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Abstract. This paper analyzes the performance of a genetic algorithm
that utilizes tournament selection, one-point crossover, and a reordering
operator. A model is proposed to describe the combined effect of the
reordering operator and tournament selection, and the numerical solu-
tions are presented as well. Pairwise, s-ary, and probabilistic tournament
selection are all included in the proposed model. It is also demonstrated
that the upper bound of the probability to apply the reordering opera-
tor, previously derived with proportionate selection, does not affect the
performance. Therefore, tournament selection is a necessity when using
a reordering operator in a genetic algorithm to handle the conditions
studied in the present work.

1 Introduction

In order to ensure a genetic algorithm (GA) works well, the building blocks
represented in the chromosome of the underlying problem have to be tightly
linked. Otherwise, studies [1,2] have shown that a GA may fail to solve prob-
lems without such prior knowledge. Because it is difficult to guarantee that the
chosen chromosome representation can provide tightly linked building blocks for
processing, linkage learning operators should be adopted to overcome the diffi-
culty, which is called the coding trap [3]. Currently, one way to conduct linkage
learning is to use the (gene number, allele)-style coding scheme and reordering
operators in a genetic algorithm. Reordering operators, including inversion [4,
5,6,7,8], order-based crossover operators [9,10,11,12,13,14,15], and so on, have
already been studied for quite some time. The effectiveness of using an idealized
reordering operator (IRO) has been demonstrated [3], but an upper bound on
the probability to apply the IRO was also pointed out in the same work.

Since the introduction of the minimal deceptive problem (MDP) as a tool
for genetic algorithm modeling and performance analysis [16], the MDP has
been widely used and discussed. Some studies [3,17,18] tested the GA perfor-
mance with their theoretical frameworks on the MDP, while others [19,20,21]
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were interested in the nature and property of the MDP and tried to understand
the relationship among the epistasis, deception, and difficulty for genetic algo-
rithms. In the present work, we use the MDP with different initial conditions as
our test problems in the theoretical model because of its simplicity for analysis.

Previous analysis on reordering [3] was based on a genetic algorithm including
proportionate selection, one-point crossover, and idealized reordering operator.
Because genetic algorithms nowadays usually do not use proportionate selection,
this paper seeks the answer to whether the effectiveness of using a reordering
operator with selection other than proportionate selection changes or not. In
particular, we first modularize the previous model so that different selection
operators can be easily plugged into the framework. Then tournament selection,
including its variants, is put into the model with the idealized reordering operator
on the minimal deceptive problem, and the performance of the model is displayed
and analyzed.

The organization of this paper is in the following. The next section gives a
brief review of the framework, which includes the test problems, our assumptions,
and the previous results. Section 3 describes the modularization and extension
of the theoretical model in detail and presents the numerical solutions. Finally,
the conclusions and future work of this paper are presented in Sect. 4.

2 The Framework

In this section, we introduce the problem we use in this paper for research
and analysis, the assumptions we make to build the theoretical model, and the
previous results based on the model.

2.1 Minimal Deceptive Problem

In order to understand how a reordering operator can help a GA to solve prob-
lems, we have to use a test problem which is hard enough so that a GA cannot
solve it by itself. On the other hand, the test problem should be not so compli-
cated that we can easily have it theoretically analyzed. In this study, we employ
a problem of known and controllable difficulty as our study subject.

In particular, the minimal deceptive problem (MDP) [16] is adopted as the
test problem. The MDP is a two-bit problem and designed to mislead a GA away
from the optimal solution and toward sub-optimal ones. There are two types of
MDP [16] depending on whether f0,1 is greater or less than f0,0, where f0,1
and f0,0 are the fitness for point (0, 1) and (0, 0), respectively. Further analysis
shows that the MDP Type II is more difficult than Type I because the GA cannot
converge to the optimal solution if the initial population is biased toward the
sub-optimal solution.

By utilizing the MDP Type II and setting the initial condition which makes
a GA diverge, we conduct our analysis on the combined effect of a reordering
operator and tournament selection. Figure 1 shows the MDP Type II, and in
this paper, we have the following fitness values for each point:
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(0,0)
(1,0)

(1,1)
(0,1)

Fitness

Fig. 1. The Minimal Deceptive Problem (MDP) Type II. f0,0 > f0,1.

f1,1 = 1.1; f0,0 = 1.0; f0,1 = 0.9; f1,0 = 0.5.

