−1 ← Select N individuals from Dl−1

pl(x)← Estimate the probabilistic model from DSe
l−1

D′Se
l ← Sample M individuals from pl(x)

DSe
l ← carry out a Repair Algorithm to D′Se

l

end
end

Fig. 4. Pseudo code of EDA for CSP

4 The Proposed Method

As mentioned in the introduction of this paper, applying conventional GEA to
solve CSPs have been studied by many researchers. According to the conclu-
sions of their studies, the utilization of the CSP-specific knowledge, such as the
topology of constraint networks, local constraint evaluation (sub-evaluation of
individuals), and so on, yields the great improvement of the search ability of
GEAs [3]-[9]. Hence, we propose a hybrid method of EDAs with repair method.
Moreover, we also introduce a manner which incorporates the knowledge of the
constraint network to the BN structure search.

As a repair method for the proposed method, we employ asexual heuristic
operator in H-GA proposed by Eiben et al. [3]. The asexual heuristic operator
uses the notion of the MCHC described in Fig. 2 to operate the genetic infor-
mation of individuals. The number of applying the MCHC is pre-defined, that
is, 1/4 of the string length. The timing to apply this operation to the EDA pop-
ulation is after sampling new individuals from the estimated (joint) probability
distribution as denoted in the Fig. 4.

Furthermore, in order to reduce the computational effort, the variable candi-
date selection guided by constraint networks is introduced to bivariate or mul-
tivariate dependent algorithms. That mechanism is quite simple: arcs which do
not have constraint-relations, which can be referred by the constraint network,
do not calculate its indices to construct the probabilistic model, such like Hπ

l (x)
and BIC(S, D). However, it saves a large amount of computational time since
the calculation of conditional probabilities takes much time and appears for cor-
responding candidate structures.

5 Experimental Results

In this paper, we carry out several experiments based on various general CSPs
that are generated randomly for a wide variety of “density” and “tightness” of
constraint conditions in the CSPs that are the basic measures of characterizing
CSPs and are described in section 2. The general CSPs are randomly generated
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Fig. 5. Experimental results on general CSP, the ratio of success examination: results
with higher success ratio tend to be brighter, and results with lower success ratio
tend to be darker; The upper row is for conventional methods, restart method with
MCHC, Steady-State Genetic Algorithms, and H-GA; The middle row is for EDAs,
UMDA, MIMIC, and EBNA; The lower row is for the proposed methods, UMDACSP,
MIMICCSP, and EBNACSP.

as follows: First, specify the tightness and density in the sense in section 2.
Next, for all combination of two indices, decide whether unit constraint relation
is set to each of the pairs of variables by taking account of the value of density.
Finally, for all unit constraint relations, the number of the unit-label constraint
relationships is set to be directly proportional to the tightness.

In order to solve the general CSPs, i.e., to find a solution such that it has no
constraint violation, we introduce following fitness function which is generally
adopted:

1 − NCV /NMC ,
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No. Constraint Chk: 1 2x1e9
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Fig. 6. Experimental results on general CSP, the number of constraint checks until
finding satisfiable solutions when satisfiable solutions are found within 2 billion con-
straint checks: results with faster discovers tend to be brighter, and results with later
discovers tend to be darker; The allocation of each graph is the same as the previous
figure.

where NCV and NMC indicate the number of constraint violations in a certain
individual, and the number of possible constraint relations in a problem with n
variables, i.e., n(n − 1)/2 in the case of binary CSPs, respectively. The coding
method adopted in this paper is a naive one such that each variable in a problem
instance is corresponding to each gene. That is, each label associated with each
variable is directly represented as each allele at corresponding locus.

First, we compare the proposed methods for UMDA, MIMIC, and EBNA,
i.e., UMDACSP, MIMICCSP, and EBNACSP, respectively, with various kinds
of conventional method: restart method, steady-state GA, H-GA proposed by
Eiben et al., UMDA, MIMIC, and EBNA [21]. Parameters for each algorithm
are described as follows: The restart method is a (non-evolutionary) conventional
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Fig. 7. The scalability of each algorithm, the ratio of success examination: the depic-
tion manner of each graph is the same as Fig. 5; 40 variables with 10(UPPER ROW),
20(MIDDLE ROW), and 30(LOWER ROW) labels in each variable; H-GA(LEFT
COL.), EBNA(MIDDLE COL.), and EBNACSP(RIGHT COL.)

