
An Adaptive Penalty Scheme for Steady-State
Genetic Algorithms

Helio J.C. Barbosa1 and Afonso C.C. Lemonge2

1 LNCC/MCT
Rua Getulio Vargas 333

25651 070 Petropolis RJ, BRAZIL
hcbm@lncc.br

2 Depto. de Estruturas, Faculdade de Engenharia
Universidade Federal de Juiz de Fora
36036 330 Juiz de Fora MG, BRAZIL

lemonge@numec.ufjf.br

Abstract. A parameter-less adaptive penalty scheme for steady-state
genetic algorithms applied to constrained optimization problems is pro-
posed. For each constraint, a penalty parameter is adaptively computed
along the run according to information extracted from the current pop-
ulation such as the existence of feasible individuals and the level of vi-
olation of each constraint. Using real coding, rank-based selection, and
operators available in the literature, very good results are obtained.

1 Introduction

Evolutionary algorithms (EAs) are weak search algorithms which can be directly
applied to unconstrained optimization problems where one seeks for an element
x belonging to the search space S, which minimizes (or maximizes) the real
function f . Such EAs usually employ a fitness function closely related to f .

The straightforward application of EAs to constrained optimization problems
(COPs) is not possible due to the additional requirement that a set of constraints
must be satisfied. Several difficulties may arise: (i)the objective function may be
undefined for some or all infeasible elements, (ii)the check for feasibility can be
more expensive than the computation of the objective function value, and (iii)an
informative measure of the degree of infeasibility of a given candidate solution
is not easily defined. It is easy to see that even if both the objective function
f(x) and a measure of constraint violation v(x) are defined for all x ∈ S it is not
possible to know in general which of two given infeasible solutions is closer to the
optimum and thus should be operated upon or kept in the population. For min-
imization problems, for instance, one can have f(x1) > f(x2) and v(x1) = v(x2)
or f(x1) = f(x2) and v(x1) > v(x2) and still have x1 closer to the optimum.

It is also important to note that –for convenience and easier reproducibility–
most comparisons between EAs in the literature have been conducted in prob-
lems with constraints which can be written as gi(x) ≤ 0, where each gi(x) is
a given explicit function of the independent(design) variable x ∈ IRn. Although

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2723, pp. 718–729, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: ¡M RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile (¡M) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

An Adaptive Penalty Scheme for Steady-State Genetic Algorithms 719

the available test problems attempt to represent different types of difficulties
one is expected to encounter when dealing with practical situations, very often
the constraints cannot be put explicitly in the form gi(x) ≤ 0. For instance, in
structural engineering design most constraints (such as stress and deformation)
are only known as implicit functions of the design variables. In order to check
if a constraint has been violated, a whole computational simulation (carried out
by a specific code expending considerable computational resources) is required.

The techniques for handling constraints within EAs can be classified either
as direct (feasible or interior), when only feasible elements in S are considered or
as indirect (exterior), when both feasible and infeasible elements are used during
the search process. Direct techniques comprise the use of: a) closed genetic op-
erators (in the sense that when applied to feasible parents they produce feasible
offspring) which can be designed provided enough domain knowledge is available
[1], b) special decoders [2] (which always generate feasible individuals from any
given genotype) although no applications considering implicit constraints have
been published, c) repair techniques [3,4] which use domain knowledge in order
to move an infeasible offspring into the feasible set (a challenge when implicit
constraints are present), and d) “the death penalty”, when any infeasible element
is simply discarded irrespective of its potential information content.

Summarizing, direct techniques are problem dependent (with the exception
of the “death penalty”) and actually of extremely reduced practical applicability.

Indirect techniques comprise the use of: a) Lagrange multipliers [5], which
may also lead to a min-max problem defined for the associated Lagrangean
L(x, λ) where the primal variables x and the multipliers λ are approximated
by two different populations in a coevolutionary GA [6], b) fitness as well as
constraint violation values in a multi-objective optimization setting [7], c) special
selection techniques [8], and d) “lethalization”: any infeasible offspring is just
assigned a given, very low, fitness value [9]. For other methods proposed in the
evolutionary computation literature see [1,10,11,12,13] and references therein.

