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Abstract. This paper develops a model for tightness time, linkage learn-
ing time for a single building block, in the linkage learning genetic al-
gorithm (LLGA). First, the existing models for both linkage learning
mechanisms, linkage skew and linkage shift, are extended and investi-
gated. Then, the tightness time model is derived and proposed based on
the extended linkage learning mechanism models. Experimental results
are also presented in this study to verify the extended models for linkage
learning mechanisms and the proposed model for tightness time.

1 Introduction

Linkage learning, one of the fundamental challenges of the research and develop-
ment of genetic algorithms (GAs), has often been either ignored or overlooked in
the field of evolutionary computation. In spite of Holland’s call for the evolution
of tight linkage in his historical publication of Adaptation in Natural and Arti-
ficial Systems [1], there have been relatively few efforts made on the subject of
linkage learning and evolution until the past decade. Thierens and Goldberg [2,3]
showed that simple genetic algorithms fail to solve hard problems without tight
linkage and analyzed several possible but unsuccessful techniques to overcome
the linkage learning difficulty. Recognizing the importance of linkage evolution
in powerful and general evolutionary processes, linkage-related operators and
mechanisms were therefore developed.

Among the ways to achieve tight linkage or its equivalent such as pertur-
bation techniques, model builders, and linkage learners is the linkage learning
genetic algorithm (LLGA), which uses (gene number, allele) style coding scheme
with non-coding segments [4,5,6] to create an evolvable genotypic structure that
makes GAs capable of learning tight linkage of building blocks through the spe-
cial expression mechanism, probabilistic expression (PE) [7,8]. Compared to the
perturbation-based algorithms, the LLGA does not employ extra linkage detec-
tion procedures to gain knowledge of linkage. Compared to the model builders,
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the LLGA operates in a local, distributed manner without building a global
model across all individuals. Therefore, the linkage learning process is a very
special and essential part of the LLGA, and this paper seeks to better under-
stand the LLGA’s linkage learning mechanisms.

In particular, this paper examines the current theoretical analysis of the
linkage learning mechanisms [9,7]. Models for both linkage learning mechanisms,
linkage skew and linkage shift, are refined and extended. The theoretical results
are confirmed with experiments. Moreover, a model for tightness time, linkage
learning time for a single building block, is therefore proposed and empirically
verified. Artificial evolutionary systems usually create fitness associated with a
greedy choice of the best alleles before linkage has evolved. Understanding the
race between allelic convergence and linkage convergence is critical to designing
LLGAs that work well. In particular, understanding tightness time is critical to
getting time scale right, especially in systems like the LLGA.

This paper is organized as follows. The following section gives a short survey
of competent GAs and a brief review of the LLGA. Section 3 extends the existing
theoretical analysis of both linkage learning mechanisms, and Sect. 4 verifies the
models with experimental results. Section 5 proposes the tightness time model
based on the extended mechanism models. Finally, the conclusions of this paper
are drawn in Sect. 6.

2 Brief Review of Competent GAs and the LLGA

Current linkage detection, adaptation, or learning techniques can be roughly
classified into three categories. The first category is based on perturbation tech-
niques. Algorithms in this category, such as messy GA (mGA) [10], fast messy
GA (fmGA) [11], gene expression messy GA (GEMGA) [12], and linkage iden-
tification by nonlinearity check/non-monotonicity detection (LINC/LIMD) [13,
14], perturb chromosomes in some particular way and detect linkage among
genes by observing the difference of fitness. After determining the relationship
among genes, building-block (BB) preserving recombination operators are then
employed to create promising solutions.

The second category uses model building techniques. Population-based in-
cremental learning (PBIL) [15], univariate marginal distribution algorithm
(UMDA) [16], compact GA (cGA) [17], extended compact GA (ECGA) [18],
iterated distribution estimation algorithm (IDEA) [19], probabilistic incremen-
tal program evolution (PIPE) [20], and BOA [21] belong to this category. Model
builders usually grasp the linkage or relationship among genes by building a
global probabilistic model with the current population. New individuals are then
derived according to the model, and the model building-utilizing process is re-
peated until the termination criterion is satisfied.

