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Abstract. The dense wavelength division multiplexing (DWDM) tech-
nique has been developed to provide a tremendous number of wave-
lengths/channels in an optical fiber. In the multi-channel networks, it
has been a challenge to effectively schedule a given number of wave-
lengths and variable-length packets into different wavelengths in order
to achieve a maximal network throughput. This optimization process has
been considered as difficult as the job scheduling in multiprocessor sce-
nario, which is well known as a NP-hard problem. In current research, a
heuristic method, genetic algorithms (GAs), is often employed to obtain
the near-optimal solution because of its convergent property. Unfortu-
nately, the convergent speed of conventional GAs cannot meet the speed
requirement in high-speed networks. In this paper, we propose a novel
hyper-generation GAs (HG-GA) concept to approach the fast conver-
gence. By the HG-GA, a pipelined mechanism can be adopted to speed
up the chromosome generating process. Due to the fast convergent prop-
erty of HG-GA, which becomes possible to provide an efficient scheduler
for switching variable-length packets in high-speed and multi-channel
optical networks.

1 Introduction

The fast explosion of Internet traffic demands more and more network band-
width day by day. It is evident that the optical network has become the Internet
backbone because it offers sufficient bandwidth and acceptable link quality for
delivering multimedia data. With the dense wavelength division multiplexing
(DWDM) technique, an optical fiber can easily provide a set of parallel channels,
each operating at different wavelengths [1], [2]. In each channel, the statistical
multiplexing technique is used to transport data packets from different sources
to enhance the bandwidth utilization. However, this technique incurs the com-
plicated packet scheduling and channel assignment problem in each switching
node underlying the tremendous wavelengths. Hence, it is desired to design a
faster and more efficient scheduling algorithm for transporting variable-length
packets in high-speed and multi-channel optical networks.

So far, many scheduling algorithms for multi-channel networks have been
proposed and they are basically designed under two different network topolo-
gies: the star-based WDM network and the optical interconnected network. The
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Fig. 1. An example illustrates the packet scheduling problem in a star-based network.

star-based network consists a passive start coupler (PSC), which is in charge
of coupling packets/messages from different wavelengths and broadcasting all
wavelengths to every connected node. The star-based network is often built for
local area network due to its centralized control [3], [4], [5]. On the contrary, the
other switching component, optical cross connect (OXC), performs efficiently in
the space, timing and wavelength switching/converting, and thus, is often used
in the optical backbone network [6]. An example shown in Fig. 1 is given to illus-
trate the scheduling problem in a star-based network while a number of packets
with variable lengths from four nodes (N) arriving at PSC, in which there are
K parallel channels per fiber (in usual, the number of nodes is smaller than
wavelengths.). In this figure, notation Pij is denoted as the j-th packet from
node i. In order to minimize the total packet switching delay and maximize the
channel utilization, these packets should be well scheduled in K available chan-
nels. In the literatures, the scheduling of sequencing tasks for multiprocessor has
been addressed extensively and proved as an NP-hard problem [7]. Similarly,
the packet scheduling and wavelength assignment problem under constraint of
sequence maintenance is also well known as a difficult-to-solve issue. We believe
that it is hard to design a real-time scheduling algorithm to resolve the NP-hard
problem by general heuristic schemes.

In the past few years, Genetic Algorithms (GAs) have received considerable
attention regarding their potential as an optimization technique for complex
problems and have been successfully applied in the areas of scheduling, match-
ing, routing, and so on [7], [8], [9], [10]. The GAs mimic the natural genetic
ideas to provide excellent evolutionary processes including crossover, mutation
and selection. Although GAs have been already applied in many scheduling and
sequencing problems, the slow convergence speed of typical GAs limits the pos-
sibility of applying them in real-time systems (e.g., network optimization prob-
lems often require short response time for each decision.). It has been a major
drawback for this mechanism. To overcome the drawback, in this paper, we pro-
posed a pipeline-based hyper-generation GA (HG-GA) mechanism for solving
this tough packet schedule problem. The proposed HG-GA mechanism adopts
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a hyper-generation concept to break the thumb rule of performing crossover on
two chromosomes of the same generation. By generating more ’better’ chromo-
somes than the general GA (G-GA) mechanisms within a limited time interval,
the HG-GA mechanism can improve significantly in convergence speed, as com-
pared with the G-GA mechanisms. Therefore, the proposed HG-GA mechanism
makes the possibility of employing GAs to solve the complicated optimization
problem in any real-time environment.