Methods to tackle COPs which require the knowledge of constraints in ex-
plicit form have thus limited practical applicability. This fact, together with sim-
plicity of implementation are perhaps the main reasons why penalty techniques,
in spite of their shortcomings, are the most popular ones.

In a previous paper [14] a penalty scheme which does not require the knowl-
edge of the explicit form of the constraints as a function of the decision/design
variables and is free of parameters to be set by the user was developed. In con-
trast with previous approaches where a single penalty parameter is used for all
constraints, an adaptive scheme automatically sizes the penalty parameter corre-
sponding to each constraint along the evolutionary process. However, the method
was conceived for a generational genetic algorithm (GA), where the fitness of the
whole population is computed at each generation.

In this paper, the procedure proposed in [14] is extended to the case of
a steady-state GA where, in each “generation”, usually only one or two (in
general just a few) new individuals are introduced in the population. Substantial

720 H.J.C. Barbosa and A.C.C. Lemonge

modifications were necessary in order to finally obtain a robust procedure capable
of reaching very good results in a standard test-problem suite.

In the next section the penalty method and some of its implementations
within EAs are presented. In Section 3 the proposed adaptive scheme for steady-
state GAs is discussed, Section 4 presents numerical experiments with several
test-problems from the literature and the paper closes with some conclusions.

2 Penalty Methods

A standard COP in Rn can be thought of as the minimization of a given objective
function f(x), where x ∈ Rn is the vector of design/decision variables, subject
to inequality constraints gp(x) ≥ 0, p = 1, 2, . . . , p̄ as well as equality constraints
hq(x) = 0, q = 1, 2, . . . , q̄. Additionally, the variables may be subject to bounds
xL

i ≤ xi ≤ xU
i but this type of constraint is trivially enforced in a GA and need

not be considered here.
Penalty techniques can be classified as multiplicative or additive. In the mul-

tiplicative case [15], a positive penalty factor p(v(x), T) is introduced in order to
amplify the value of the fitness function of an infeasible individual in a minimiza-
tion problem. One would have p(v(x), T) = 1 for a feasible candidate solution x
and p(v(x), T) > 1 otherwise. Also, p(v(x), T) increases with the “temperature”
T and with constraint violation. An initial value for the temperature is required
as well as the definition of a function such that T grows with the generation
number. This type of penalty has received much less attention in the evolution-
ary computation (EC) community than the additive type. In the additive case,
a penalty functional is added to the objective function in order to define the fit-
ness value of an infeasible element. They can be further divided into: (a)interior
techniques1 and (b)exterior techniques, where a penalty functional is introduced

F (x) = f(x) + kP (x) (1)

such that P (x) = 0 if x is feasible and P (x) > 0 otherwise (for minimization
problems). In both cases, as k → ∞, the sequence of minimizers of the uncon-
strained problem converges to the solution of the original constrained one.

Defining the amount of violation of the j-th constraint by the candidate
solution x ∈ Rn as

vj(x) =
{ |hj(x)|, for an equality constraint,

max{0,−gj(x)} otherwise

it is common to design penalty functions that grow with the vector of violations
v(x) ∈ Rm where m = p̄ + q̄ is the number of constraints to be penalized. The
most popular penalty function is given by

P (x) =
m∑

j=1

(vj(x))β (2)

1 When a barrier functional, which grows rapidly as x approaches the boundary of the
feasible domain, is added to the objective function.

An Adaptive Penalty Scheme for Steady-State Genetic Algorithms 721

where β = 2. Although it is easy to obtain the unconstrained problem, the
definition of a good penalty parameter k is usually a time-consuming trial-and-
error process.

Powell & Skolnick[16] proposed a method enforcing the superiority of any
feasible solution over any infeasible one defining the fitness as

F (x) = f(x) + r
m∑

j=1

vj(x) + θ(t, x)

where θ(t, x) is conveniently defined and r is a constant.
A variant, (see Deb[17]) uses the fitness function:

F (x) =
{

f(x), if x is feasible,
fmax +

∑m
j=1 vj(x), otherwise

where fmax is the objective function value of the worst feasible solution.
Besides the widely used case of a single constant penalty parameter k, several

other proposals are available [18,10,19] and some of them, more closely related
to the work presented here, will be briefly discussed in the following.