2.2 Assumptions

In the present paper, we study a generational genetic algorithm that combines
tournament selection, one-point crossover, and a reordering operator on the MDP
Type II. The following assumptions are made for simplifying the theoretical
study and analysis.

First, instead of analyzing any particular reordering operator, an idealized
reordering operator (IRO) [3] is analyzed. The IRO transfers a building block
from short to long or from long to short with a reordering probability pr. Here
we consider the net effect produced by the IRO. The difference of a building
block being short or long reflects on the effective crossover probability pc. The
longer the building block is, the more likely it will be disrupted, and vice versa.

Second, crossover events can only occur between individuals containing the
building block of the identical defining length. This assumption might be untrue
for actual implementations and finite populations. However, it further simplifies
our analysis, makes the model more capable of displaying the transition between
shorts and longs, and gives us more insights about linkage learning process.

Finally, because population portions of different schemata are considered, an
infinite population is assumed implicitly as well.

2.3 Reordering and Linkage Learning

Conducting linkage learning in a GA can overcome the difficulty of the chromo-
some representation design when no prior knowledge about the problem struc-
ture exists. One of the straightforward methods for linkage learning is to employ
the (gene number, allele)-style coding scheme and reordering operators. For an
example of a five-bit problem, an individual 01101 might be represented as

((2, 1) (4, 0) (1, 0) (5, 1) (3, 1)) or ((5, 1) (4, 0) (3, 1) (2, 1) (1, 0)).
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If we consider an order-two schema composed of gene 2 and gene 3, for the
first case, the schema is 1∗∗∗1, while it is ∗∗11∗ for the second case. The ordering
of the (gene number, allele)’s does not affect the fitness value of the individual
but affects the defining length of the schema and therefore the probability to
disrupt the schema when processing. Thus, reordering operators can effectively
change the linkage among genes during the evolutionary process in this manner,
and it is the reason to study reordering operators as linkage learning operators
in our present work.

2.4 Previous Results

A genetic algorithm with IRO on the MDP Type II was analyzed and compared
to one without IRO [3]. The results showed that a GA without IRO might
diverge under certain initial conditions, and IRO can help a GA to overcome
such a difficulty. However, they also derived an upper bound on the probability
pr to apply the reordering operator

0 < pr ≤ (r − 1)(1 − Pf )
r

, (1)

where proportionate selection is used, r is the ratio of the fitness value of the
optimal schema to that of the sub-optimal schema, and the converged population
contains proportion of at least Pf optimal individuals.

Calculating the upper bound of pr on the MDP Type II used in the paper is
straightforward:

r =
f1,1

f0,0
=

1.1
1.0

= 1.1.

If at least 50% optimal solutions are desired in the converged population, the
upper bound of pr will be

pr ≤ (r − 1)(1 − Pf )
r

=
0.1
1.1

(1 − 0.5) = 0.0455.

It was showed that if pr is greater than the upper bound, the GA still diverges
even with the help of IRO. Therefore, although IRO was demonstrated to be
useful for helping a GA to overcome the coding trap, the upper bound of the
reordering probability quite limits its applicability.

3 IRO with Tournament Selection

Now, we propose our theoretical model and analyze the combined effect of IRO
and tournament selection. We start from the model developed based on using
proportionate selection [3]. By separating the parts of selection and crossover and
making the model modularized, we then develop the corresponding selection
part of pairwise tournament selection. After adding IRO into the model, we
generalize tournament selection of our model to s-ary tournament selection and
probabilistic tournament selection.
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3.1 Separating Selection and Crossover

Start from the model for proportionate selection [16]:

P t+1
0,0 = P t

0,0
f0,0

f

[
1 − pc

f1,1

f
P t

1,1

]
+ pc

f0,1f1,0

f
2 P t

0,1P
t
1,0;

P t+1
0,1 = P t

0,1
f0,1

f

[
1 − pc

f1,0

f
P t

1,0

]
+ pc

f1,1f0,0

f
2 P t

1,1P
t
0,0;

