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Abstract. By applying the schema theorem, we study the effects of
crossover in Genetic Algorithms with the multiplicative fitness function.
On this landscape, the analytical expression of the exact schema theorem
can be obtained, and this makes it possible to carry out the mathemat-
ical investigation of genetic operators. We consider the average fitness
under the action of selection, mutation and crossover. To do this, we
give the expressions for the average and variance of fitness in terms of
schema frequencies. The theoretical results are compared with numerical
experiments.

1 Introduction

It is in general very difficult to know the effects of crossover and mutation in
Genetic Algorithms (GAs). Even now, we cannot predict the behavior of a pop-
ulation in a given GA calculation under crossover and mutation. In this paper,
we consider this problem by applying the method of schema analysis [1].

The schema theorem was proposed by Holland [2], and used in the theoretical
analysis of GAs. However, there have been also given many criticisms on its
effectiveness. For example, it only takes into account the destructive nature of
crossover and mutation on schemata without considering their constructive roles
[1].

There are several attempts to make the schema theory more quantitative.
Stephens and Waelbroeck obtained exact schema evolution equations for muta-
tion and crossover [3,4]. Vose has pointed out a close relationship between the
schema frequency and the Walsh transform of genotype frequency [5]. Wright
derived a version of exact schema theorem by using the Walsh transformation
method of Vose [6].

Recently, we have also developed a method to derive a schema theorem from
a evolution equation of genotype frequency by applying Walsh transformation
[7]. Fortunately, it was found recently that evolution equations for mutation and
crossover can be expressed in very simple forms by Walsh transformation [5,
8]. Therefore, it is not difficult to obtain the schema evolution equations for
mutation and crossover [1].

Selection is the most important operator in genetics and GA, and plays the
role of a driving force in evolution. In this paper, we consider the evolution of
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a population on the multiplicative landscape. Though there are many papers
on this landscape [9,10,11], we study this problem again from the viewpoint of
schema evolution. Previously, we have shown that the evolution equation for
that population can be solved exactly [12]. In this paper, we apply the schema
theorem to this problem, and study the roles of genetic operators microscopically.
We derive an exact evolution equation of schemata evolving under the action of
selection, mutation and crossover. The effect of linkage on the average fitness
is studied mathematically. The theoretical results are compared with numerical
experiments.

2 Mathematical Model

2.1 Model

In this paper, we study the action of selection, mutation and crossover in GAs.
We use the fitness proportionate selection and uniform crossover. A population is
assumed to evolve in discrete and non-overlapping generations, and the process is
described by a set of difference equations. We consider GAs of infinite population
size, and neglect the effect of random sampling.

An individual is represented by a binary string of length �, and thus there
are n = 2� possible genotypes, or strings. The ith genotype Bi is defined as
Bi =< i(�), · · · , i(1) >. The integer i is sometimes identified with Bi. We use
the notation |i| for the number of bit ones in i

|i| =
�∑

k=1

i(k). (1)

We use the relative frequency xi(t) of the genotype Bi at generation t for the
analysis. The relative frequencies satisfy the normalization condition

n−1∑

i=0

xi(t) = 1. (2)

2.2 Walsh Transformation

The evolution of a GA system can also be described by the Walsh transform of
xj(t)

x̃i(t) ≡
n−1∑

j=0

Wijxj(t), (3)

where Walsh function Wij is

Wij ≡ Wi(j) =
�∏

k=1

(−1)i(k)·j(k), (4)
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and we call x̃i as Walsh coefficient. When it is necessary to show the number of
bit ones and their positions in i

k = |i|, 1 ≤ b1 < . . . < bk ≤ �,

we use the notation
x̃i(t) = x̃(k)[b1, . . . , bk](t), (5)

where k is the degree of Walsh coefficient.
Substituting W0j = 1 into equation (3), and using the normalization condi-

tion (2), we have the zeroth order Walsh coefficient x̃0

x̃0(t) =
n−1∑

j=0

xj(t) = 1. (6)

The following relation will be used later

x̃(k)[b1, b2 . . . bk] =
n−1∑

j=0

k∏

m=1

(−1)j(bm)xj , (7)

where j(b1), . . . , j(bk) stand for the bit values of j at the positions of ones in i.

