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Abstract. For noisy optimization problems, there is generally a
trade-off between the effort spent to reduce the noise (in order to
allow the optimization algorithm to run properly), and the number of
solutions evaluated during optimization. However, for stochastic search
algorithms like evolutionary optimization, noise is not always a bad
thing. On the contrary, in many cases, noise has a very similar effect to
the randomness which is purposefully and deliberately introduced e.g.
during selection. Using the example of stochastic tournament selection,
we show that the noise inherent in the optimization problem should be
taken into account by the selection operator, and that one should not
reduce noise further than necessary.
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1 Introduction

Many real-world optimization problems are noisy, i.e. a solution’s quality (and
thus the fitness function) is a random variable. Examples include all applications
where the fitness is determined by a stochastic computer simulation, or where fit-
ness is measured physically and prone to measuring error. Researchers have long
argued that evolutionary algorithms (EAs) should be relatively robust against
noise (see e.g. [FG88]), and recently a number of publications have appeared
which support that claim at least partially [MG96,AB00a,AB00b,AB03].

For most noisy optimization problems, the uncertainty in fitness evaluation
can be reduced by sampling an individual’s fitness several times and using the
average as estimate for the true mean fitness. Sampling n times reduces a random
variable’s standard deviation by a factor of

√
n, but on the other hand increases

the computation time by a factor of n. Thus, there is a generally perceived trade-
off: either one can use relatively exact estimations but only evaluate a small
number of individuals (because a single estimation requires many evaluations),
or one can let the algorithm work with relatively crude fitness estimations, but
allow for more evaluations (as each estimation requires less effort). Generally,
noise is considered harmful, as it may mislead the optimization algorithm. The
main issue is probably the selection step: If due to the noise, a bad individual
is evaluated better than it actually is, and/or a good individual is evaluated
worse than its true fitness, the EA may wrongly select the worse individual
although (according to the algorithmic design) it should have selected the better
individual. Clearly, if such errors happen too frequently, optimization stagnates.
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However, noise is not always a bad thing, on the contrary. EAs are ran-
domized search algorithms, which use deliberate randomness to purposefully
introduce errors into the selection process, primarily in order to get out of local
minima. Therefore, in this paper we argue that it should be possible to accept
the noise inherent in the optimization problem and to use it to (at least par-
tially) replace the randomness in the optimization algorithm. As a result, it is
possible to get the optimization algorithm to behave closer to its behavior on
deterministic problems, even without excessive sampling. Furthermore, we will
demonstrate that, depending on the fitness values and variances, noise affects
some tournaments much stronger than others. As a consequence, we suggest a
simple but effective resampling strategy to adapt the sample size to the specific
tournament, allowing us to again get closer to the algorithm’s behavior in a
deterministic setting, while drastically reducing the number of samples required.

The paper is structured as follows: In Section 2, we survey some related work
on EAs applied to noisy optimization problems, followed by a brief description of
stochastic tournament selection. Section 4 demonstrates the effect noise has on
tournament selection, and describes two ways to integrate a possible sampling
error into the selection procedure. The idea of adapting not only the selection
probability but also the sample size is discussed in Section 5. The paper concludes
with a summary and some ideas for future work.

2 Related Work

The application of EAs in noisy environments has been the focus of many re-
search papers. There are several papers that have looked at the trade-off between
population size and sample size to estimate an individual’s fitness, with some-
times conflicting results. Fitzpatrick and Grefenstette [FG88] conclude that for
the genetic algorithm studied, it is better to increase the population size than
the sample size. On the other hand, Beyer [Bey93] shows that for a (1, λ) evo-
lution strategy on a simple sphere, one should increase the sample size rather
than λ. Hammel and Bäck [HB94] confirm these results and empirically show
that it also doesn’t help to increase the parent population size µ. Finally, Arnold
and Beyer [AB00a,AB00b] show analytically that for the simple sphere, increas-
ing the parent population size µ is helpful in combination with intermediate
multirecombination. Miller [Mil97,MG96] has developed some simplified theo-
retical models which allow to simultaneously optimize the population size and
the sample size. A good overview of theoretical work on EAs applied to noisy
optimization problems can be found in [Bey00] or [Arn02].

All papers mentioned so far assume that the sample size is fixed for all in-
dividuals. Aizawa and Wah [AW94] were probably the first to suggest that the
sample size could be adapted during the run, and suggested two adaptation
schemes: increasing with the generation number, and higher sample size for in-
dividuals with higher estimated variance. Albert and Goldberg [AG01] look at a
slightly different problem, but also conclude that the sample size should increase
over the run. For (µ, λ) or (µ+λ) selection, Stagge [Sta98] has suggested basing
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the sample size on an individual’s probability to be among the µ best (and thus
to survive to the next generation).

