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Abstract. Shunting Inhibitory Artificial Neural Networks (SIANNs)
are biologically inspired networks in which the synaptic interactions are
mediated via a nonlinear mechanism called shunting inhibition, which
allows neurons to operate as adaptive nonlinear filters. In this article,
The architecture of SIANNs is extended to form a generalized feedfor-
ward neural network (GFNN) classifier. Two training algorithms are de-
veloped based on stochastic search methods, namely genetic algorithms
(GAs) and a randomized search method. The combination of stochastic
training with the GFNN is applied to four benchmark classification prob-
lems: the XOR problem, the 3-bit even parity problem, a diabetes dataset
and a heart disease dataset. Experimental results prove the potential of
the proposed combination of GFNN and stochastic search training meth-
ods. The GFNN can learn difficult classification tasks with few hidden
neurons; it solves perfectly the 3-bit parity problem using only one neu-
ron.

1 Introduction

Computing has historically been dominated by the concept of programmed com-
puting, in which algorithms are designed and subsequently implemented using
the dominant architecture at the time. An alternative paradigm is intelligent
computing, in which the computation is distributed and massively parallel and
learning replaces a priori program development. This new, biologically inspired,
intelligent computing paradigm is called Artificial Neural Networks (ANNs) [1].
ANNs have been used in many applications where the conventional programmed
computing has immense difficulties, such as understanding speech and hand-
written text, recognizing objects, etc. However, an ANN needs to learn the task
at hand before it can be operated in practice to solve the real problem. Learn-
ing is accomplished by a training algorithm. To this end, a number of different
training methods have been proposed and used in practice.
� R. Mueller was a visiting student at ECU for the period July 2001 to June 2002.
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Another biologically inspired computing paradigm is genetic and evolution-
ary algorithms [2],[3]. Evolutionary algorithms are stochastic search methods
that mimic the metaphor of natural biological evolution. They operate on popu-
lation of potential solutions applying the principle of survival of the fittest. The
combination of these two biologically inspired computing paradigms is a pow-
erful instrument for solving problems in pattern recognition, signal and image
processing, machine vision, control, etc.. The aim in this article is to combine a
Generalized Feedforward Neural Network (GFNN) architecture with genetic al-
gorithms to design a new class of artificial neural networks that has the potential
to learn complex problems more efficiently.

In the next section, the generalized shunting neuron and the GFNN archi-
tecture are introduced. Two training methods for the GFNN architecture are
presented in section 3. First the randomized search method is presented in Sub-
section 3.1, then the GA technique in Subsection 3.2. The developed training
algorithms are tested with some common benchmark problems in Section 4,
followed by concluding remarks and future work in Section 5.

2 The Generalized Feedforward Neural Network
Architecture

In [4] Bouzerdoum introduced the class of shunting inhibitory artificial neural
networks (SIANNs) and used them for classification and function approximation.
In this section, we extend SIANNs to form a generalized feedforward neural net-
work architecture. But before describing the generalized architecture, we first
introduce the elementary building block of the architecture, namely the gener-
alized shunting inhibitory neuron.

2.1 Generalized Shunting Inhibitory Neuron

The output of a generalized shunting inhibitory neuron is given by

xj =
f(

∑
i wjiIi + wj0)

aj + g(
∑

i cjiIi + cj0)
=

f(wj · I + wj0)
aj + g(cj · I + cj0)

(1)

where xj is the activity (output) of neuron j; Ii is the ith input; cji is the
“shunting inhibitory” connection weight from input i to neuron j; wji is the
connection weight from input i to neuron j; wj0 and cj0 are bias constants; aj is
a constant preventing the division by zero, by keeping the denominator always
positive; f and g are activation functions. The name shunting inhbition comes
from the fact that a high term in the denominator tends to supress (or inhibit
in a shunting fashion) the activity caused by the term in the numerator of (1).