2.1 Related Methods in the Literature

Two-level Penalties. Le Riche et al.[20] present a GA where two fixed penalty
parameters k1 and k2 are used independently in two different populations. The
idea is to create two sets of candidate solutions where one of them is evaluated
with the parameter k1 and the other with the parameter k2. With k1 � k2 there
are two different levels of penalization and there is a higher chance of maintaining
feasible as well as infeasible individuals in the population and to get offspring
near the boundary between the feasible and infeasible regions.

Multiple Coefficients. Homaifar et al.[21] proposed different penalty coeffi-
cients for different levels of violation of each constraint. The fitness function is
written as

F (x) = f(x) +
m∑

j=1

kij(vj(x))2

where i denotes one of the l levels of violation defined for the j−th constraint.
This is an attractive strategy because, at least in principle, it allows for a good
control of the penalization process. The weakness of this method is the large
number, m(2l+1), of parameters that must be set by the user for each problem.

Dynamic Coefficients. Joines & Houck[22] proposed that the penalty pa-
rameters should vary dynamically along the search according to an exogenous
schedule. The fitness function F (x) was written as in (1) and (2) with the penalty
parameter, given by k = (C × t)α, increasing with the generation number t.

722 H.J.C. Barbosa and A.C.C. Lemonge

Adaptive Penalties. A procedure where the penalty parameters change ac-
cording to information gathered during the evolution process was proposed by
Bean & Hadj-Alouane[23]. The fitness function is again given by (1) and (2) but
with the penalty parameter k = λ(t) adapted at each generation by the rules:

λ(t + 1) =

(1
β1

)λ(t), if bi ∈ F for all t − g + 1 ≤ i ≤ t

β2λ(t), if bi �∈ F for all t − g + 1 ≤ i ≤ t
λ(t) otherwise

where bi is the best element at generation i, F is the feasible set, β1 �= β2 and
β1, β2 > 1. In this method the penalty parameter of the next generation λ(t+1)
decreases when all best elements in the last g generations were feasible, increases
if all best elements were infeasible and otherwise remains without change.

The method proposed by Coit et al.[24], uses the fitness function:

F (x) = f(x) + (Ffeas(t) − Fall(t))
m∑

j=1

(vj(x)/vj(t))α

where Fall(t) corresponds to the best solution, until the generation t (without
penalty), Ffeas corresponds to the best feasible solution and α is a constant.

Schoenauer & Xanthakis[25] presented a strategy that handles constrained
problems in stages: (i) initially, a randomly generated population is evolved
considering only the first constraint until a certain percentage of the population is
feasible with respect to that constraint; (ii) the final population of the first stage
of the process is used in order to optimize with respect to the second constraint.
During this stage, the elements that had violated the previous constraint are
removed from the population, (iii) the process is repeated until all the constraints
are processed. This strategy becomes less attractive as the number of constraints
grows and is potentially dependent on the order in which the constraints are
processed.

Recently, Hamida & Schoenauer[26] proposed an adaptive scheme using a
niching technique with adaptive radius to handle multimodal functions.

Other Techniques. Runarsson & Yao[8] presented a novel approach where a
good balance between the objective and the penalty function values is sought by
means of a stochastic ranking scheme. However, there is a parameter, Pf , (the
probability of using only the objective function for ranking infeasible individuals)
that must be set by the user.

Later, Wright & Farmani[27] proposed a method that requires no parameters
and aggregates all constraint violations in a single infeasibility measure.

For constraint satisfaction problems, adaptive EAs have been developed suc-
cesfuly by Eiben and co-workers (see [28]).