CSP solver and employs the MCHC, described in Fig. 2, as Hill-Climber. If the
MCHC fails the evaluation improvement of the solution 100 times succeedingly,
a new initial solution is randomly generated again. The population size of SSGA
and H-GA are set to be 200, which is a resultant of parameter tuning. The
mutation probability of SSGA is set to be 0.025 which is identical to the 1 /
(string length). We use the H-GA version 1 which shows the best performance
in [3] to our experiment. The population size M of EDAs including the proposed
methods is set to be 3000. The size N of selected individual used to estimate
the probabilistic model is set to be 1000.

The experimental results for solving general CSPs are plotted in Fig. 5 and
6. The x and y axes of all graphs in these figures denote the values of density
and tightness, respectively. All graphs in this paper are averaged results over
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No. Constraint Chk: 1 2x1e9
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Fig. 8. The scalability of each algorithm, the number of constraint checks until find-
ing satisfiable solutions when satisfiable solutions are found within 2 billion constraint
checks: the depiction manner of each graph is the same as Fig. 6; 40 variables with
10(UPPER ROW), 20(MIDDLE ROW), and 30(LOWER ROW) labels in each vari-
able; H-GA(LEFT COL.), EBNA(MIDDLE COL.), and EBNACSP(RIGHT COL.)

25 experiments for each couple of (density, and tightness), where density and
tightness separately range from 10 to 90 with step size 10. We define “a suc-
cess experiment” whether algorithms can find satisfiable solution until 2 billion
constraint checks. That is, the ratio of success (Fig. 5) indicates how many suc-
cess experiments exist over 25 experiments. If the success ratio is equal to 0,
the number of constraint checks until finding satisfiable solution in the case of
success experiments (Fig. 6) is set to be 2 billion. The colors in Fig. 5 and 6,
such that favourable results tend to be brighter, and unfortunate results tend to
be darker, indicate the success ratio and the number of constraint checks until
finding satisfiable solutions. As shaded in all graphs, darker areas lie across the
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couples of density and tightness. Such an area is called the “phase transition”,
where it is difficult to solve the problem for any algorithms.

As depicted in Fig. 5 and Fig. 6, the restart method and the SSGA were
not found satisfiable solution effectively. Almost all experiments of them were
failed. We can confirm the role of GEAs and EDAs in these hybrid approaches
since naive iteration cannot help us to find satisfiable solutions. The conventional
EDAs outperform conventional GA (SSGA). By comparing H-GA with SSGA,
we can confirm the effectiveness of the repair algorithm for CSPs since H-GA also
adopts the steady-state selection. The proposed method outperform any other
algorithms in the sense of the success ratio. However they have a drawback that it
takes a large number of constraint checks even if it is easier problem instances for
H-GA and the proposed methods, for problem instances in the phase transition
area, the proposed method outperform the H-GA.

Next, we investigate the scalability of the H-GA, EBNA and EBNACSP in
Fig. 7 and Fig. 8. In these figures, the domain size (the number of labels in each
variables) of general CSPs with 40 variables change from 10 to 30. EBNACSP
exhibit the best scalability in the sense of the success ratio (Fig. 7) among three
algorithms. H-GA can quickly solve problem instances, but its success ratio is
low.

6 Conclusions

In this paper, we proposed the hybrid method of EDAs with repair method
for solving CSPs. As the same as the conventional GEAs, the repair method im-
prove the search methods of EDAs dramatically. Moreover, the proposed method
outperforms the restart method, GEAs with or w/o the repair method and con-
ventional EDAs. Future work is (1) to reduce the number of constraint checks
in the case of easier problems. That is, actually, the proposed method apply the
repair method to all individuals. It yields great number of constraint checks. Fur-
thermore, (2) another one is further incorporation of the domain knowledge in
CSPS to estimation of the probabilistic model. The proposed method employed
BIC as the score metric. However, the BIC does not take account into the local
consistency of labels. We consider the local consistency of labels makes the score
metric more effective.
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