The rest of paper is organized as following. The general GAs packet sched-
uler (G-GAPS) is introduced in Section 2. In Section 3, we describe the proposed
hyper-generation GAs packet scheduler (HG-GAPS) and analyze the precisely
generating time of each offspring chromosome. Section 4 provides the simulation
comparison to compare the performance difference between these two technolo-
gies. Finally, some conclusion remarks are given in Section 5.

2 General Genetic Algorithms Packet Scheduler
(G-GAPS)

The G-GA mechanisms applied in industrial engineering contain three main
components: the Crossover Component (XOC), Mutation Component (MTC)
and Selection Component (SLC), as show in Fig. 2. A process to apply the G-
GA mechanisms in solving the optimization problem of packet scheduling and
wavelength assignment in networks is named as the general GAs packet scheduler
(G-GAPS) [11], [12]. Basically, the G-GAPS needs a collection window (C) for
collecting packets. As soon as the scheduling process is executed, a new collection
window will be started. This workflow will smooth the traffic flow if the window
size is properly selected.

2.1 Definition

In G-GAPS, packets destined to the same output port are collected and permu-
tated for all available wavelengths to form a chromosome (i.e., a chromosome
presents a kind of permutations), in which each packet is referred to a gene [11],
[12]. The example showed in Fig. 3 demonstrates that a set of collected pack-
ets (P ) with different lengths (l) and time stamps (T) are permutated for two
available wavelengths (W1 and W2) to form a chromosome. A number of chro-
mosomes, denoted as N , will be first generated to form the base generation (also
called the first generation). Following the sequencing, each arrival packet is asso-
ciated with a time stamp and all permutations will follow these time stamps of
packets to be executed as in the scheduling principle. Therefore, the problem be-
comes how to decide the switch timing and the associated wavelength of a packet
so that the precedence relations of the same connection can be maintained and
the total required switching time (TRST) of schedule can be minimized. More
definitely, the TRST presents the maximum scheduled queue length of packets
assigned into different wavelengths. Therefore, we can define the TRST(j) by
the formula:
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Fig. 2. The flow block diagram of the G-GAPS.
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Fig. 3. An example presents a permutation to form a chromosome.

TRST (j) = max
{
trst(Wj(1)), trst(Wj(2)), ..., trst(Wj(K))

}
. (1)

where j is the j-th chromosome, and trst(Wj(k)) is the TRST for these packets
scheduled in the k-th wavelength of the j-th chromosome. Here we assume an
optical fiber carries K wavelengths.

2.2 The Fitness Function

The fitness function, denoted as Ω in the G-GAPS is defined as the objective
function that we want to optimize. It is used to evaluate chromosomes during
selection operation to determine which offspring should be remained as the par-
ents for the next generation. The objective function in the scheduling is the
TRST and it is often converted into maximization form. Thus, the fitness value
of the j-th chromosome, denoted as Ω(j), is calculated as following:

Ω(j) = Ψworst
1 − TRST (j). (2)

where Ψworst
1 =

∑
u

∑
v luv represents the worst TRST in the first generation

(i.e., all packets are scheduled in one wavelength.). Therefore, the optimal sched-
ule will be the chromosome with the largest fitness value denoted as Ωopt.
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Fig. 4. The flow block diagram of the HG-GAPS.

2.3 Implementation of the Genetic Algorithms

In G-GAPS, each crossover operation selects two chromosomes from the same
generation and generates two new offspring chromosomes as the candidates for
the next generation. These candidate offspring will involve in mutation opera-
tion and selection operation according to their mutation probabilities (Pm) and
fitness values, respectively [11], [12].

In the implementation, we simply assume the number of chromosomes in the
base generation, say N , is even. Let Pc and Pm denote as the crossover and
mutation probabilities, respectively. According to roulette wheel method, the
selected probability of the j-th chromosome is sj = Ω(j)/

∑r=N
r=1 Ω(r).