3 The Proposed Method

In a previous paper[14] a penalty scheme was proposed which adaptively sizes
the penalty coefficient of each constraint using information from the population

An Adaptive Penalty Scheme for Steady-State Genetic Algorithms 723

such as the average of the objective function and the level of violation of each
constraint. The fitness function was written as:

F (x) =
{

f(x), if x is feasible,
h(x) +

∑m
j=1 kjvj(x) otherwise (3)

where

h(x) =
{

f(x), if f(x) > 〈f(x)〉,
〈f(x)〉 otherwise (4)

and 〈f(x)〉 is the average of the objective function values in the current popula-
tion. The penalty parameter was defined at each generation by:

kj = |〈f(x)〉| 〈vj(x)〉∑m
l=1[〈vl(x)〉]2 (5)

and 〈vl(x)〉 is the violation of the l-th constraint averaged over the current
population. The idea is that the penalty coefficients should be distributed in
such a way that those constraints which are more difficult to be satisfied should
have a relatively higher penalty coefficient. It is also clear that the notion of the
superiority of any feasible over any infeasible solution[16] is not enforced here.

It must be observed that in all procedures where a penalty coefficient varies
along the run one must ensure that the fitness value of all elements is computed
with the same penalty coefficient(s) so that standard selection schemes remain
valid. For a generational GA, one can simply update the coefficient(s) every, say
g, generations. As the concept of generation does not hold for a steady-state GA
extra care must be taken in order to ensure that selection (for reproduction as
well as for replacement) works properly.

A straightforward extension of that penalty procedure[14] to the steady-state
case would be to periodically update the penalty coefficients and the fitness
function values for the population. However, in spite of using a real-coding, the
results obtained were inferior to those of the binary-coded generational case[14].

Further modifications are then proposed here for the steady-state version of
that penalty scheme. The fitness function is still computed according to (3).
However, h and the penalty coefficients are redefined respectively as

h =
{

f(xworst) if there is no feasible element in the population,
f(xbestfeasible) otherwise (6)

kj = h
〈vj(x)〉∑m

l=1[〈vl(x)〉]2 (7)

Also, every time a better feasible element is found (or the number of new elements
inserted into the population reaches a certain level) h is redefined and all fitness
values are recomputed using the updated penalty coefficients. The updating of
each penalty coefficient is performed in such a way that no reduction in its value
is allowed. For convenience one should keep, for each individual in the population,
the objective function value and all constraint violations . The fitness function
value is then computed using (6), (7), and (3).

724 H.J.C. Barbosa and A.C.C. Lemonge

It is clear from the definition of h in (6) that if no feasible element is present
in the population one is actually minimizing a measure of the distance of the
individuals to the feasible set since the actual value of the objective function
is not taken into account. However, when a feasible element is found then it
immediately enters the population since, after updating all fitness values using
(6), (7), and (3), it becomes the element with the best fitness value.

A pseudo-code for the proposed adaptive penalty scheme for a steady-state
GA can be written as shown in Figure 1. Numerical experiments are then pre-
sented in the following section.

Begin
Initialize population
Compute objective function and constraint violation values
if there is no feasible element then

h = worst objective function value
else

h = objective function value of best feasible individual
endif
Compute penalty coefficients
Compute fitness values
ninser = 0
repeat
Select operator
Select parent(s)
Generate offspring
Evaluate offspring
Keep best offspring
if offspring is the new best feasible element then

update penalty coefficients and fitness values
ninser = 0

endif
if offspring is better than the worst in the population then

worst is removed
offspring is inserted
ninser = ninser + 1

endif
if (ninser/popsize >= r) then

update penalty coefficients and fitness values
ninser = 0

endif
until maximum number of evaluations is reached
End

Fig. 1. Pseudo-code for the steady-state GA with adaptive penalty scheme. (ninser
is a counter for the number of offspring inserted in the population, popsize is the
population size and r is a fixed constant that was set to 3 in all cases)

An Adaptive Penalty Scheme for Steady-State Genetic Algorithms 725

4 Numerical Experiments

In order to investigate the performance of the proposed penalty procedure, the
11 well known G1-G11 test-functions presented by Koziel & Michalewicz[2] are
considered. The G-Suite is made up of different kinds of functions and involves
constraints given by linear inequalities, nonlinear equalities, and nonlinear in-
equalities. An extended discussion involving each one of these problems and other
techniques from the evolutionary computation literature can be found in [29].

