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Abstract. Following the work of Stephens and coworkers on the coarse-grained
dynamics of genetic systems, we work towards a possible generalisation in the
context of genetic algorithms, giving as examples schemata, genotype-phenotype
mappings, and error classes in the Eigen model. We discuss how the dynamics
transforms under a coarse-graining, comparing and contrasting different notions
of invariance. We work out some examples in the two-bit case, to illustrate the
ideas and issues. We then find a bound for the Selection Weighted Linkage Dise-
quilibrium Coefficient for the two-bit onemax problem.

1 Introduction

To model the exact evolution of a genetic algorithm requires us, in general, to track
what happens to each possible individual. For example, if the search space is binary
strings of length �, we have evolution equations for each of the 2� possible strings. It
may also be of interest to investigate what happens to certain subsets of individuals.
There are three reasons for doing this. Firstly, it may be possible to reduce the number of
degrees of freedom in the evolution equations and so make a more tractable model. This
is particularly true when modelling the appropriate effective degrees of freedom for the
dynamics. Secondly, one may be interested in the evolutionary history of one particular
individual, and there may be only a limited number of subsets to which its ancestors
could have belonged. Thirdly, of course, one may have some intrinsic interest in a certain
subset (for example, it may be a subset of high quality individuals or represent some
“kinship” or genetically related group such as the individuals associated with a “niche”
or a species).

The idea of tracking subsets is the basis of Holland’s schemata [Holland, 1975],
Radcliffe’s forma [Radcliffe, 1992] and Vose’s predicates [Vose, 1991]. More re-
cently, Stephens [Stephens and Waelbroek, 1997] has formally studied evolution equa-
tions under this kind of coarse-graining using schemata and extended the anal-
ysis to other contexts than evolutionary computation in [Stephens, 2003] and
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[Stadler and Stephens, 2003]. Van Nimwegen [van Nimwegen et al., 1997] has mod-
elled the dynamics of GAs on royal-road, and other functions, using approximate coarse-
grained models. Rowe [Rowe, 1998] has considered the use of unitation classes as a basis
for a coarse-grained model of selection-mutation algorithms. We intend to extend this
work by looking at possible generalisations and limitations in the context of genetic
algorithms.

In [Stephens and Waelbroek, 1997] it was shown that the dynamical equations gov-
erning the evolution of a GA with proportional selection, mutation and one-point
crossover was form invariant under a coarse graining to schemata. This was later ex-
tended [Stephens, 2001] to any selection, mutation and homologous crossover opera-
tors. This form invariance was later studied by Vose and Wright [Vose and Wright, 2001]
who discussed a more restrictive form of the invariance using the notion of compatibil-
ity [Vose, 1999] between the coarse graining and the genetic operators.

In the following section, we formally define the idea of coarse-graining. We then
consider how the dynamics looks after a coarse graining. The ideas and issues are then
illustrated by a series of examples. Finally, we apply coarse-graining to help us estimate
what happens to the linkage disequilibrium coefficient in the two-bit onemax problem.

2 Coarse-Grained Dynamics

Let Ω = {0, 1, 2, . . . , n−1} be the search space. In the case of binary strings of length �,
we identify each string with an integer under standard binary encoding, and n = 2�. We
represent a population by a vector p = (p0, p1, . . . , pn−1) in which pk is the proportion
of individual k in the population. Population vectors are elements of the simplex

Λ =

{
p ∈ R

n :
∑

k

pk = 1, and pk ≥ 0 for all k

}

A coarse-graining of Ω will be a collection of subsets of Ω. Given a fitness function
f : Ω → R we wish to define the fitness of a given subset. Notice, that this will, in
general, depend on the details of the population. One can think of this situation as being
analogous to a co-evolutionary model, in which the fitness of an individual depends on
the current population. Let P(Ω) denote the power set of Ω (that is, the set of all subsets
of Ω). Then, formally, we have a function

F : Λ −→ (P(Ω) −→ R)

defined as

F (p)(A) =
∑

i∈A pif(i)∑
i∈A pi

That is, given a population p ∈ Λ, F (p) is a “fitness function” which assigns fitnesses
to subsets of Ω. The fitness of a subset A is the average fitness of elements of A in
population p.

Definition 1. Let Γ = {γi} ⊆ P(Ω) be a collection of subsets of the search space that
covers the search space. That is, ⋃

γi = Ω
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We call such a collection a coarse-graining of Ω. For any population p ∈ Λ we can
assign a fitness to each element of Γ using the function F (p).