2.2 The Network Architecture

The architecture of the generalized feedforward neural network is similar to that
of a Multilayer Perceptron Network [1], and is shown in Fig. 1. The network
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Fig. 1. Generalized Feedforward Neural Network architecture (GFNN).

consists of many layers, each of which has a number of neurons. The input layer
only acts as a receptor that receives inputs from the environment and broadcasts
them to the next layer; therefore, no processing is done in the input layer. The
processing in the network is done by the hidden and output layers. Neurons in
each layer receive inputs from the previous layer, process them and then pass
their outputs to the next layer. Hidden layers are so named because they have no
direct connection with the environment. In the GFNN architecture, the hidden
layers consist of only generalized shunting inhibitory neurons. The role of the
shunting inhibitory layers is to perform a nonlinear transformation on the input
data so that the results can easily be combined by the output neurons to form the
correct decision. The output layer, which may be a linear or sigmoidal type (i.e.,
perceptron), is different from the hidden layers; each output neuron basically
calculates the weighted sum of its inputs followed by an appropriate activation
function. The response, y, of an output neuron is given by

y = h(wo · x + b) (2)

where x is the input vector wo is the weight vector, b is the bias constant, and
h is the activation function, which may be a linear or a sigmoid function.

3 Training Methods

An artificial neural network needs to be trained instead of being a priori pro-
grammed. Supervised learning is a form of learning in which the target values are
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included part of the training data. During the training phase, the set of training
data is repeatedly applied to the network and the weights of the network are
adjusted until the difference between the target values and the network output
values is within the desired tolerance.

Neural
Network

Input

data
training

(included in 

training data)

Target value

Output

Fig. 2. Supervised learning: the weights are adjusted until the target values are reached.

In this section, two different methods for training the GFNN are described:
the Random Optimization Method (ROM) and the GA based method. Since GAs
are known for being able to find good solutions for many complex optimization
problems, this training method is of particular interest to us.

3.1 Random Optimization Method (ROM)

The ROM is employed because it is a simple method to implement and intuitively
appealing. It is used to test the network structure before the GA is applied, and
serves as a benchmark for comparing the GA based training method. The ROM
searches the weight space by generating randomized vectors in the weight space
and testing them. The basic ROM procedure is as follows [1]:

1. Randomly choose a weight vector W and a small vector R.
2. If the output of the net Y (W +R) is better than Y (W ) then W = W +R.
3. Check for termination criteria, end the algorithm when one of the termina-

tion criteria is achieved.
4. Randomly choose a new R and go to step (2)

There are some obvious extensions to the above algorithm which we have
implemented. The first one implements reverse side checking. This means instead
of checking only W + R we check W − R as well. Furthermore, an orthogonal
vector R∗ is also checked in both directions. That alone wouldn’t improve the
algorithm much, but there is another extension. If there is an improvement in any
of the four previous directions, simply extend the search in the same direction,
instead of just generating another value of R. The idea is that if W + R gives
an improved output Y , then another scaled step k · R in the same direction
might be in a “downhill” direction, and hence a successful direction. All these
extensions have been implemented to train the GFNN.
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3.2 Genetic Algorithms (GAs)

The GAs are used as a training method because they are known for their ability
to perform well on complex optimization problems. Furthermore, they are less
likely to get trapped in local minima, a problem suffered by traditional gradi-
ent based training algorithms. GAs are stochastic search methods that mimic
the metaphor of natural biological evolution. They operate on a population of
potential solutions applying the principle of survival of the fittest to produce
an improved approximation to a solution. At each generation, a new set of ap-
proximations is created by the process of selecting individuals according to their
level of fitness in the problem domain and breeding them together using oper-
ators borrowed from natural evolution. This process leads to the evolution of
populations of individuals that are better suited to their environment than the
individuals they were created from, just as in natural adaptation.

GAs model natural evolutionary processes, such as selection, recombination,
mutation, migration, locality and neighborhood. They work on populations of
individuals instead of single solutions. Furthermore, simple GAs can be extended
to multipopulation GAs. In multipopulation GAs several subpopulations are in-
troduced, which evolve independently over few generations before one or more
individuals are exchanged between the subpopulations. Figure 3 shows the struc-
ture of an extended multipopulation genetic algorithm.

generate
new

population
fitness assignment

selection

evaluation of
offspring

competition

recombinationmigration

mutationreinsertion

Are termination
criteria met?

best
individuals

− creation of initial
population

− evaluation of
individuals

initialization

resultyes

no

Fig. 3. Structure of an extended multipopulation genetic algorithm (adapted from [5]).
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The genetic operators that can be applied to evolve the population depend
on the variable representation in the GA: binary, integer, floating point (real), or
symbolic. In this research, we employed the real variable representation because
it is the most natural representation for weights and biases of neural networks.
Furthermore, it has been shown that the real-valued GA is more efficient than
the binary GA [3]. Some of the most common GA operators are described below.