Branke et al. [Bra98,BSS01] and Sano and Kita [SK00,SKKY00] propose
taking the fitness estimations of neighboring individuals into account when es-
timating an individual’s fitness. This improves the estimation without requiring
additional samples.

Finally, another related subject is that of searching for robust solutions, where
instead of a noisy fitness function the decision variables are perturbed (cf. [TG97,
Bra98,Bra01]).

3 Stochastic Tournament Selection

Stochastic tournament selection (STS) [GD91] is a rather simple selection scheme
where two individuals are randomly chosen from the population, and then the
better is selected with probability (1 − γ). If individuals are sorted from rank 1
(best) to rank m (worst), this results in a linearly decreasing selection probability
for an individual on rank i, with the slope of the line being determined by the
selection probability (1 − γ).

4 Selection Based on a Fixed Sample Size

Selecting the better of two individuals with probability (1 − γ) in a noisy envi-
ronment can be achieved in two fundamental ways: The standard way would be
to eliminate the noise as much as possible by using a large number of samples,
and then selecting the better individual with probability (1 − γ). The noise-
adapted selection proposed here has a different philosophy: instead of eliminat-
ing the noise and then artificially introducing randomness, we propose accepting
a higher level of noise, and only add a little bit of randomness to achieve the
desired behavior.

In the following, we will start with the standard STS, demonstrate the conse-
quences in a noisy environment, and then develop a simple and a more complex
model to get closer to the ideal noise-adapted selection.

4.1 Basic Notations

Let us denote the two individuals to be compared as x and y. If the fitness is
noisy, the fitness of individual x (y) is a random variable Fx (Fy) with Fx ∼
N (µx, σ2

x) (Fy ∼ N (µy, σ2
y))1. If µx > µy, we would like to select individual x

with probability (1−γ) and vice versa. However, µx and µy are unknown, we can
only estimate them by sampling each individual’s fitness a number of n times
1 Note that it will be sufficient to assume that the average difference obtained from

sampling the individuals’ fitnesses n times is normally distributed. This is certainly
valid if each individual’s fitness is normally distributed, but also independent of the
actual fitness distributions for large enough n (central limit theorem).
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and using the averages f̄x and f̄y as estimators for the fitnesses, and the sample
variances s2

x and s2
y as estimators for the true variances.

If the actual fitness difference between the two individuals is denoted as
δ = µx − µy, the observed fitness difference D = f̄x − f̄y is again a random
variable D ∼ N (δ, σ2

d). The variance of D depends on the number of samples
drawn from each individual, n, and can be calculated as σ2

d = (σ2
x + σ2

y)/n. A
specific realization of the observed fitness difference is named d. Furthermore, we
will need a standardized observed fitness which we define as d∗ = d/

√
s2

d where
s2

d = (s2
x + s2

y)/n is the unbiased estimated standard deviation of the fitness
difference. The corresponding true counterpart is δ∗ = δ/σd. Note that non-
linear transformations of unbiased estimators are no longer unbiased, therefore
d∗ is a biased estimator for δ∗.

While γ is the desired selection probability for the truely worse individual,
we denote with β the implemented probability for choosing the worse individual
based on the estimated standardized fitness difference d∗, and ξ(δ∗, β) the actual
selection probability for the better individual given a true standardized fitness
difference of δ∗.

4.2 Standard Stochastic Tournament Selection

The simplest (and standard) way to apply STS would be to ignore the uncer-
tainty in evaluation by making the following assumption:

Assumption: The observed fitness difference is equal to the actual fitness
difference, i.e. d = δ.

As a consequence, individual x is selected with probability (1 − β) = (1 − γ)
if d ≥ 0 and with probability β = γ if d < 0.