P t+1
1,0 = P t

1,0
f1,0

f

[
1 − pc

f0,1

f
P t

0,1

]
+ pc

f0,0f1,1

f
2 P t

0,0P
t
1,1;

P t+1
1,1 = P t

1,1
f1,1

f

[
1 − pc

f0,0

f
P t

0,0

]
+ pc

f1,0f0,1

f
2 P t

1,0P
t
0,1,

where P t
i,j i, j ∈ {0, 1} is the portion of population of schema (i, j) at gen-

eration t, pc is the effective crossover probability which combines the actual
crossover probability with the disrupting probability introduced by the linkage
of the schema, and f is the average fitness value. We can separate the selec-
tion and crossover parts of the model by defining the population portion after
proportionate selection as

Qt
i,j =

fi,j

f
P t

i,j i, j ∈ {0, 1}.

By writing the model, we obtain

P t+1
i,j =P t

i,j

fi,j

f

[
1 − pc

f(1−i),(1−j)

f
P t

(1−i),(1−j)

]

+ pc

fi,(1−j)f(1−i),j

f
2 P t

i,(1−j)P
t
(1−i),j

=P t
i,j

fi,j

f
− pc

fi,jf(1−i),(1−j)

f
2 P t

i,jP
t
(1−i),(1−j)

+ pc

fi,(1−j)f(1−i),j

f
2 P t

i,(1−j)P
t
(1−i),j

=Qt
i,j − pcQ

t
i,jQ

t
(1−i),(1−j) + pcQ

t
i,(1−j)Q

t
(1−i),j

where i, j ∈ {0, 1}.
Hence, the model can be described as two separate modules:

1. Proportionate selection:

Qt
i,j =

fi,j

f
P t

i,j i, j ∈ {0, 1}. (2)

2. One-point crossover:

P t+1
i,j =Qt

i,j − pcQ
t
i,jQ

t
(1−i),(1−j) + pcQ

t
i,(1−j)Q

t
(1−i),j i, j ∈ {0, 1}.
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Fig. 2. Numerical solution of the MDP
Type II showing convergence to the op-
timal solution when the initial condition
is P 0

i,j = 0.25 i, j ∈ {0, 1}.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

P
ro

po
rt

io
n

Time (Number of Generation)

P(0,0)
P(0,1)
P(1,0)
P(1,1)

Fig. 3. Numerical solution of the MDP
Type II showing divergence away from the
optimal solution when the initial condi-
tion is P 0

0,0 = 0.7; P 0
0,1 = P 0

1,0 = P 0
1,1 =

0.1.

3.2 Pairwise Tournament Selection

After getting separate parts of the model, replacing the selection part with pair-
wise tournament selection is straightforward. Because the fitness values of the
test function follow

f1,1 > f0,0 > f0,1 > f1,0,

we can easily write down the equations representing the portion of population
after pairwise tournament selection:

Qt
1,1 = 1 − (1 − P t

1,1)
2;

Qt
0,0 = (1 − P t

1,1)
2 − (1 − (P t

1,1 + P t
0,0))

2;

Qt
0,1 = (1 − (P t

1,1 + P t
0,0))

2 − (P t
1,0)

2;

Qt
1,0 = (P t

1,0)
2. (3)

Substituting the proportionate selection module with the pairwise tourna-
ment selection module, we get the model combining IRO and tournament se-
lection. Figures 2 and 3 show the numerical results of the pairwise tournament
selection model for two different initial conditions. In the first initial condition,
portions of all schemata are equal, i.e., P 0

i,j = 0.25 i, j ∈ {0, 1}. In the second
initial condition, the initial population is biased toward the sub-optimal solution
that P 0

0,0 = 0.7; P 0
0,1 = P 0

1,0 = P 0
1,1 = 0.1.

The two initial conditions used here are identical to that used elsewhere [3]
for comparison purpose. The results show that replacing proportionate selection
with pairwise tournament selection alone does not make the GA capable of
overcoming the difficulty. It still diverges under the second initial condition. The
difference of using tournament selection is that the convergence or divergence
comes much faster. Since it is well-known that the takeover time of tournament
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Fig. 4. Numerical solution of the MDP Type II showing convergence to the optimal
solution when pr = 0.01. Combined results for both short building blocks and long
building blocks.

selection is much shorter than that of proportionate selection [22], the time
difference is expected.