Selection. Selection determines the individuals which are chosen for mating (re-
combination) and how many offsprings each selected individual produces. Each
individual in the selection pool receives a reproduction probability depending
on its own objective value and the objective values of all other individuals in
the population. There are two fitness-based assignment methods: proportional
fitness assignment and rank-based fitness assignment. The proportional fitness
assignment assigns a fitness value proportional to the objective value, whereas
the fitness value in a rank-based assignment depends only on the rank of the
individual in a list sorted according to the objective values.

Roulette-wheel selection, also called “stochastic sampling with replacement”
[6], maps the individuals to contiguous segments of a line, such that each indi-
vidual’s segment is equal in size to its fitness [5]. The individual whose segment
spans a generated random number, is selected.

In stochastic universal sampling, the individuals are mapped to N contiguous
segments of a line (N being the number of individuals), each segment having
a length proportional to its fitness. Then N equally spaced Pointers are placed
above the line and the position of the first pointer is given by a randomly gener-
ated number in the range [0, 1/N ]. Every pointer indicates a selected individual.

In local selection every individual interacts only with individual residing in
its local neighborhood [5].

In truncation selection individuals are sorted according to their fitness and
only the best individuals are selected as parents.

The tournament selection chooses randomly a number of individuals from
the population and the best individual from this group is selected as parent.
The process is repeated until enough mating individuals are found.

Recombination. The process of recombination produces new individuals by
combining the information contained in the parents. There are different recom-
bination methods depending on the variable representation. Discrete recombi-
nation can be used with all representations. In addition, there are two specific
methods for real valued recombination, the intermediate recombination and the
line recombination. In intermediate recombination the variables of the offspring
are chosen somewhere around and between the variable values of the parents.
Line recombination, on the other hand, generates the offspring on a line defined
by the variable values of the parents.

Mutation. After recombination, every offspring undergoes a mutation, like in
nature. Small perturbations mutate the offspring variables with low probability.
Mutation of real variables means that randomly generated values are added to
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the offspring variables with low probability. Thus, the probability of mutating
a variable (mutation rate) and the size of change for each mutated variable
(mutation step) must be defined. In our simulations, the mutaion rate is inversely
proportional to the number of variables; the more variables an individual has,
the smaller is the mutation rate.

Reinsertion. After an offspring is produced it must be inserted into the popula-
tion. There are two different situations. First, the size of the offspring population
produced is less than the size of the original population. In this case, the whole
offspring population has to be inserted to maintain the size of the original pop-
ulation. Second more offsprings are generated than there are individuals in the
original population. In this case, the reinsertion scheme determines which in-
dividuals should be reinserted into the new population and which individuals
should be replaced by the offsprings. There are different schemes for reinsertion.
Pure reinsertion produces as many offsprings as parents and replaces all parents
by the offspings. Uniform reinsertion produces fewer offsprings than parents
and replaces parents uniformly at random. Elitist reinsertion produces fewer
offsprings than parents and replaces the worst parents. Fitness based reinsertion
produces more offsprings than needed and reinserts only the best offsprings.

After reinsertion, one needs to verify if a termination criteria is met. If a cri-
teria is met, then the cycle can be stopped; otherwise, the cycle will be repeated
until a termination criteria is met. The GA parameters used in the simulations
are presented in Table 1 below.

Table 1. Evolutionary algorithm parameters used in the simulations.

subpopulations individuals 50 30 20 20 10
variable format real values
selection function selsus (stochastic universal sampling)

pressure 1.7
gen. gap 0.9

reinsertion rate 1
recombination name discrete and line recombination

rate 1
mutation name mutreal (real-valued mutation)

rate 0.00826
range 0.1 0.03 0.01 0.003 0.001
precision 12

regional model
migration rate 0.1
competition rate 0.1

The objective function to be minimized here is the mean squared error.

MSE =
1

Np

Np∑

j=1

(yj − dj)2 (3)
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where yj is the output of the GFNN, dj the desired output for input pattern xj ,
and Np is the number of training patterns.