A coarse-graining is non-degenerate if Γ is a partition of the search space

i �= j =⇒ γi ∩ γj = ∅

Notice that the fitness of a subset in a coarse-graining depends on the current population
and therefore on time, even if the underlying fitness function f is static.

Examples

1) Schemata. We can associate a schema with the set of all strings which match it. The
set of all schemata forms a highly degenerate cover of the search space, however
given an arbitrary choice of string then all the schemata that contain the string
forms a new basis of the same dimensionality as the original - the Building Block
Basis [Stephens, 2003]. However, unless the fitness function is a constant for all
strings matching a given schema, then the fitness of the schema itself will be a
dynamic quantity (that is, it will depend on the details of the current population).

2) Genotype-phenotype mappings. Suppose we have a map ϕ : Ω → Φ which maps
genotypes to phenotypes, where Φ is the space of phenotypes. Fitness is then assessed
via an individual’s phenotype. That is, there is a function g : Φ → R. The fitness of
a genotype is then f = g ◦ ϕ. We can create a non-degenerate coarse-graining by
considering subsets of Ω which map to the same phenotype. That is, for each i ∈ Φ,
set

γi = {a ∈ Ω : ϕ(a) = i}

The fitness of such a subset is constant:

F (p)(γi) =

∑
j∈γi

pjf(j)∑
j∈γi

pj

=

∑
ϕ(j)=i pjg ◦ ϕ(j)∑

j∈γi
pj

=
g(i)

∑
ϕ(j)=i pj∑

j∈γi
pj

= g(i)

This coarse-graining is natural with respect to selection, as we only need to keep track
of what happens to the subsets, without worrying about their detailed composition.

2.1 Unitation. A particular example of a genotype-phenotype mapping is when we have
a function of unitation. That is, the search space is binary strings of length � and
fitness only depends on the number of ones in a string. The phenotype set is

Φ = {0, 1, 2, . . . , �}
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2.2 The Eigen Model (Needle-in-a-haystack). A second example is that of the Eigen
model [Eigen, 1971]. In this landscape all the strings have the same fitness except for
a special string (the optimum) that has a relatively high fitness. - the so called “master
sequence”. In this landscape, the genotype-phenotype coarse-graining creates only
two equivalence classes, hence there is a reduction in degrees of freedom from N
to one.

3 Exact and Approximate Invariance under a Coarse-Graining

Having motivated the idea of coarse graining and given some simple examples one needs
to understand how the evolution equations for the GA look under the coarse graining. As
mentioned, it was shown in [Stephens and Waelbroek, 1997] that the canonical GA is
form invariant under a coarse graining to schemata, i.e. that the equations have exactly the
same functional form after such a coarse graining. This is a highly non-trivial result, as
a coarse graining in general will not preserve the functional form, as can be simply seen,
for example, in the case of coarse graining from genotype to phenotype in the presence of
mutation or crossover. Vose later showed [Vose, 1999] that schemata are the only coarse-
grained variable that leave the dynamical equations for homologous crossover invariant
and hence form a priviliged set. However, Vose also introduced a more restrictive form
of invariance under coarse graining - compatibility - wherein it was not sufficient that
the equations be form invariant. Formally, if an operator M : Λ → Λ gives the effect of
applying an operator to a population, then a coarse-graining (Γ ) is compatible with M
if and only if, for any two populations x, y ∈ Λ∑

j∈γi

xj =
∑
j∈γi

yj =⇒
∑
j∈γi

M(x)j =
∑
j∈γi

M(y)j

for all γi ∈ Γ (see chapter 16-17 of [Vose, 1999]). It is known, for example, that schemata
are compatible with crossover (by masks) and that unitation classes are compatible with
mutation.

A simple example illustrates the difference between the two different notions of
invariance and coarse graining. Consider selection only in a two-bit one-max model:
The equation of motion for proportional selection is

P (h1h2, t + 1) = (f(h1h2)/f̄(t))P (h1h2, t). (1)

We pass to the schema h1∗ by coarse graining h2 to find

P (h1∗, t + 1) = (f(h1∗, t)/f̄(t))P (h1∗, t) (2)

where f(h1∗, t) = (f(h1h2)P (h1h2, t) + f(h1h̄2)P (h1h̄2, t)/(P (h1h2, t) +
P (h1h̄2, t)) and h̄2 is the bit complement of h2. Clearly (1) and (2) have the same
functional form. However, to satisfy compatibility f(h1∗, t) would have to satisfy
f(h1∗, t) = f(h1), where f(h1 = 1) = 1 and f(h1 = 0) = 0. Compatibility will
only be valid when the problem exhibits an exact equivalence relation (“symmetry”)
and the genetic operators respect this symmetry, such as is the case for the genotype-
phenotype map and selection only, or with schemata and crossover only. The existence
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of an exact symmetry usually allows for a reduction in the number of degrees of freedom
by going to those effective degrees of freedom that are invariant under the symmetry.