However, there can be two sources of error: Either we observe a fitness dif-
ference d > 0 when actually δ < 0, or vice versa. The corresponding error
probability α can be calculated as

α =






P (D > 0) = 1 − Φ
(

−δ
σd

)
= Φ

(
δ

σd

)
: δ ≤ 0

P (D < 0) = Φ
(

−δ
σd

)
: δ > 0

= Φ

(−|δ|
σd

)
= Φ (−|δ∗|) (1)

with Φ being the cumulative distribution function for a standard gaussian.
The overall selection probability for individual x can then be calculated as

ξ = P (D > 0)(1 − β) + P (D < 0)β
= (1 − α)(1 − β) + αβ (2)

Example: To visualize the effect of the error probability on the actual se-
lection probability ξ, let us consider an example with σ2

x = σ2
y = 10, n = 20 and

γ = 0.2. The actual selection probability for individual x depending on δ∗ can be
determined by a Monte Carlo simulation. We did this in the following way: For
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a given δ∗, we generated 100,000 realizations of d∗ according to d∗ = f̄x−f̄y√
(s2

x+s2
y)/n

based on Fx ∼ N (0, σ2
x), Fy ∼ N (−δ∗σd, σ

2
y). For each observed d∗, we select x

with probability (1 − β) if d∗ > 0 and with probability β otherwise. The actual
selection probability ξ(δ∗, β) is then the fraction of times x has been selected.

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8

standard

δ∗

ξ

Fig. 1. True selection probability of individual x depending on the actual standardized
fitness difference δ∗. The dotted line represents the desired selection probability (1−γ).

Figure 1 depicts the resulting true selection probability of individual x de-
pending on the actual standardized fitness difference δ∗. The dotted line corre-
sponds to the desired behavior in the deterministic case, the bold line labeled
“standard” is the actual selection probability due to the noise. As can be seen,
the actual selection probability for the better individual largely depends on the
ratio δ∗ of the fitness difference δ and the amount of noise measured as σd.
While it corresponds to the desired selection probability of (1 − γ) for δ∗ > 3,
it approaches 0.5 for δ∗ → 0. The latter fact is unavoidable, since for δ∗ → 0
it becomes basically impossible to determine the better of the two individuals.
The interesting question is how quickly ξ approaches 1 − γ, and whether this
behavior can be improved. Note that we only show the curves for δ∗ ≥ 0 (as-
suming without loss of generality that µx > µy). For δ∗ < 0 the curve would be
symmetric to (0, 0.5).

In previous papers, it has been noted that the effect of noise on EAs is
similar to a smaller selection pressure (e.g. [Mil97]). Figure 1 demonstrates that
this is not entirely true for STS. A lower selection pressure in form of a higher
γ would change the level of the dotted line, but it would still be horizontal, i.e.
the selection probability for the better individual would be independent of the
actual fitness difference. With noise, only the tournaments between individuals



Selection in the Presence of Noise 771

of similar fitness are affected. Hence, a dependence on the actual fitness values
is introduced which somehow contradicts the idea of rank-based selection.

4.3 A Simple Correction

If we know that our conclusion about which of the two individuals has a better
fitness is prone to some error, it seems straightforward to take this error prob-
ability into account when deciding which individual to select. Instead of always
selecting the better individual with probability (1−γ), we could try to replace γ
by a function β(d∗) which depends on the standardized observed difference d∗.

Let us make the following assumption:
Assumption: It is possible to accurately estimate the error probability α.
Then, since we would like to have an overall true selection probability of

(1 − γ), an appropriate β-function could be derived as

(1 − α)(1 − β) + αβ
!= (1 − γ) (3)

1 − β − α + αβ + αβ = (1 − γ)
β(−1 + 2α) = (1 − γ) − 1 + α

β =
γ − α

1 − 2α
. (4)

β is a probability and can not be smaller than 0, i.e. the above equation assumes
α ≤ γ < 0.5. For α > γ we set β = 0.

Unfortunately, α can not be calculated using Equation 1, because we don’t
know either δ nor σd.

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8

standard
corr

δ∗

ξ

Fig. 2. True selection probability of individual x depending on the actual standardized
fitness difference δ∗. The dotted line represents the desired selection probability (1−γ).
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It seems straightforward then to estimate δ by the observed difference d,
and σ2

d by the observed variance s2
d. Then, α is estimated as α̂ = Φ(−|d|/sd) =

Φ(−|d∗|), which is only a biased estimator due to the non-linear transformations.
Nevertheless, this may serve as a reasonable first approximation of an optimal β-
function. Figure 3 visualizes this β-function (labeled as “corr”). As can be seen,
the probability to select the worse individuals decreases when the standardized
difference d∗ becomes small, and is 0 for |d∗| < −Φ−1(γ) (i.e. the observed better
individual is always selected if the observed standardized fitness difference d∗ is
small). Assuming the same parameters as in the example above, the resulting
true selection probabilities ξ(δ∗, β(.)) are depicted in Figure 2 (labeled as “corr”).
The true selection probability approaches the desired selection probability faster
than with the standard approach, but then it overshoots before it converges
towards (1 − γ). Nevertheless, the approximation is already much better than
the standard approach (assuming a uniform distribution of δ∗).