2.3 Evolution Equation

In proportionate selection, the frequency of genotype Bi at generation t + 1 is
given in terms of frequencies at generation t

xi(t + 1) =
fi

f̄(t)
xi(t) (i = 0, . . . , n − 1), (8)

where fi is a fitness of Bi, and the average fitness of the population f̄(t)

f̄(t) =
n−1∑

i=0

fi xi(t). (9)

There is a very important relation for the selection process. The change in
average fitness per generation

∆f̄(t) = f̄(t + 1) − f̄(t),

is given by

∆f̄(t) =
1

f̄(t)
V (f), (10)

V (f) =
∑

i

f2
i xi(t) − f̄(t)2.
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This is a version of Fisher’s fundamental theorem of natural selection [13].
Fisher’s theorem means that the increase in the average fitness is proportional
to the ratio of the variance of fitness V (f) to its average.

The Walsh transform of the evolution equation (8) becomes

Ŝx̃i(t) =
1

nf̄(t)

n−1∑

j=0

f̃j x̃i⊕j(t), (11)

where ⊕ is the bitwise exclusive-or operation, and Ŝ shows the effect of selection
symbolically. The fitness f̃i is the Walsh transform of fi

f̃i =
n−1∑

j=0

Wijfj . (12)

The average fitness is given by

f̄(t) =
1
n

n−1∑

j=0

f̃j x̃j(t). (13)

The change in the frequency under mutation is

xi(t + 1) =
n−1∑

j=0

Mijxj(t), (14)

where the mutation matrix Mij stands for the probability of mutation from Bj

to Bi over one generation. An (i, j)th element of M is a function of the Hamming
distance d(i, j) between strings i and j.

Mij = (1 − p)�−d(i,j)pd(i,j), (15)

where p denotes the mutation rate at one bit position over one generation.
The matrix Mij can be diagonalized by Walsh functions

n−1∑

i′=0

n−1∑

j′=0

Wii′ Mi′j′ Wj′j = n (1 − 2p)|i| δi,j .

Thus the Walsh transform of the evolution equation under mutation (14) is

M̂x̃i(t) = (1 − 2p)|i| x̃i(t), (16)

where M̂ symbolically shows the effect of mutation.
The evolution equation under crossover can be given in terms of crossover

tensor C

xk(t + 1) =
n−1∑

i=0

n−1∑

j=0

C(k|i, j) xi(t) xj(t). (17)
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Using the Walsh transformation, we can express the effect of crossover in a very
simple form [5,8]

Ĉ x̃k(t) =
n−1∑

i=0

ci,i⊕k x̃i(t) x̃i⊕k(t), (18)

where Ĉ denotes the effect of crossover. The factor cij is given by

cij = (1 − χ)
δ(i) + δ(j)

2
+ χ cij(χ = 1), (19)

where χ is a crossover rate, and cij(χ = 1) is the value of cij with χ = 1. The
discrete δ function is defined for integer m

δ(m) =
{

1 (m = 0)
0 (m �= 0).

For one-point crossover, we obtain [5]

– i = 0 or j = 0

cij(χ = 1) =
1

2(� − 1)
{lo(i) − hi(i) + lo(j) − hi(j)}. (20)

The functions hi(i) and lo(i) are defined as

hi(i) =
{

1 (i = 0)
imax (otherwise),

lo(i) =
{

� (i = 0)
imin (otherwise),

where imax and imin stand for the leftmost and rightmost ones in i, respec-
tively.

– i �= 0 and j �= 0

cij(χ = 1) =






(imin − jmax)/2(� − 1) ( imin > jmax)
(jmin − imax)/2(� − 1) ( jmin > imax)
0 (otherwise).

(21)

For uniform crossover, we have a very simple expression

cij = (1 − χ)
δ(i) + δ(j)

2
+ χ

�∏

m=1

δ{i(m)} + δ{j(m)}
2

. (22)

3 Schema Theorem

After introducing schemata and Holland’s schema theorem [2], we describe the
new schema theorem obtained by Walsh transformation [7].
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A schema H represents a set of genotypes. It is given by three types of
symbols, 0,1 and ∗. The bits 0 and 1 are defining bits, and ∗ is a wild card that
allows both 0 and 1. The order of schema O(H) is the number of defining bits,
and the defining length L(H) is the distance between the rightmost and leftmost
defining bits.