However, the utility of coarse graining is not restricted to when it is compatible with
the dynamics. For instance, in [Stephens, 2001] the form invariance of the equations of
motion was used to prove a generalization of Geiringer’s theorem to the case of non-
flat landscapes. Further, in the physical sciences, where coarse graining has played an
essential role, its utility is precisely for those cases where symmetries are not present, but
rather where the coarse-grained dynamics can provide an approximate description of the
system. In this case the closer are the coarse-grained variables to the true effective degrees
of freedom then the better the approximation. For instance, in a strong selection regime
one would expect phenotypes to approximate well the true dynamics with mutation
and/or crossover inducing a small “interaction” between different phenotypes. Similarly,
in the case of strong crossover and weak selection one would expect one-schemata to
approximate well the dynamics with selection inducing a small interaction between the
different one-schemata.

4 Crossover and Schemata Coarse Graining

We can track the evolutionary history of the production of a string via crossover, by
looking at its constituent schemata, i.e. by using the Building Block basis. Suppose that
we only have one-point crossover and no selection or mutation. We adopt the following
notation, given that γ is a schema:

– D(γ) is the set of indices for which γ has defined bit values. For example

D(1 ∗ ∗ 1 1 ∗) = {1, 4, 5}
– Lj(γ) is the schema which has the same defining bits as γ for all indices ≤ j, and

stars elsewhere. For example, L4(1 ∗ ∗ 1 1 ∗) = 1 ∗ ∗ 1 ∗ ∗.
– Rj(γ) is the schema which has the same defining bits as γ for all indices > j, and

stars elsewhere. For example, R4(1 ∗ ∗ 1 1 ∗) = ∗ ∗ ∗ ∗ 1 ∗.
– If the population at time t is p ∈ Λ, we write P (γ, t) =

∑
i∈γ pi.

Then, following [Stephens and Waelbroek, 1997] we have

P (γ, t + 1) =
∑

j∈D(γ)

P (Lj(γ), t)P (Rj(γ), t)

Notice that this equation also applies to strings, by associating a string with the schema
having all the corresponding bits defined.

We can use this equation to see how a given string can be created by crossover over
several generations. For example, the string 1 1 1 can be created from the pairs 1 ∗ ∗,
∗ 1 1 and 1 1 ∗, ∗ ∗ 1. In the previous generation the schema ∗ 1 1 may have been created
from the pair ∗ 1 ∗, ∗ ∗ 1. We see that there are several different possible “family trees”
that can be constructed, the leaves of which are the order-one schemata which match the
string at the root. All of the elements of the trees however are elements of the Building
Block basis associated with the string of interest.
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Fig. 1. Asymptotic string proportions in a onemax landscape with mutation rate pm and no
crossover. P (2) decreases as we increase the probability of mutation, while P (1) and P (0)
increase with pm, and when pm reaches 1/2, all the strings are equally represented.

5 Mutation and the Genotype-Phenotype Coarse-Graining

The unitation coarse graining is a particular case of the genotype-phenotype coarse-
graining in which the fitness of a string is its Hamming weight (or the Hamming distance
to the 0 string, f(i) = w(i) = d(i, 0)). Now we can write the equivalence classes like
γj = {i ∈ Ω|w(i) = j}. In this particular case the reduction of the search space is huge,
going from 2� degrees of freedom to only � + 1 effective degrees of freedom.

As an example of the coarse-graining technique in this scenario, consider a GA with
probability of crossover zero, probability of mutation µ and � = 2, with the onemax
fitness function. The set of equations describing the evolution of the system are as follows




p00(t + 1)
p01(t + 1)
p10(t + 1)
p11(t + 1)


 =




(1 − µ)2 (1 − µ)µ (1 − µ)µ µ2

(1 − µ)µ (1 − µ)2 µ2 (1 − µ)µ
(1 − µ)µ µ2 (1 − µ)2 (1 − µ)µ

µ2 (1 − µ)µ (1 − µ)µ (1 − µ)2




× 1
p01(t) + p10(t) + 2p11(t)




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2







p00(t)
p01(t)
p10(t)
p11(t)




(3)

While in the coarse-grained basis the equations are:
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Fig. 2. Asymptotic string proportions in a Eigen model landscape with mutation rate pm and no
crossover.


p(γ0, t + 1)

p(γ1, t + 1)
p(γ2, t + 1)


 =


 (1 − µ)2 (1 − µ)µ µ2

2(1 − µ)µ (1 − µ)2 + µ2 2(1 − µ)µ
µ2 (1 − µ)µ (1 − µ)2




× 1
p(γ1, t) + 2p(γ2, t)


0 0 0

0 1 0
0 0 2





p(γ0, t)

p(γ1, t)
p(γ2, t)




(4)

We can solve this system using a similarity transformation for the state-transition
matrix, finding the eigenvectors and replacing the original matrix with a diagonal similar
matrix (see, for example, chapter 6 of [Reeves and Rowe, 2001]). The results are shown
in figure 1, where we can see the fixed points as a function of the probability of mutation
irrespective of the initial conditions of the population.