The final category adapts linkage through the chromosome representation
and genetic operators. The linkage learning genetic algorithm (LLGA) [9,7,8]
falls into this category. By making the chromosome itself capable of representing
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Fig. 1. Probability distributions of gene 3’s alleles represented by PE chromosomes.

linkage, the LLGA integrates the linkage learning and utilizing into a unified
operation and creates offspring with conceptually well-known genetic operators.

The LLGA is briefly reviewed in the remainder of this section. Readers who
are interested in more detail should refer to other materials [9,7,8].

2.1 Chromosome Representation

The LLGA’s chromosome representation is mainly composed of moveable genes,
non-coding segments, and probabilistic expression. Moveable genes are encoded
as (gene number, allele) pairs in the LLGA chromosome, and a LLGA chromo-
some is considered as a circle. These genes are allowed to move around and reside
anywhere in any order in the chromosome. Non-coding segments are inserted into
the chromosome to create an evolvable genotype capable of expressing linkage.
Non-coding segments act as non-functional genes, which have no effect on fitness,
residing between adjacent genes to generate gaps for expressing linkage precisely.

Probability expression (PE) was proposed to preserve building-block level di-
versity. For each gene, all possible alleles coexist in a PE chromosome at the same
time. For the purpose of evaluation, a chromosome is interpreted with a point
of interpretation (POI). The allele for each gene is determined by the order in
which the chromosome is traversed clock-wisely from the point of interpretation.
A complete string is then expressed and evaluated.

Consequently, each PE chromosome represents not just a single solution but
a probability distribution over the range of possible solutions. Figure 1 shows the
probability distribution over alleles of gene 3 of the chromosome. Therefore, if
different points of interpretation are selected, a PE chromosome might be inter-
preted as different solutions. Furthermore, the probability of a PE chromosome
to be expressed as a particular solution depends on the length of the non-coding
segment between genes critical to that solution. It is the essential technique of
the LLGA to capture the knowledge and to prompt the evolution of linkage.

2.2 Exchange Crossover

The exchange crossover operator is another key to make the LLGA able to learn
linkage. It is defined on a pair of chromosomes. One of the two chromosomes is
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gap y1

gap y2

gap y3

y1 + y2 + y3 = 1

y1^2 + y2^2 + y3^2
linkage =gene 2

gene 1

gene 3

Fig. 2. Calculation for the linkage of a three-gene building block.

the donor, and the other is the recipient. The exchange crossover cuts a random
segment of the donor, selects a grafting point on the recipient, and grafts the
segment onto the recipient. The grafting point is the point of interpretation of the
offspring. Starting from the point of interpretation, redundant genetic materials
caused by injection are removed right after crossover to ensure the validity.

2.3 Mechanisms Making the LLGA Work

With the integration of PE and the exchange crossover operator, the LLGA is
capable of solving difficult problems without prior knowledge of good linkage.
Traditional GAs have been shown to perform poorly on difficult problems [2]
without such knowledge. To understand the working of the LLGA, two mecha-
nisms of linkage learning: linkage skew and linkage shift has been identified and
analyzed [9]. Linkage skew occurs when an optimal building block is transferred
from the donor to the recipient. Linkage shift occurs when an optimal build-
ing block resides in the recipient and survives an injection. Both linkage skew
and linkage shift make the building block’s linkage tighter. Thus, the linkage of
building blocks can evolve during the linkage learning process, and tightly linked
building blocks are formed.

3 Linkage Learning Mechanisms

In this section, we extend the existing theoretical models for both linkage learning
mechanisms. First, the definition of linkage of a building block is introduced.
Then, the existing models for linkage skew and linkage shift [9] are extended.