A simple real-coded steady-state GA with a linear ranking selection scheme
was implemented. The operators used were: (i) random mutation (which modifies
a randomly chosen variable of the selected parent to a random value uniformly
distributed between the lower and upper bounds of the corresponding variable),
(ii) non-uniform mutation (as proposed by Michalewicz[30]), (iii) Muhlenbein’s
mutation (as described in [31]), (iv) multi-parent discrete crossover (which gen-
erates an offspring by randomly taking each allele from one of the np selected
parents), and (v) Deb’s SBX crossover as described in [32].

No parameter tuning was attempted. The same probability of application
(namely 0.2) was assigned to all operators above, np was set to 4, and η was
set to 2 in SBX. This set of values was applied to all test-problems in order
to demonstrate the robustness of the procedure. Each equality constraint was
converted into one inequality constraint of the form |h(x)| ≤ 0.0001. Enlarging
the set of operators, changing the relative probabilities of application, population
size, or parameters associated with operators in each case could of course lead
to local performance gains.

The Tables 1, 2, 3, and 4 show the results obtained for the G1-G11 test-
functions, in 20 independent runs, using a population containing 800 individuals
and a maximum number of function evaluations neval set to 320000, 640000,
1120000, and 1440000, respectively. It is clear that good results were found for
all test-functions and at all levels of neval.

The Table 5 displays a comparison of results found in the Experiment 3
(Table 3) –where neval = 1120000– and the results found in the Experiment #2
of [14] where a generational binary-coded GA –with popsize = 70 and neval =
1400000– was used in 20 independent runs.

The Table 6 compares the results from Experiment 3 with those presented by
Hamida & Shoenauer[26] using a (100 + 300)–ES segregational selection scheme
with an adaptive penalty and a niching strategy. They performed 31 independent
runs comprising 5000 generations (neval = 1500000) each.

The Tables 5 and 6 show that better results are obtained with the proposed
adaptive steady-state GA using less function evaluations. The interested reader
can find additional results in [2,33,27,29], and verify that they are not superior
to those presented here.

Finally, in Table 7 we compare the results obtained with the parameter-less
scheme proposed here, using popsize = 700, with those of Runarsson & Yao[8],
both with neval = 350000. It must be observed that the results in Table 7 are the
best in [8] (and probably the best in the evolutionary computation literature)
and correspond to the choice Pf = 0.45. However, one can see in [8] that slightly

726 H.J.C. Barbosa and A.C.C. Lemonge

Table 1. Exp. 1: neval = 320000.

f(x) Experiment 1
worst best average

G1 −15.00 −15.00 −15.00
G2 0.7701039 0.7980134 0.7894922
G3 0.7468729 0.9970834 0.8733876
G4 −30665.54 −30665.54 −30665.54
G5 5667.431 5126.484 5829.603
G6 −6961.811 −6961.811 −6961.811
G7 27.05797 24.31103 24.86856
G8 0.0958250 0.0958250 0.0958250
G9 680.7184 680.6303 680.64824
G10 10864.27 7139.031 7679.41880
G11 0.749 0.749 0.74899

Table 2. Exp. 2: neval = 640000.

f(x) Experiment 2
worst best average

G1 −13.00 −15.00 −14.90
G2 0.7624246 0.8036177 0.7904785
G3 0.9318285 1.000491 0.9890722
G4 −30665.54 −30665.54 −30665.54
G5 5632.585 5126.484 5257.531
G6 −6961.811 −6961.811 −6961.811
G7 25.77410 24.32803 24.70925
G8 0.0958250 0.0958250 0.0958250
G9 680.6932 680.6305 680.6385
G10 7786.534 7098.464 7413.0185
G11 0.749 0.749 0.74899

Table 3. Exp. 3: neval = 1120000.

f(x) Experiment 3
worst best average

G1 −15.00 −15.00 −15.00
G2 0.7778333 0.8036125 0.7900538
G3 0.9593665 1.000498 0.9981693
G4 −30665.54 −30665.54 −30665.54
G5 5639.265 5126.484 5205.561
G6 −6961.811 −6961.811 −6961.811
G7 25.24219 24.31465 24.58272
G8 0.0958250 0.0958250 0.0958250
G9 680.6494 680.6301 680.6333
G10 8361.596 7049.360 7339.957
G11 0.749 0.749 0.74899