4.4 Bootstrapping

The β-function proposed above can be further improved by bootstrapping
[Efr90]. This method compares the observed selection probabilities p given the
current β function with the desired selection probabilities, and then reduces β
where the selection probability is too low, and increases β where the selection
probability is too high. The observed selection probabilities ξ(δ∗, β(.)) have to
be estimated by Monte Carlo simulation, generating realisations of d∗ and then
selecting according to β(d∗). Unfortunately, the distribution of d∗ depends on
the variance σ2

d of the observed fitness difference which is unknown. Therefore,
in this approach we make the following simplifying assumption:

Assumption: The estimated variance of the difference corresponds to the
true variance of the difference, i.e. s2

d = σ2
d.

From that it follows that d∗ is normally distributed according to N (δ∗, 1).
More specifically, our bootstrapping approach starts with an initial β0(z)

which corresponds to the β function defined in the section above. Then, it iter-
atively adapts beta according to

βt+1(z) = βt(z) + ξ(z, βt(.)) − (1 − γ). (5)

This procedure can be iterated until one is satisfied with the outcome.
The resulting β-function is depicted in Figure 3. At first sight, the strong

fluctuations seems surprising. However, a steeper ascent of the true selection
probability can only be achieved by keeping β(d∗) = 0 for as long as possible. The
resulting overshoot then has to be compensated by a very high β etc. such that in
the end, an oscillating acceptance pattern emerges as optimal. The corresponding
true selection probabilities ξ(δ∗) are shown in Figure 4. As can be seen, despite
the oscillating β-function, this curve is very smooth, and much closer to the
actually desired selection probability of γ resp. (1 − γ) than either the standard
approach of ignoring the noise, or the first approximation of an appropriate
β-function presented in the previous section.
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0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

standard
corr

bootstrap

d∗

β

Fig. 3. The probability to select the worse individual (β-function), depending on the
observed standardized fitness difference d∗. Results of the different approaches.

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8

standard
corr

bootstrap
bound

δ∗

ξ

Fig. 4. True selection probability of individual x depending on the actual standardized
fitness difference δ∗. The line denoted by “bound” is an idealized curve which depicts
a limit to how close one can get to the desired selection probability. The dotted line
represents the desired selection probability (1 − γ).

Even though the bootstrapping method yields a much better approximation
to the desired selection probability than the other two approaches, it could per-
haps be further improved by basing it not only on d∗ but on all three observed
variables, namely d, σ2

x, and σ2
y. However, we expect that the additional im-

provement would be rather small. Furthermore, there is a bound to how close
one can get to the desired selection probability: the steepest possible ascent of
the true selection probability is clearly obtained if the individual with the higher
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observed fitness is always selected. However, as long as α exceeds γ, the resulting
true selection probability would still be below the desired selection probability.
The corresponding steepest ascent curve is also shown in Figure 4 and denoted
as “bound”.

Instead of trying to further improve the estimation, we will now turn to the
idea of drawing additional samples if the probability for a selection error is high.

5 Resampling

From the above discussion, it is clear that the deviation from actual selection
probability to desired selection probability is only severe for small values of δ/σd,
i.e. if the individuals have similar fitness and/or the noise is large.

Therefore, we now attempt to counteract that problem by adapting the num-
ber of samples to the expected error probability, i.e. by drawing a large number
of samples whenever we assume that the selection error would be high and vice
versa. We propose to do that in the following way: Starting with a reduced num-
ber of 10 samples for every individual, we calculate d∗. If |d∗| ≥ ε where ε is
a constant, we stop and use d∗ to decide which individual to select. Otherwise,
we repeatedly draw another sample for each of the two individuals until either
|d∗| ≥ ε or the total number of samples exceeds a maximum number N . For
our experiments, we set N = 100 and ε = 1.33, which approximately yields an
error probability of 1% if δ∗ = 1 assuming that d∗ is normally distributed as
d∗ ∼ N (δ∗, 1), i.e. if δ∗ = 1, there is only a 1% chance that we will observe a
distance d < 0.