3.1 Quantifying Linkage

In order to show the linkage learning and evolutionary process of the LLGA,
linkage of building blocks has to be quantified. In this paper, we employ a pro-
posed definition [9], which is the sum of the square of its inter-gene distances,
considering the chromosome to be a circle of circumference 1. Figure 2 shows an
example for calculating the linkage of a three-gene building block. The defini-
tion is appropriate in that linkage in such definition specifies a measure directly
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proportional to the probability for a building block to be preserved under the
exchange crossover operator. Additionally, it was also theoretically justified that
for any linkage learning operator working on the same form of representation,
the expected linkage of a randomly spaced order-k building block is 2

k+1 [9].

3.2 Linkage Skew

Linkage skew, the first linkage learning mechanism, occurs when an optimal
building block is successfully transferred from the donor onto the recipient. The
conditions for an optimal building block to be transferred are (1) the optimal
building block resides in the cut segment, and (2) the optimal building block gets
expressed before the deceptive one does. The effect of linkage skew was found
to make linkage distributions move toward higher linkages by eliminating less fit
individuals. Linkage skew does not make the linkage of a building block of any
particular individual tighter. Instead, it drives the whole linkage distribution to
a higher state.

Let Λt(λ) be the probability density function of the random variable λ repre-
senting the linkage of the optimal building block at generation t. The following
model to describe the evolution of linkage under linkage skew only has been
proposed [9]:

Λt+1(λ) =
λΛt(λ)

Λt

. (1)

Based on (1), the linkage average at generation t + 1 was calculated as [7]:

Λt+1 =
∫ 1

0
λΛt+1(λ) dλ =

Λ2
t

Λt

, (2)

and thus

Λt+1 = Λt +
σ2 (Λt)

Λt

, (3)

where σ2 (Λt) is the variance in the linkage distribution at generation t.
In addition to the average (i.e. the first moment) of Λt+1(λ), we can actually

calculate all other moments of Λt+1(λ) in the same way:

Λn
t+1 =

∫ 1

0
λnΛt+1(λ) dλ =

Λn+1
t

Λt

. (4)

According to the property of a probability distribution, the moments about the
origin completely characterize a probability distribution [22]. From (4), we can
construct all the moments about the origin of Λt+1(λ) as follows:

Λn
t+1 =

Λn+1
t

Λt

n = 1, 2, 3, · · · (5)
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Fig. 3. Linkage Skew on an Order-4 Trap Building Block.

Hence, the relation between Λt(λ) and Λt+1(λ) is established.
After knowing the relation between Λt(λ) and Λt+1(λ), the moment genera-

tion function (mgf) defined as follows can help us a lot:

mΛt
(s) = E

[
esΛt

]
=
∫ ∞

−∞
esλΛt(λ) dλ. (6)

Assume that the mgf of Λt(λ) exists, it can be written as

mΛt
(s) = E

[
esΛt

]
= E

[
1 + Λts +

(Λts)2

2!
+

(Λts)3

3!
+ · · ·

]

= 1 + Λts + Λ2
t

s2

2!
+ Λ3

t

s3

3!
+ · · ·

The rth moment of Λt(λ) can be obtained with

Λr
t = m

(r)
Λt

(0) =
drmΛt(s)

dsr

∣∣∣∣
s=0

.

Given the relation between Λt(λ) and Λt+1(λ) and the property of the moment
generating function, we can now get the mgf of Λt+1(λ):

mΛt+1(s) = m
′
Λt

(
s

m
′
Λt

(0)

)
. (7)

Therefore, we have a model to calculate Λt+1(λ) from Λt(λ) when the mgf is
available.
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Fig. 4. Linkage Skew on an Order-6 Trap Building Block.

Moreover, also based on (5), we can obtain the following result:

Λn
t =

Λn+1
t−1

Λt−1
=

Λn+2
t−2 /Λt−2

Λ2
t−2/Λt−2

=
Λn+2

t−2

Λt−2
= · · ·

=
Λt+n

0

Λ0
,

(8)

which clearly indicates that under linkage skew, any moment of the linkage
distribution at any given generation can be predicted with the information of
the initial linkage distribution. The linkage learning process is solely determined
by the initial distribution if there is only linkage skew working.