Table 4. Exp. 4: neval = 1440000.

f(x) Experiment 4
worst best average

G1 −15.00 −15.00 −15.00
G2 0.7778334 0.8036024 0.7908203
G3 1.000340 1.000499 1.000460
G4 −30665.54 −30665.54 −30665.54
G5 5672.701 5126.484 5206.389
G6 −6961.811 −6961.811 −6961.811
G7 25.51170 24.30771 24.52875
G8 0.0958250 0.0958250 0.0958250
G9 680.7122 680.6301 680.6363
G10 7942.683 7072.100 7300.013
G11 0.749 0.749 0.74899

Table 5. Results from this study (SSGA) and the generational GA (GGA) of [14].

f(x) optimum best values average values worst values
SSGA GGA SSGA GGA SSGA GGA

G1 −15.0 −15.00 −15.00 −15.00 −15.00 −15.00 −15.00
G2 0.803619 0.8036125 0.7918570 0.7900538 0.7514353 0.7778333 0.6499022
G3 1.0 1.000498 1.000307 0.9981693 0.9997680 0.9593665 0.9983935
G4 −30655.539 −30665.54 −30665.51 −30665.54 −30665.29 −30665.54 −30664.91
G5 5126.4981 5126.484 5126.571 5205.561 5389.347 5639.265 6040.595
G6 −6961.814 −6961.811 −6961.796 −6961.811 −6961.796 −6961.811 −6961.796
G7 24.306 24.31465 24.85224 24.58272 27.90973 25.24219 33.07581
G8 0.0958250 0.0958250 0.0958250 0.0958250 0.0942582 0.0958250 0.0795763
G9 680.630 680.6301 680.6678 680.6333 680.9640 680.6494 681.6396
G10 7049.33 7049.360 7080.107 7339.957 8018.938 8361.596 9977.767
G11 0.75 0.749 0.75 0.74899 0.75 0.749 0.75

An Adaptive Penalty Scheme for Steady-State Genetic Algorithms 727

changing that parameter to Pf = 0.475 produces changes in the second most
relevant digit of the best values found for functions G6 and G10, and severely
degrades the mean value for functions G1, G6 and G10. It is clear that our first
results presented in this paper are very competitive.

Table 6. Comparison between this study (SSGA) and Hamida & Schoenauer[26].
Average values for this study were computed with feasible and infeasible final solutions.
Those in [26] considered only feasible solutions. Worst values were not given in [26].

f(x) optimum best values average values
SSGA H&S SSGA H&S

G1 −15.0 −15.00 −15.00 −15.00 −14.84
G2 0.803619 0.8036125 0.785 0.7900538 0.59
G3 1.0 1.000498 1.0 0.9981693 0.99989
G4 −30655.539 −30665.54 −30665.5 −30665.54 −30665.5
G5 5126.4981 5126.484 5126.5 5205.561 5141.65
G6 −6961.814 −6961.811 −6961.81 −6961.811 −6961.81
G7 24.306 24.31465 24.3323 24.58272 24.6636
G8 0.0958250 0.0958250 0.095825 0.0958250 0.095825
G9 680.630 680.6301 680.630 680.6333 680.641
G10 7049.33 7049.360 7061.13 7339.957 7497.434
G11 0.75 0.749 0.75 0.74899 0.75

Table 7. Comparison of results between this study (SSGA) and Runarsson & Yao[8].

f(x) optimum best values worst values
SSGA R&Y SSGA R&Y

G1 −15.0 −15.00 −15.00 −15.00 −15.00
G2 0.803619 0.8035839 0.803515 0.7777818 0.726288
G3 1.0 0.9960645 1.0 0.6716288 1.00
G4 −30655.539 −30665.54 −30665.539 −30644.32 −30665.539
G5 5126.4981 5126.484 5126.497 5624.208 5142.472
G6 −6961.814 −6961.811 −6961.814 −6961.811 −6350.262
G7 24.306 24.32190 24.307 29.82257 24.642
G8 0.0958250 0.0958250 0.095825 0.0958250 0.095825
G9 680.630 680.6304 680.630 680.6886 680.763
G10 7049.33 7102.265 7054.316 7229.3908 8835.655
G11 0.75 0.749 0.75 0.749 0.75