For our standard example with σ2
x = σ2

y = 10 and γ = 0.2, the above sampling
scheme results in an average number of samples depending on δ∗ as depicted in
Figure 5. For small standardized distances d∗, the average number of samples is
quite high, but it drops quickly and approaches the lower limit of 20 for δ∗ > 3.
Depending on the distribution of δ∗ in a real EA, this sampling scheme is thus
able to achive tremendous savings compared to the fixed sampling rate of 20
samples per individual (40 samples in total). Furthermore, the actual selection
probabilities using this sampling scheme are much closer to the desired selection
probability than if a fixed number of samples is used. The two sampling schemes
in combination with standard STS are compared in Figure 6.

Just as for the fixed sample size, we can apply bootstrapping also to the
adaptive sampling scheme. The resulting β-function and selection probabilities
are depicted in Figures 7 and 8. The resulting beta-function is much smoother
than the one obtained for the fixed sampling scheme. Also, although there is
still a clear benefit of bootstrapping with respect to the deviation of ξ from the
desired (1−γ), the improvement over standard STS is significantly smaller than
with a fixed sample size. This is probably because due to the smaller initial
sample size in combination with the resampling scheme used, our assumption
that D∗ is normally distributed may be less appropriate.
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Fig. 5. Average sample size depending
on the actual standardized fitness differ-
ence δ∗, with the fixed sampling scheme
(dashed line) and the adaptive sampling
scheme (solid line).
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Fig. 6. Actual sampling probability de-
pending on the actual standardized
fitness difference δ∗, for the stan-
dard stochastic tournament selection
with fixed and with adaptive sampling
scheme.
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Fig. 7. β-function derived by bootstrap-
ping for the case of an adaptive sample
size.
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Fig. 8. Comparison of the actual sam-
pling probability depending on the ac-
tual standardized fitness difference δ∗

for the standard STS and the bootstrap-
ping approach, when using the adaptive
sampling scheme.

6 Conclusion

In this paper, we have argued that the error probability due to a noisy fitness
function should be taken into account in the selection step. At the example
of stochastic tournament selection, we have demonstrated that it is possible to
obtain a much better match between actual and desired selection probability for
an individual.

In a first step, we have derived two models which determine the selection
probability for the better individual depending on the observed fitness differ-
ence. The simple model was based on some simplifying assumptions regarding
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the distribution of the error probability; the second model was based on boot-
strapping.

In a second step, we looked at a different sampling scheme, namely adapting
the number of samples to the expected error probability. That way, a pair of
similar individuals is sampled much more often than a pair of individuals with
very different fitness values. This approach also greatly improves the accuracy
of the actual selection probability. Additionally, depending on the distribution
of fitness differences in an actual EA run, it will significantly reduce the number
of samples required.

We are currently exploring a number of different extensions. For one, it should
be relatively straightforward to extend our framework to other selection schemes
and even to other heuristics like simulated annealing. Furthermore, we intend to
improve the adaptive sampling scheme by using statistical test theory.

Acknowledgements. We would like to thank David Jones for pointing us to
the bootstrapping methodology, and the anonymous reviewers for their helpful
comments.

References

[AB00a] D. V. Arnold and H.-G. Beyer. Efficiency and mutation strength adap-
tation of the (µ/µi, λ)-es in a noisy environment. In Schoenauer et al.
[SDR+00], pages 39–48.

[AB00b] D. V. Arnold and H.-G. Beyer. Local performance of the (µ/µi, λ)-es in a
noisy environment. In W. Martin and W. Spears, editors, Foundations of
Genetic Algorithms, pages 127–142. Morgan Kaufmann, 2000.

[AB03] D. V. Arnold and H.-G. Beyer. A comparison of evolution strategies with
other direct search methods in the presence of noise. Computational Opti-
mization and Applications, 24:135–159, 2003.

[AG01] L. A. Albert and D. E. Goldberg. Efficient evaluation genetic algorithms
under integrated fitness functions. Technical Report 2001024, Illinois Ge-
netic Algorithms Laboratory, Urbana-Champaign, USA, 2001.

[Arn02] D. V. Arnold. Noisy Optimization with Evolution Strategies. Kluwer, 2002.
[AW94] A. N. Aizawa and B. W. Wah. Scheduling of genetic algorithms in a noisy

environment. Evolutionary Computation, pages 97–122, 1994.
[Bey93] H.-G. Beyer. Toward a theory of evolution strategies: Some asymptotical

results from the (1 +, λ)-theory. Evolutionary Computation, 1(2):165–188,
1993.

[Bey00] H.-G. Beyer. Evolutionary algorithms in noisy environments: Theoretical
issues and guidelines for practice. Computer methods in applied mechanics
and engineering, 186:239–267, 2000.

[Bra98] J. Branke. Creating robust solutions by means of an evolutionary algo-
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