Finally, based on its property, linkage skew does not really tighten building
blocks in any individual. It drives the linkage distribution to a higher place by
propagating tight building blocks among individuals. Apparently, the linkage
cannot exceed the maximum linkage in the initial population. The evolution of
linkage described by (7) is therefore bounded by the initial maximum linkage.

3.3 Linkage Shift

Linkage shift is the second linkage learning mechanism [9]. It occurs when an
optimal building block resides in the recipient and survives a crossover event. For
the optimal building block to survive, there cannot be any gene contributing to a
deceptive building block transferred. Linkage shift gets the linkage of a building
block in an individual higher with deletion of duplicate genetic material caused
by injection of the exchange crossover. Compared to linkage skew, linkage shift
gets linkage of building blocks in each individual higher.
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For linkage shift, the following recurrence equation was used [9] to depict the
effect of the second mechanism on building blocks that survive crossover:

λ0(t + 1) = λ0(t) + (1 − λ0(t))
2

(k + 2)(k + 3)
, (9)

for an order-k building block. Tracking only the average of linkage, we can ap-
proximately rewrite (9) as

Λt+1 = Λt + (1 − Λt)
2

(k + 2)(k + 3)
. (10)

Given a fixed k, let c = 2
(k+2)(k+3) , we can get the following recurrence relation:

Λt+1 = Λt + c(1 − Λt)

= Λt (1 − c) + c.
(11)

By solving the recurrence relation, the new linkage shift model is obtained as

Λt = 1 − (1 − Λ0)(1 − c)t. (12)

Therefore, the rate of linkage learning is mainly determined by the linkage av-
erage of the initial linkage distribution. Besides, the higher order the building
block is, the longer it takes to evolve to some specific level of linkage.

4 Experimental Results

The experimental results to verify the extended linkage learning mechanism mod-
els are presented in this section. First, the parameter settings of the experiments
are described. Then, experimental results for both models are shown.

4.1 Parameter Settings

In this paper, we use trap functions [23] to verify the theoretical model. We
basically use similar experiments presented elsewhere [9], but the experiments
in this study were done for both order-4 and order-6 traps. An order-k trap
function used in this study can be described by

trapk(u) =
{

u u = k
k − 1 − u otherwise ,

where u is the number of ones in the bitstring. In order to simulate the infinite-
length chromosome, we let the functional genes occupy only one percent of the
chromosome. That is, for the order-4 building block, the 4 genes are embed-
ded in a 400-gene chromosome with 396 nonfunctional genes; for the order-6
building block, the 6 genes are embedded in a 600-gene chromosome with 594
nonfunctional genes. The population size are 5000 in both cases. All results in
this section are averaged over 50 independent runs.
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Fig. 5. The Average of Linkage under Linkage Shift.

4.2 Linkage Skew

The extended linkage skew model can predict all moments at any given gener-
ation. For illustration purpose, we show only the prediction of the average (the
first moment) and the variance (the second moment minus the square of the
average) in figures.

Figures 3 and 4 show the experimental results compared to the theoretical
prediction. The theoretical prediction was made based on (8). As shown in the
figures, the experimental results agree with the prediction, and the extended
linkage skew model is confirmed experimentally.

4.3 Linkage Shift

For linkage shift, we predict the average of linkage on both order-4 and order-6
traps. Figure 5 shows the experimental results. The theoretical prediction was
made according to (12). We also employ the adjustment scheme [9] to reflect the
difference between the infinite-length chromosome model and the real chromo-
somes in experiments. In this study, the maximum possible linkage in both cases
is (0.99)2 = 0.9801, and (12) is adjusted accordingly. As indicated in Fig. 5, the
experimental results agree with the adjusted theoretical prediction, and we are
now given good reason to believe that the extended model is accurate.