5 Conclusions

A new adaptive parameter-less penalty scheme which is suitable for implementa-
tion within steady-state genetic algorithms has been proposed in order to tackle
constrained optimization problems. Its main feature, besides being adaptive and
not requiring any parameter, is to automatically define a different penalty coeffi-
cient for each constraint. The scheme was introduced in a real-coded steady-state

728 H.J.C. Barbosa and A.C.C. Lemonge

GA and, using available operators from the literature, produced results compet-
itive with the best available in the EC literature, besides alleviating the user
from the delicate and time consuming task of setting penalty parameters.

Acknowledgements. The authors acknowledge the support received from
CNPq and FAPEMIG. The authors would also like to thank the reviewers for
the corrections and suggestions which helped improve the quality of the paper.

References

1. M. Schoenauer and Z. Michalewicz. Evolutionary computation at the edge of
feasibility. In Parallel Problem Solving from Nature - PPSN IV, volume 1141,
pages 245–254. Springer-Verlag, 1996. LNCS.

2. S. Koziel and Z. Michalewicz. Evolutionary algorithms, homomorphous mappings,
and constrained parameter optimization. Evolutionary Computation, 7(1):19–44,
1999.

3. G.E. Liepins and W.D. Potter. A genetic algorithm approach to multiple-fault
diagnosis. In Lawrence Davis, editor, Handbook of Genetic Algorithms, chapter 17,
pages 237–250. Van Nostrand Reinhold, New York, New York, 1991.

4. D. Orvosh and L. Davis. Using a genetic algorithm to optimize problems with fea-
sibility contraints. In Proc. of the First IEEE Conf. on Evolutionary Computation,
pages 548–553, 1994.

5. H. Adeli and N-T. Cheng. Augmented lagrangian genetic algorithm for structural
optimization. Journal of Aerospace Engineering, 7(1):104–118, January 1994.

6. H.J.C. Barbosa. A coevolutionary genetic algorithm for constrained optimization
problems. In Proc. of the Congress on Evolutionary Computation, pages 1605–1611,
Washington, DC, USA, 1999.

7. P.D. Surry and N.J. Radcliffe. The COMOGA method: Constrained optimisation
by multiobjective genetic algorithms. Control and Cybernetics, 26(3), 1997.

8. T.P. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary opti-
mization. IEEE Trans. on Evolutionary Computation, 4(3):284–294, 2000.

9. A.H.C. van Kampen, C.S. Strom, and L.M.C. Buydens. Lethalization, penalty
and repair functions for constraint handling in the genetic algorithm methodology.
Chemometrics and Intelligent Laboratory Systems, 34:55–68, 1996.

10. Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained pa-
rameter optimization problems. Evolutionary Computation, 4(1):1–32, 1996.

11. R. Hinterding and Z. Michalewicz. Your brains and my beauty: Parent matching
for constrained optimization. In Proc. of the Fifty Int. Conf. on Evolutionary
Computation, pages 810–815, Alaska, May 4-9 1998.

12. S. Koziel and Z. Michalewicz. A decoder-based evolutionary algorithm for con-
strained optimization problems. In Proc. of the Fifth Parallel Problem Solving
from Nature. Springer-Verlag, 1998. Lecture Notes in Computer Science.

13. J.-H. Kim and H. Myung. Evolutionary programming techniques for constrained
optimization problems. IEEE Trans. on Evolutionary Computation, 2(1):129–140,
1997.

14. H.J.C. Barbosa and A.C.C. Lemonge. An adaptive penalty scheme in genetic al-
gorithms for constrained optimization problems. In Proc. of the Genetic and Evo-
lutionary Computation Conference, pages 287–294. Morgan Kaufmann Publishers,
2002.