The unitation coarse-graining allow us to eliminate a redundant variable. Of course, it
proves to be more useful as we increase the dimension of the search space [Rowe, 1998].

In contrast, for the Eigen model the genotype-phenotype coarse-graining is not com-
patible with mutation. Instead, we divide the space into Hamming distance classes from
the master sequence. That is γj = {i ∈ Ω|d(i, cms) = j}, where cms is the master
sequence. In the case where cms = 0, this gives us the unitation coarse-graining.

Now we can solve the system using the same method as before, considering f(cms) �
f(j),∀j �= cms. The results in the long-time limit for the two-bit problem are shown
in figure 2. Note that qualitatively we obtain a very similar behaviour to the onemax
landscape. This means that in spite of the fact that all the strings different to the master
sequence have the same low fitness, evolution favours those close to the master sequence
as we can see in figure 2. This phenomenon in known in the literature as the formation
of a quasi-species.
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6 Linkage-Disequilibrium

Let ij be any string of 2 bits, i, j ∈ {0, 1}, then the dynamics of the system under
proportional selection (with the onemax landscape) and one-point crossover is given by
the equations:

P (ij, t + 1) = (1 − pc)P ′(ij, t) + pcP
′(ij, t) [P ′(ij, t) + P ′(i � j, t) + P ′(� ij, t)]

+ pcP
′(i � j, t)P ′(� ij, t)

= (1 − pc)P ′(ij) + pcP
′(ij, t) [1 − P ′(� i � j, t)] + pcP

′(i � j, t)P ′(� ij, t)
= P ′(ij) + pc [P ′(i � j, t)P ′(� ij, t) − P ′(ij, t)P ′(� i � j, t)]

where P ′ is the proportion after selection, pc is the probability of crossover and � i is the
complement base 2 of i.

∆′(t) = pc [P ′(i � j, t)P ′(� ij, t) − P ′(ij, t)P ′(� i � j, t)] is the Selection Weighted
Linkage Disequilibrium Coefficient (SWLDC) explicitly introduced in [Stephens, 2001]
(and implicit in earlier work) in analogy with the original Linkage Disequilibrium
Coefficient (LDC), well known in population biology, that measures how far is the
current population from Robbins proportions (in which the bits are distributed inde-
pendently — Geiringer’s Theorem tells us that this is the limit of repeatedly applying
crossover [Geiringer, 1944]). We can write

w(t + 1) =
pcx(t)y(t)

f̄2(t)
(5)

x(t + 1) =
x(t)
f̄(t)

− pcx(t)y(t)
f̄2(t)

(6)

y(t + 1) =
y(t)
f̄(t)

− pcx(t)y(t)
f̄2(t)

(7)

z(t + 1) =
2z(t)
f̄(t)

+
pcx(t)y(t)

f̄2(t)
(8)

where w(t) = P (00, t), x(t) = P (01, t), y(t) = P (10, t), z(t) = P (11, t), notice that
P (00, t) = ∆′(t)∀t > 0

Substituting the value of x(t) from (6) and y(t) from (7) in (5)

w(t + 1=
pc

f̄2(t)

[
x(t − 1)
f̄(t − 1)

− pcx(t − 1)y(t − 1)
f̄2(t − 1)

][
y(t − 1)
f̄(t − 1)

− pcx(t − 1)y(t − 1)
f̄2(t − 1)

]
(9)

which we can rewrite as:

w(t + 1) =
1

f̄2(t)

[
w(t) − pcw(t)

(
x(t − 1) + y(t − 1)

f̄(t − 1)

)
+ pcw

2(t)
]

(10)

As there are four genotypes and three phenotypes we now coarse-grain using the
genotype-phenotype map, considering the phenotypic variable b(t) = x(t)+y(t), adding
(6) and (7) at time t to find

b(t − 1)
f̄(t − 1)