5 Tightness Time

5.1 The Model

Equipped with the extended models for linkage learning, we are now ready to
develop the tightness time model. Based on the observation and intuition, the
working relationship between linkage skew and linkage shift is as follows. Linkage
shift is responsible for making the linkage of a building block in each individual
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Fig. 6. Tightness Time for a Single Building Block.

tighter; linkage skew is responsible for driving the whole distribution toward a
higher place. Considering linkage shift as a refiner, linkage skew as a propagator,
and that the effect of linkage skew comes pretty fast based on the experimental
result, the linkage learning bottleneck is in fact linkage shift. Hence, we now start
to develop the model for tightness time based on the most critical component in
the framework first.

Start from (12), we can obtain

t =
log(1 − Λt) − log(1 − Λ0)

log(1 − c)
.

Then, it can be rewritten as a function of linkage λ:

t(λ) =
log(1 − λ) − log(1 − Λ0)

log(1 − c)
.

By taking the propagation effect of linkage skew into account, a constant cs

standing for the linkage learning speed-up caused by linkage skew is added into
the model. Thus, we obtain the tightness time model as follows:

t�(λ) =
log(1 − λ) − log(1 − Λ0)

cs log(1 − c)
, (13)

where t�(λ) is the tightness time for a given linkage λ, and cs ≈ 2 is determined
empirically.

Furthermore, given the initial linkage distribution, Λ0 remains constant dur-
ing the whole process. For simplicity, we can define

ε = 1 − λ,

ε0 = 1 − Λ0.



Tightness Time for the Linkage Learning Genetic Algorithm 847

Also, c = 2
(k+2)(k+3) ≈ 2

k2 when k → ∞. Therefore, (13) can be rewritten as a
function of ε as

t′�(ε) =
k2

2cs
log

ε

ε0
. (14)

Equation (14) shows that tightness time is proportional to the square of the
order of building blocks. The longer the building block, the much longer the
tightness time. Besides, tightness time is proportional to the logarithm of the
desired linkage.

5.2 Verification

Experiments were also performed to verify the model for tightness time. Us-
ing the same parameter settings described in section 4.1, both linkage learning
mechanisms work together in the experiments.

The experimental results are shown in Figure 6. The theoretical prediction
made based on (13) is also adjusted with the maximum possible linkage 0.9801.
The obtained numerical data agree with our tightness time model quite well.
Our hypothesis and model are therefore experimentally verified.

6 Conclusions

One of the most important issues of the design of genetic algorithms is linkage
learning. Harik took Holland’s call for the evolution of tight linkage seriously and
developed the linkage learning genetic algorithm, which learns linkage among
genes with specially designed chromosome representation and conceptually well-
known genetic operators. While the LLGA performs remarkably well on badly
scaled building blocks, it does not do so on uniformly scaled building blocks.
This paper seeks to gain better understanding of linkage learning mechanisms
of the LLGA in order to improve the capability of the LLGA.

In this paper, the current theoretical analysis of the linkage learning mech-
anisms are extended in several aspects and verified with experiments. Based on
the extended models, a model for tightness time is proposed. Under the two link-
age learning mechanisms, the evolution of linkage is basically determined by the
initial linkage distribution. If the linkage learning process needs to be modified or
improved, we have to seek help from other mechanisms outside the framework.
Additionally, the cooperation and interaction between linkage skew and linkage
shift is also theorized. It helps us to better understand the overall effect of the
LLGA’s linkage learning mechanisms. Finally, some important insights into the
whole linkage learning process are obtained from the tightness time model.

Among existing techniques, perturbation-based algorithms and model
builders get linkage information and evolve the population in two separate steps,
while the LLGA gets linkage tight and alleles right at the same time. Hence,
tightness time for the LLGA provides an important key to correctly handling
the competition of linkage and allele on time scale. Understanding tightness time
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should enable us to improve the LLGA and design better genetic algorithms as
well.

More work along this line still needs to be done to understand the capabilities
and limits of linkage adaptation techniques. The results shown in this paper give
us more theoretical insight of the LLGA’s linkage learning mechanisms and take
us one step further toward scalable linkage learning.
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