3.3 Using IRO

Apparently, replacing proportionate selection does not change the basic behavior
of a GA. We now insert the idealized reordering operator (IRO) into our model
to verify its performance. IRO is assumed to transfer a build block between its
long version (loose linkage) and short version (tight linkage). For simplicity, we
add another index k to the model equation terms for distinguishing short (k = 0)
and long (k = 1). The difference of being long or short reflects on the effective
crossover probability. If a building block is tightly linked (short), we assume that
the effective crossover probability pc,0 = 0, which means the building block will
not be disrupted. Otherwise, we assume pc,1 = 1, meaning the schema is very
likely to be destroyed.

Because crossover events only occur between individuals of the same defining
length of building blocks, we can write the crossover parts with the extra index
by introducing a new intermediate portion Rt

i,j,k as

Rt+1
i,j,k =Qt

i,j,k − pc,kQt
i,j,kQt

(1−i),(1−j),k

+ pc,kQt
i,(1−j),kQt

(1−i),j,k i, j, k ∈ {0, 1}, (4)

where Rt
i,j,k is the population portion of schema (i, j, k) at generation t after

crossover.
After crossover, IRO is responsible for transferring a building block between

its long and short version with reordering probability pr as

P t+1
i,j,k = (1 − pr)Rt

i,j,k + prR
t
i,j,(1−k) i, j, k =∈ {0, 1}, (5)

where on the right hand side, the first term indicates the building blocks remain-
ing to be the same version, and the second term specifies the building blocks
transferred from the other version.
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Fig. 5. Numerical solution of the MDP
Type II showing convergence to the opti-
mal solution when pr = 0.01. Short build-
ing blocks.
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Fig. 6. Numerical solution of the MDP
Type II showing convergence to the opti-
mal solution when pr = 0.01. Long build-
ing blocks.

Thus, the model with IRO consists of the following three modules:

1. Pairwise tournament selection (Equation (3));
2. One-point crossover (Equation (4));
3. Idealized reordering operator (Equation (5)).

To make the problem harder, we adopt the third initial condition that P 0
0,0 =

0.8; P 0
0,1 = P 0

1,0 = 0.1; P 0
1,1 = 0 [3]. This initial condition specifies that the way to

have schema (1, 1) is to create it via crossover and make it stay in the population
without being disrupted. We first try a low reordering probability pr = 0.01 to
see if the reordering operator also helps a GA to converge with tournament
selection.

Figures 4, 5, and 6 show the numerical results after inserting IRO into the
model. Apparently, IRO works as we expected to help the GA to converge to the
optimal solutions. The process can be roughly divided into three stages. First,
the short version of (1, 1) is created by the crossover. Only the short version can
survive at this stage because it cannot be disrupted even both short and long
versions are equally favored by the selection. Then, the optimal schema starts to
takeover the population. The period of this stage is determined by the takeover
time. After the optimal schema takeover the population, there is no need to
maintain linkage. Therefore, the portion of long starts to grow, and the portion
of short starts to decrease until reaching the balance.

Until now, there seems no fundamental difference between using proportion-
ate selection and using tournament selection. Except for the time scale, the
behavior does not seem to be different. However, if we use a higher reordering
probability pr = 0.10. We can get the numerical results in Figure 7.

Unexpectedly, the GA also converged to the optimal solution. Using the same
reordering probability, the GA diverges instead of converges. Because the upper
bound for the reordering probability was developed based on using proportionate
selection, it might be different if tournament selection is used. Therefore, we
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Fig. 7. Numerical solution of the MDP
Type II showing convergence to the op-
timal solution even when pr = 0.10.
Combined results for both short building
blocks and long building blocks.
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Fig. 8. Numerical solution of the MDP
Type II showing convergence to the op-
timal solution even when pr = 0.25.
Combined results for both short building
blocks and long building blocks.

conduct simulations with even higher reordering probabilities pr = 0.25, 0.75,
and 0.99. The results are shown in Figures 8, 9, and 10.