4 Experimental Results

Experiments were conducted to assess the ability of the proposed NN architec-
ture to learn some difficult classification tasks. Four benchmark problems were
selected to test the network architecture: two Boolean functions, the Exclusive-
OR (XOR) and the 3-bit parity, and two medical diagnosis problems, the heart
disease and diabetes. The heart disease and diabetes data sets were obtained
from UCI Machine Learning Repository [7].

4.1 The XOR and 3-Bit Parity Problems

A two-layer network architecture consisting of two inputs, one or two hidden
units, and an output unit is trained with XOR problem. For every network con-
figuration, ten training runs, with different intializations, were performed using
both the GA- and the ROM-based training algorithms. If during the training
a network reaches an error of zero, training is halted. Table 2 summarizes the
results: the first column indicates the f/g combination of activation functions
(see Eq. (1)), along with the training algorithm. In all the simulations f was
hyperbolic tangent sigmoid activation function, tansig, and g was either the ex-
ponential function, exp, or the logarithmic sigmoid activation function, logsig.
The GA uses a search space ranging from -128 to 128, and hence is labeled
GA128. The second column shows the number of training runs that achieved
zero error. The “Best case error” column shows the lowest test error of trained
networks. Note that even when an error of zero is not reached during training,
the network can still learn the desired function after thresholding its output.

Table 2. Training with the XOR problem.

Runs w. Aver. generation Aver. time Best case Mean Std
E=0 to reach E=0 to reach E=0 error error

No. of neurons: 1 (hidden layer), 9 weights
tansig/logsig GA128 1 620 15.89 0.00 25.50 790
tansig/logsig ROM 4 4423 4.56 0.00 15.00 1290
tansig/exp GA128 10 21 0.51 0.00 0.00 000
tansig/exp ROM 6 488 0.47 0.00 10.00 1290
No. of neurons: 2 (hidden layer), 17 weights
tansig/logsig GA128 8 68 2.02 0.00 5.00 1054
tansig/logsig ROM 10 393 0.52 0.00 0.00 000
tansig/exp GA128 10 13 0.37 0.00 0.00 000
tansig/exp ROM 10 845 1.05 0.00 0.00 000

The best results were obtained using two neurons in the hidden layer with
the exponential activation function, exp, in the denominator. Note that both
training algorithms, GA and ROM, reached an error of zero at least once during
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training. The GA was slightly faster with 0.37 minutes average time to reach an
error of zero than the ROM, which needed 1.05 minutes. Figure 4 displays the
percentage mean error vs. training time for the best combination of activation
functions (tansig/exp). More importantly, however, is the fact that even with
one hidden neuron and tansig/exp combination, ten out of ten runs reached an
error of zero, with the GA as training algorithm. However, the time to reach
an error of 0 was 0.51 minutes slightly longer than the time of the two neuron
network. Also, we can observe that both the ROM and GA perform well in the
sense of reaching runs with error zero. Furthermore, all trained were able to
classify the XOR problem correctly.
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Fig. 4. Percentage mean error over time with tansig/exp as activation functions: (a) 1
hidden unit, (b) 2 hidden units. The dotted line is the result of the ROM and the solid
line is the result of the GA.

For the 3-bit partiy problem, the network architecture consists of three in-
puts, one hidden layer and one ouptput unit of the perceptron type; the hid-
den layer comprises one, two or three shunting neurons. The same experiments
as with the XOR problem were conducted with 3-bit parity; that is, ten runs
for each architecture are performed with tansig/logsig or tansig/exp activation
functions. Table 3 presents the result of the ten runs. None of the networks with
logsig activation function in the denominator reach an error of zero during
training. However, using the exponential activation function in the denomina-
tor, some networks with one hidden unit reach zero error during training and
most networks, even those that do not reach zero error during training, learn to
classify the even-parity correctly.

4.2 Diabetes Problem

The diabetes dataset has 768 samples with 8 input parameters and two output
classes: presence (1) or absence (0) of diabetes. The dataset was partitioned into
two sets: 50% of the data points were used for training and the other 50% for
testing. The network architecture consisted of 8 input units, one hidden layer
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Table 3. Training with the 3-bit even parity.