The most famous example of the schema theorem is Holland’s one with one-
point crossover [2].

h(H, t + 1) ≥ h(H, t)
f(H)
f̄(t)

{1 − χ
L(H)
� − 1

− p O(H)}, (23)

where h(H, t) is the relative frequency of the schema H at generation t, and
f(H) is the average fitness of genotypes included in H.

We also use the notation showing explicitly the order of schema, the positions
of defining bits, and their bit values,

H = H(k)[i(b1), i(b2), . . . , i(bk)],

Here, k = O(H), and 1 ≤ b1 < b2 < . . . < bk ≤ � are positions of defining bits.
In a similar manner, we use the notation for the relative frequency h(H),

h(H) = h(k)[i(b1), i(b2), . . . , i(bk)].

Then we derive the new schema theorem by using the Walsh transformation.
When i and j take binary values, 0 and 1, the condition of i = j is given by

δ(i − j) =
1
2
{1 + (−1)i(−1)j}.

From this, we can obtain an expression for the frequency h(H) of the first order
schema H(1)[i(b1)]. Using the normalization condition (2) and definition (7), we
have

h(1)[i(b1)] =
n−1∑

j=0

δ(i(b1) − j(b1))xj

=
n−1∑

j=0

1
2
{xj + (−1)i(b1)(−1)j(b1)xj}

=
1
2
{1 + (−1)i(b1)x̃(1)[b1]}.

For the Lth order schema, noting

h(L)[i(b1), i(b2), . . . , i(bL)] =
n−1∑

j=0

L∏

m=1

δ(i(bm) − j(bm))xj ,

and expanding the products of the delta functions, we have a new expression for
the schema frequency in terms of the Walsh coefficients. Giving the positions of
all defining bits S = {b1, . . . , bL}, and its subset S′ = {b

′
1, . . . , b

′
k}, we have
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h(L)[i(b1), . . . , i(bL)]

=
1
2L

∑

S′∈P(S)

(−1)i(b
′
1)+···+i(b

′
k)x̃(k)[b

′
1, . . . , b

′
k], (24)

where P(S) is the power set of the set S. The power set is a set of all subsets of
a given set. Thus the summation is taken over all subsets S′ of S.

For example, the second order term is

h(L)[i(b1), i(b2)]

=
1
4
{
1 + (−1)i(b1)x̃(1)[b1] + (−1)i(b2)x̃(1)[b2]

+ (−1)i(b1)+i(b2)x̃(2)[b1, b2]
}

The inverse transformation is given by

(−1)i(b1)+···+i(bL) x̃(L)[b1, . . . , bL]

=
∑

S′∈P(S)

(−1)L−k 2k h(k)[i(b
′
1), . . . , i(b

′
k)]. (25)

It becomes possible to derive the schema evolution equation for genetic oper-
ators. From the evolution equation of the Walsh coefficient under mutation (16),
we obtain

M̂ h(L)[i(b1), . . . , i(bL)]

=
∑

S′∈P(S)

(1 − 2p)k pL−k h(k)[i(b
′
1), . . . , i(b

′
k)]. (26)

For the first order Walsh coefficients, we have

M̂ h(1)[i(b1)] = (1 − 2p) h(1)[i(b1)] + p. (27)

For crossover, we give here the final results of the schema theorem under
uniform crossover. The process of derivation is described in [7]. We use an integer
i(H) as another representation of the schema H

{0, 1} → 1, {∗} → 0 (28)

For example, the new representation of H = ∗10∗ is i(H) =< 0, 1, 1, 0 >. Though
this representation does not distinguish between 0 and 1, it may not bring any
confusion in the case of crossover process.

The schema theorem for crossover can be given by

Ĉ h(k) =
n−1∑

i=0

ci,i⊕k h(i) h(i ⊕ k), (29)

The integers i and k in h(k) and h(i) are the binary expression of schema (28),
and please consider that

i = i(H), k = k(H).
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The coefficient ci,i⊕k is zero when i and i ⊕ k both take the value of one at the
same bit position.

We will use a shorthand notation

h(1)[ik = 1] → h(1k), h(1)[ik = 0] → h(0k).