= b(t) + 2w(t) (11)

which can then be substituted into (10) to obtain
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Fig. 3. Linkage Disequilibrium Coefficient w(t) (continuous line) and the bound w∗(t) (dotted
line) in a typical run with a random initial population. The initial values correspond to different
values of pc = j+2

5 , j ∈ {0, 1, 2, 3}

w(t + 1) =
w(t)
f̄2(t)

[1 − pc(w(t) + b(t))] (12)

with f̄(t) = b(t) + 2z(t). Now if we assume pc = 1 we can simplify (12) to

w(t + 1) =
w(t)

2z(t) + b(t)

[
z(t)

2z(t) + b(t)

]
(13)

Note that this equation, because of the substitution (11), is only valid for w(t) = 0, as
the latter is a fixed point of (13) but not of (5) (unless x(t) = y(t) = 0 aswell), and also
for pc > 0.

Let g(t) =
[

z(t)
2z(t)+b(t)

]
, iterating we find the following solution

w(t) =
w(0)

∏t−1
i=0 g(i)

2tz(0) + b(0) + δt≥3w(0)
∑t−2

i=1 2i
∏t−2−i

j=0 g(j)
(14)

where δC = 1 if C is true and 0 otherwise. It is easy to see that g(t) ≤ 1
2∀t, so we can

write

w(t) ≤
( 1

2

)t
w(0)

2tz(0) + b(0) + δt≥3w(0)
(∑t−2

i=1 2i
( 1

2

)t−i−1
)

=

( 1
2

)t
w(0)

2tz(0) + b(0) + δt≥3
w(0)

3 (2t−1 − 23−t)

≤ ( 1
2 )tw(0)

2tz(0) + b(0)
= w∗(t)

(15)
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Fig. 4. The dotted lines represent zones with similar SLDC in the simplex as a function of x(t) +
y(t). The continuous line is the limit of the simplex.

Fig. 5. The dotted lines represent the SCSSSS and the continuous SCSCSCSC

A comparison of the bound and the actual results are shown in fig. 3. Note that we
would expect the bound to be better when b(t) � z(t), however, for 3 b(0) = 2z(0) so it
is interesting to see that the bound gives reasonable results. Of course, strictly speaking
the derived bound is for pc = 1. The weaker the selective difference between 11 and
10 or 01 then the worse the bound. On the contrary, when the selective advantage of 11
over the other strings is large we expect the bound to become better and better. A further
simplification lead us to

w∗(t) =

( 1
2

)t
w(0)

2tz(0) + b(0)
≤

(
1
4

)t
w(0)
z(0)

(16)

where we can appreciate more clearly the exponential decay of the SWLDC.
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By the definition of w(t) in (5) and its value in (12) when pc = 1 we can conclude
that in every generation before selection we have w(t)z(t) − x(t)y(t) = 0 i.e. the
population is in linkage (in the usual sense). This means that the population follows
a path (in the simplex) always in linkage equilibrium, i.e. on the Geiringer manifold,
towards a selective linkage equilibrium. Clearly, the latter is of more relevance than the
former for the dynamical evolution.

In figure (4) we can see the different “contours” with the same SWLDC as a function
of the coarse-grained variable b(t) Notice b(t) = P (1, t) plays an important role in the
solution of the equations suggesting again a possible effective degree of freedom.

As the effects of crossover decay in time, as b(t) gets smaller, we might think about
approximating the usual iteration sequence SCSCSC... with the sequence SCSSSS....
Where S denotes selection and C crossover. The effects can be seen in Figure 5. Note
how the approximation to SCSCSC... uniformly improves in a “perturbative” fashion as
we include more Cs in the sequence, four Cs giving a very good approximation.

7 Conclusion

We have discussed the notion of coarse graining in GAs, giving a formal defintion and
some representative examples such as genotype-phenotype mappings, schemata, error
classes. We discussed how the dynamical equations for a GA transform under a coarse
graining comparing and contrasting the notions of form invariance and compatibility
and discussed some practical issues and potential problems that arise when applying
arbitrary coarse-grainings. However, the evolution equations of certain GAs can be sim-
plified with an appropriate choice of subsets. Schemata are natural subsets to consider
as the dynamics is form invariant under a schema coarse graining for selection, mutation
and crossover, whereas only mutation and crossover are compatible with the dynamics.
Unitation classes were also seen to be natural in the case of selection and bitwise mu-
tation. Genotype-phenotype coarse-grainings are natural in the case of selection, since
they give rise to constant (that is, static) fitness values for the subsets. We have illus-
trated these ideas and problems with some simple examples. Finally, we have shown how
a genotype-phenotype coarse-graining can help calculate an estimate for the selective
linkage disequilibrium coefficient in the two-bit case.
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