Surprisingly, the GA still converged to the optimal solution even with a very
high reordering probability. It indicates that there might not be a upper bound
for reordering probability except that 0 < pr < 1.

3.4 S-ary Tournament Selection

In addition to pairwise tournament selection, we also generalize the model to
include the commonly used s-ary tournament selection as follows. First, we define
an order function o(·) for each schema based on their fitness values:

o(0) = (−1, −1); o(1) = (1, 1); o(2) = (0, 0); o(3) = (0, 1); o(4) = (1, 0),

where (−1, −1) is a boundary condition for convenience, and P t
−1,−1 = 0 ∀t ≥ 0.

Second, we define the accumulated population portion with the order given by
o(·) as

At
o(n) =

n∑
m=0

P t
o(m) 0 ≤ n ≤ 4.

With the help of the ordering function and accumulated portion, we can rewrite
(3) as follows:

Qt
o(n) =

{
0 n = 0(
1 − At

o(n−1)

)2
−

(
1 − At

o(n)

)2
0 < n ≤ 4

(6)
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Fig. 9. Numerical solution of the MDP
Type II showing convergence to the op-
timal solution even when pr = 0.75.
Combined results for both short building
blocks and long building blocks.
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Fig. 10. Numerical solution of the MDP
Type II showing convergence to the op-
timal solution even when pr = 0.99.
Combined results for both short building
blocks and long building blocks.

Then we can generalize the equation to s-wise tournament selection by replacing
the square with the sth power:

Qt
o(n) =

{
0 n = 0(
1 − At

o(n−1)

)s

−
(
1 − At

o(n)

)s

0 < n ≤ 4
(7)

3.5 Probabilistic Tournament Selection

Probabilistic tournament selection can also be modeled with our framework.
Considering pairwise tournament selection, after tournament, the winner gets
into the next generation with a fixed probability p, 0.5 < p ≤ 1. Pairwise tour-
nament selection can be considered as a special case with p = 1.

To include probabilistic tournament selection, we start from (6). Since when
some schema wins, it actually gets into the next generation with p, and it also
gets selected with 1−p when losing a tournament, we can modified (6) to model
probabilistic tournament selection as

Qt
o(n) =




0 n = 0

p

((
1 − At

o(n−1)

)2
−

(
1 − At

o(n)

)2
)

+(1 − p)
((

At
o(n)

)2
−

(
At

o(n−1)

)2
)

0 < n ≤ 4

(8)

Numerical results for both s-ary tournament selection and probabilistic tour-
nament selection are omitted because of the length limitation. Those results are
also consistent with our previous observation on pairwise tournament selection.
The fundamental behavior of the algorithm remains the same when different
kinds of tournament selection are employed.
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4 Conclusions

It has been demonstrated that an idealized reordering operator can help a ge-
netic algorithm to overcome certain difficulty on the MDP Type II [3]. However,
an upper bound of the reordering probability was also derived to explain why
the reordering operator did not help the genetic algorithm when the probability
was set to be a little bit high. In this paper, we extend the model to include the
commonly used tournament selection. The proposed model can describe pairwise
tournament selection, s-ary tournament selection, and probabilistic tournament
selection. By analyzing the performance of a GA with the proposed model, we
can find that there seems no upper bound on reordering probability. The genetic
algorithm still converges even if the probability approaches to 1. Therefore, us-
ing the reordering operator with tournament selection can give us much better
results than with proportionate selection.

Tournament selection has been widely utilized because of its excellence, in-
cluding independence of fitness scaling, ease for implementation, and so on. How-
ever, based on the study, when conducting linkage learning, tournament selection
becomes a necessity rather than a choice. If proportionate selection is used, the
reordering probability has to be limited to ensure success. But in practice, the
reordering probability might not be known or even controllable. Hence, we have
to use tournament selection under this condition so that the algorithm is able
to achieve its goal.

Future work along this line includes extending the model so that more opera-
tors and parameters can be described, using the model to observe and explain the
linkage learning process, and deriving characteristic properties, such as tightness
time, of linkage learning.
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