In this analysis, the notion of linkage [14] is very important, and the linkage
disequilibrium coefficient D is defined as

D[k, m] = h(2)[1k, 1m] − h[1k]h[1m]. (30)

This quantity shows the correlation between alleles at different loci. When each
gene evolves independently, a population is in linkage equilibrium, while if there
are any correlations among genes at different loci, it is in linkage disequilib-
rium. When the population is in linkage equilibrium, all D coefficients are zero,
D[k, m] = 0.

If we set the crossover rate χ = 1, the effect of crossover is given by [8]. For
uniform crossover,

Ĉ D[k, m] =
1
2
D[k, m]. (31)

We note that crossover has an effect of reducing the magnitude of D. The action
of mutation on D is given by

M̂ D[k, m] = (1 − 2p)2 D[k, m], (32)

and we see that mutation also reduces the magnitude of D.

4 Multiplicative Landscape

This section gives some mathematical results for GAs on the multiplicative land-
scape obtained by the schema theorem. The fitness function of multiplicative
form is defined as

fi = (1 − s)|i| =
�∏

k=1

(1 − s)i(k), (0 < s < 1), (33)

where s is a parameter of the strength of selection. We consider a maximization
problem on this landscape. In [12], we have shown that the evolution equation
of genotypes can be solved exactly for GAs under the action of selection with
the multiplicative fitness and mutation. We will obtain here an exact schema
evolution.

4.1 Schema Analysis

We assume that the population is in linkage equilibrium state at generation t,
and it will later become clear that this is an essential assumption in the following
analysis. Thus we have

xi =
�∏

m=1

h{i(m)}, (34)

and the average fitness is
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f̄(t) = f̄ (eq),

where the average fitness in equilibrium is also given in the product form

f̄ (eq) =
�∏

m=1

{h(0m) + (1 − s)h(1m)} =
�∏

m=1

{1 − s h(1m)}. (35)

Then we may define the fitness function at each bit as

gk = 1 − s h(1k).

The Walsh transform of the fitness function is obtained as

f̃i =
�∏

m=1

{1 + (−1)i(m) (1 − s)} (36)

In the next subsection, without assuming linkage equilibrium, we will obtain the
exact expression for the average fitness using this equation.

Under this assumption, we can obtain the schema equation of the first order
schemata for selection. Substituting equation (36) into evolution equation for
selection (11), we have

Ŝx̃i(t) =
�∏

m=1

β{i(m)}
β(0m)

. (37)

Here, the function β{i(m)} is defined as

β{i(m)} = h(0m) + (−1)i(m) (1 − s)h(1m).

Then we can derive the schema equation of the Lth order schemata. With
the set of defining bits S = {b1, . . . , bL}, we have

Ŝh(L)[i(b1), . . . , i(bL)] =
∏

m∈S

a{i(m)}h{i(m)}
h(0m) + (1 − s)h(1m)

, (38)

where a(0) = 1 and a(1) = 1 − s. For h(1k), the effect of selection is

Ŝ h(1k) =
(1 − s)h(1k)
1 − sh(1k)

.

It is important to note that the schemata after selection also satisfy the
condition of linkage equilibrium. From equations (26) and (29), we can also
verify that the schemata after mutation and crossover satisfy the condition of
equilibrium. Thus, if the population is in linkage equilibrium at t = 0, then it
always satisfies the condition of equilibrium.

The change in the fitness function gk under the action of selection is

∆gk(t) ≡ Ŝgk(t) − gk(t),

and we have

∆gk(t) =
vk(t)
gk(t)

, (39)

where the variance vk is

vk = s2 h(1k){1 − h(1k)}.
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4.2 Schema Representation of Average Fitness

We will discuss here the direct effects of crossover and mutation on the average
fitness. By using equations (13) and (25), the average fitness f̄(t) can be given
in terms of schema frequencies. After some calculations, we have

f̄(t) = f̄ (eq) + s2∆(2) − s3∆(3) + . . . + (−s)�∆(�). (40)

The contribution of the mth order term is given by

∆(m) =
∑

k1

∑

<k2

. . .
∑

<km

D[k1, k2, . . . , km],

where the linkage equilibrium coefficient of the order m is given by the schema
frequencies

D[k1, k2, . . . , km] = h(m)(1k1 , 1k2 , . . . , 1km) − h(1k1)h(1k2) · · ·h(1km). (41)

When we use a small value of s, the equation is approximately given by

f̄(t) ≈ f̄ (eq) + s2
∑

k1

∑

<k2

D[k1, k2]. (42)

We have shown in the paper [15] that the variance V of Hamming distance
from the optimum solution can be given by the sum of additive variance Va and
epistatic variance Ve

V = Va + Ve, (43)

where

Va =
�∑

k=1

h(1k) {1 − h(1k)},

and

Ve = 2
∑

k1

∑

<k2

D[k1, k2].