Runs w. Aver. generation Aver. time Best case Mean Std
E=0 to reach E=0 to reach E=0 error error

No. of neurons: 1 (hidden layer), 11 weights
tansig/logsig GA128 0 NaN NaN 12.50 20.00 6.45
tansig/logsig ROM 0 NaN NaN 12.50 28.75 11.86
tansig/exp GA128 2 629 7.13 0.00 17.50 12.08
tansig/exp ROM 0 2720 1.36 0.00 20.00 10.54
No. of neurons: 2 (hidden layer), 21 weights
tansig/logsig GA128 0 NaN NaN 12.50 22.50 5.27
tansig/logsig ROM 0 7320 4.99 0.00 18.75 8.84
tansig/exp GA128 6 243 3.33 0.00 6.25 8.84
tansig/exp ROM 4 11180 6.56 0.00 7.50 6.45
No. of neurons: 3 (hidden layer), 31 weights
tansig/logsig GA128 3 753 12.58 0.00 12.50 10.21
tansig/logsig ROM 3 4770 6.59 0.00 13.75 10.94
tansig/exp GA128 8 57 0.92 0.00 2.50 5.27
tansig/exp ROM 7 9083 12.04 0.00 3.75 6.04

of shunting neurons, and one output unit. The number of hidden units varied
from one to eight. The size of the search space is also varied: [−64, 64] (GA64),
[−128, 128] (GA128), [−512, 512] (GA512). Again ten training runs for each ar-
chitecture and each algorithm, GA and ROM, were performed. The network
GA128 was also trained on a reduced data set (a quarter of the total data);
this network is denoted GA128q. After training is completed, the generalization
ability of each network is tested by evaluating its performance on the test set.

Figure 5 presents the percentage mean error of the training dataset. It can be
observed that the tansig/exp activation function combination performs slightly
better than the tansig/logsig. The ROM gets worse with increasing number of
neurons, what we expected. The reason is that the one hidden-neuron configu-
ration has 21 weights/biases whereas the 8 hidden-neuron configuration has 161
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Fig. 5. Percentage mean error (train dataset) of the 10 runs: (a) tansig/exp, (b) tan-
sig/logsig configuration.
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Fig. 6. (a) Percentage mean error of the GA128 on the training and test sets. (b)
Generalization performance of GA128 and GA128q on the test set.

weights/biases. With increasing number of weights/biases the dimension of the
search space increases, which leads to worse performance by the ROM.

In Fig. 6 the percentage mean error of the training dataset is compared
with the percentage mean error of the test set; both are almost equal for all the
different number of neurons. This shows that overfitting is not a serious problem.

4.3 Heart Disease Problem

The experimental procedure was the same as for the diabetes diagnoses problem,
except that the data set has only 270 samples with 13 input parameters. This
increases the number of parameters of the network and slows down the training
process. To avoid being bogged down by the training process, only GA128 was
trained on the Heart dataset. Figure 7(a) presents the mean error rates on the
training set. Not surprising, the mean error rate of the ROM increases with
increasing number of neurons. Figure 7(b) compares the performances of the
GA on the training and test sets. The results of the heart disease problem are
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Fig. 7. Percentage mean error: (a) training set, (b) training set compared totest set.
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similar to those of the diabetes diagnoses problem, except the errors are much
lower; it is well known that the Diabetes problem is harder to learn that the
Heart Disease problem.

5 Conclusions and Future Work

In this article we presented a new class of neural networks and two training
methods: the ROM and the GA algorithms. As expected, the ROM works well
for a small number of weights/biases but becomes worse as the number of pa-
rameters increases. The experimental results show that the presented network
architecture, with the proposed learning schemes, can be a powerful tool for
solving problems in prediction, forecasting and classification. It was shown that
the proposed architecture can learn a Boolean function perfectly with a small
number of hidden units. The tests on the two medical diagnosis problems, dia-
betes and heart disease, proved that the proposed architecture can learn complex
tasks with good generalization ability and hardly any overfitting.

Some further work needs to be considered to improve the learning perfor-
mance of the proposed architecture. Firstly, a suitable termination criteria must
be found to stop the algorithm, which could be the classification error on a vali-
dation set. Secondly, the settings of the GA should be optimized. In this project
only different sizes of the search space were used. To get better results other
settings, e.g. size of population, mutation methods, should be optimized. Finally
a combination of the GA and, e.g., gradient descent method can improve the
results further. GAs are known for their global search and gradient methods for
their local search; by combining the two, we should expect better results.
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