An Adaptive Penalty Scheme for Steady-State Genetic Algorithms 729

15. S.E. Carlson and R. Shonkwiler. Annealing a genetic algorithm over constraints. In
Proc. of the IEEE Int. Conf. on Systems, Man and Cybernetics, pages 3931–3936,
1998.

16. D. Powell and M.M. Skolnick. Using genetic algorithms in engineering design
optimization with non-linear constraints. In Proc. of the Fifth Int. Conf. on Genetic
Algorithms, pages 424–430. Morgan Kaufmann, 1993.

17. K. Deb. An efficient constraint handling method for genetic algorithms. Computer
Methods in Applied Mechanics and Engineering, 186(2-4):311–338, June 2000.

18. Z. Michalewicz. A survey of constraint handling techniques in evolutionary compu-
tation. In Proc. of the 4th Int. Conf. on Evolutionary Programming, pages 135–155,
Cambridge, MA, 1995. MIT Press.

19. Z. Michalewicz, D. Dasgupta, R.G. Le Riche, and M. Schoenauer. Evolutionary
algorithms for constrained engineering problems. Computers & Industrial Engi-
neering Journal, 30(2):851–870, 1996.

20. R.G. Le Riche, C. Knopf-Lenoir, and R.T. Haftka. A segregated genetic algorithm
for constrained structural optimization. In Proc. of the Sixth Int. Conf. on Genetic
Algorithms, pages 558–565, 1995.

21. H. Homaifar, S.H.-Y. Lai, and X. Qi. Constrained optimization via genetic algo-
rithms. Simulation, 62(4):242–254, 1994.

22. J.A Joines and C.R. Houck. On the use of non-stationary penalty functions to
solve nonlinear constrained optimization problems with GAs. In Proc. of the First
IEEE Int. Conf. on Evolutionary Computation, pages 579–584, June 19–23 1994.

23. J.C. Bean and A.B. Alouane. A dual genetic algorithm for bounded integer pro-
grams. Dept. of Industrial and Operations Engineering, The University of Michi-
gan, Tech. Rep. 92-53 1992.

24. D.W. Coit, A.E. Smith, and D.M. Tate. Adaptive penalty methods for genetic
optimization of constrained combinatorial problems. INFORMS Journal on Com-
puting, 6(2):173–182, 1996.

25. M. Schoenauer and S. Xanthakis. Constrained GA optimization. In Proc. of
the Fifth Int. Conf. on Genetic Algorithms, pages 573–580. Morgan Kaufmann
Publishers, 1993.

26. S. Ben Hamida and M. Schoenauer. ASCHEA: new results using adaptive seg-
regational constraint handling. In Proc. of the 2002 Congress on Evolutionary
Computation, volume 1, pages 884–889, May 2002.

27. J.A. Wright and R. Farmani. Genetic algorithms: A fitness formulation for con-
strained minimization. In GECCO 2001: Proc. of the Genetic and Evolutionary
Computation Conference, pages 725–732. Morgan Kaufmann, 2001.

28. A.E. Eiben and J. I. van Hemert. Saw-ing EAs: adapting the fitness function for
solving constrained problems. In D. Corne, M. Dorigo, and F. Glover, editors, New
ideas in optimization, chapter 26, pages 389–402. McGraw-Hill, London, 1999.

29. Z. Michalewicz and D.B. Fogel. How to Solve It: Modern Heuristics. Springer-
Verlag, 1999.

30. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, New York, 1992.

31. H. Muhlenbein, M. Schomisch, and J. Born. The parallel genetic algorithm as
function optimizer. Parallel Computing, 17(6-7):619–632, Sep 1991.

32. K. Deb and H.G. Beyer. Self-adaptive genetic algorithms with simulated binary
crossover. Evolutionary Computation Journal, 9(2):197–221, 2001.

33. S.B. Hamida and M. Schoenauer. An adaptive algorithm for constrained optimiza-
tion problems. In PPSN VI – LNCS, volume 1917, pages 529–538. Springer-Verlag,
2000.

	Introduction
	Penalty Methods
	Related Methods in the Literature

	The Proposed Method
	Numerical Experiments
	Conclusions