Though we use the term “variance”, the epistatic variance Ve can take negative
values.

If we use a small value of s, we obtain the variance of the fitness V (f)

V (f) = s2(Va + Ve) + s3(· · ·) + . . . ≈ s2(Va + Ve). (44)

The variance V (f) in the linkage equilibrium is given by

V (eq) = f̄ (eq)|s→2s−s2 − f̄ (eq) · f̄ (eq). (45)
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Fig. 1. Numerical experiments for f̄(t). Thick lines for the experiments with crossover,
and thin lines without crossover. Solid lines for f̄(t), and dotted lines for f̄ (eq). The
mutation rate p = 0.001, selection parameter s = 0.2, and N = 200.

Fig. 2. The sum of the second order linkage disequilibrium coefficients, s2Ve, with
(χ = 1) and without (χ = 0) crossover.
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Fig. 3. Variance of fitness. V (f) and V (eq) with (χ = 1) and without (χ = 0) crossover.
Solid lines and dotted lines show V (f) and V (eq), respectively.

5 Experiments

We carried out numerical experiments of GA on the multiplicative landscape,
and their results were compared with the theory in the previous section. The
population size N was 200, and bit length was � = 8. The selection parameter
was s = 0.2. We used the mutation rates p of 0.001, and uniform crossover. The
effect of crossover was studied by comparing the experiments with the crossover
rates χ = 0 and 1. At t = 0, we used the initial value of h(1k) = 1/8. The
calculations were performed repeatedly with the same parameters, and their
results were averaged over 100 runs.

Figure 1 demonstrates the average fitness obtained in four types of calcu-
lations. Thick solid line shows f̄(t) with crossover χ = 1, and thin solid line
without crossover χ = 0. Thick dotted line is for f̄ (eq) with crossover, and thin
dotted line without crossover. We cannot observe the thick dotted line because
it is masked by the thick solid line. The effect of crossover is very significant in
these experiments. We see that crossover works as a beneficial operator. The ef-
fect of linkage disequilibrium is very small, and f̄(t) ≈ f̄ (eq) in experiments with
and without crossover. This result seems to suggest that the effect of linkage
disequilibrium is negligibly small. However, this is not the case.

Figure 2 gives s2Ve with and without crossover. Ve shows the degree of linkage
disequilibrium of the second order. When crossover is active, Ve is almost 0. On
the other hand, if χ = 0, Ve takes negative values of large magnitude.

In Fig. 3, the variance of fitness V (f) is shown. The variances in linkage
equilibrium V (eq) calculated by equation (45) are given in dotted lines. There is
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large difference in the results with (thick lines) and without (thin lines) crossover.
The GA with crossover demonstrates the large value of V (f), and the dotted
line for V (eq) is masked by the solid line for V (f). When crossover is absent,
the effect of linkage disequilibrium becomes large, and as a result V (f) is small.
The contribution of linkage is negative, and we observe large difference between
V (f) and V (eq). Fisher’s theorem states that the large variance of fitness can
give good performance [15], and this explains the fast increase of f̄(t) in GA
with crossover in Fig.1.

6 Conclusion

In this paper, we have shown that the exact schema theorem can be obtained
for the GA on the multiplicative landscape. In this problem, if we ignore the
effect of random sampling, the assumption of linkage equilibrium holds at all
generations when the initial state is in linkage equilibrium. Therefore, the system
is completely determined by the first order schemata h(1k). However, in the
practical calculations, there appears the stochastic effect, and we have to take
into account the effect of linkage disequilibrium.

Crossover works as a beneficial operator in this problem. It reduces the mag-
nitude of D coefficients, and as a result accelerates the speed of evolution by
increasing the total variance V (f). This is an indirect effect of crossover.

On the other hand, there is a direct effect of linkage given by equation (40).
However, this effect is very small as shown in Fig.1 in our experiments.
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