3 Hyper-generation GAs Packet Scheduler (HG-GAPS)

Basically, the G-GAPS is a generation-based scheme, which processes chromo-
somes generation by generation. In this scheme, the population size in each
generation is kept to N . It means that the selection operation is only triggered
when all crossovers and mutations on the chromosomes in a generation are com-
pleted, and, also all fitness values of N chromosomes are calculated to support
the roulette wheel method. These restraints cause considerable waiting time for
propagating good chromosomes to the next generation. For general optimization
problems, they do not require quick response time, thus, such a batch behav-
ior will work well to provide an acceptable solution. However, the features of
long waiting time and slow convergence speed definitely block the G-GAPS to
be a suitable solution for real-time systems. In this section, we will introduce
a pipeline-based mechanism, named hyper-generation GAPS (HG-GAPS), to
overcome the potential drawbacks of G-GAPS.

As shown in Fig. 4, the key feature of the HG-GAPS is to adopt the pipeline
concept and to discard the generation restraint to accelerate convergence speed.
From Fig. 4, at the candidate state after mutation operation, the number of
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Fig. 5. An example demonstrates the concepts of the chromosome groups and the
hyper-generation crossovers in the HG-GAPS when there are N = 10 chromosomes in
the base generation.

offspring chromosomes is a function of g, which presents the number of ’chro-
mosome group’, as shown in Fig. 5. HG-GAPS uses ’chromosome group’ concept
instead of ’generation’ concept to break the crossover limitation in the same
generation (i.e., batch operation). In other words, the member of a chromosome
group may be generated from parent mating with parent, parent mating with
offspring, or offspring mating with offspring.

3.1 Hardware Block Diagram of the HG-GAPS

The detailed HG-GAPS hardware block diagram is designed and shown in Fig. 6.
As mentioned before, all arrival packets destined to the same outlet in a collection
window are gathered and queued in a Shared Memory. Each of them is tagged
with a global time stamp. In the Shared Memory, packets with the same time
stamp are linked together. At the end of collection window, packets of the same
link are concurrently assigned into K wavelengths through an M × K switch in
a random manner to form a chromosome (where the number of the inlets (I) is
M , and K presents the number of wavelengths (W ) in a fiber.). This procedure
is repeated in the Chromosome Generator until a number of N chromosomes
are generated to form the base generation. To promote a more efficient schedul-
ing process, the first two newborn chromosomes in the base generation will be
immediately forwarded into the XOC once they are generated.
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Fig. 6. The hardware architecture of HG-GAPS.

Before the system generates the first offspring chromosome, two chromosomes
needed for the XOC are provided from the Chromosome Generator and this time
period is named as the start-up phase. Then the system enters the warm-up
phase as soon as the first offspring participates the crossover operation. And the
system will switch the chromosomes from the base generation and the Offspring
Pool (which is included in the SLC.) in a round robin manner. How fast of the
timing for the system entering the warm-up phase. It depends on the processing
speeds of GA components and the number of remainders in the base generation.
Once the base generation runs out of its chromosomes, the system will enter the
saturation phase, where both participators for crossover operation are provided
from the Offspring Pool. Afterward, the HG-GAPS becomes a closed system, in
which the cycle processing delay is constant. In the warm-up or the saturation
phase, the chromosome first arriving at the XOC must be buffered in the Latch
in order to synchronize the crossover operation with another chromosome.

In the saturation phase, the HG-GAPS behaves more like the conventional
G-GAPS. Nevertheless, there are two significant differences between them: (1)
The offspring generating procedure in the HG-GAPS is still faster than G-GAPS
due to all components in the HG-GAPS system are executed in parallel. On the
contrary, in the G-GAPS, the SLC cannot work unless the mutation operation
has been completed. Afterward, when the SLC performs selection process, the
other two components are also stalled. The stop-and-go behavior is the well-
known drawback in most batch systems. (2) The number of the chromosomes
circulating in both systems may differ from each other even when the population
sizes in their base generations are set to equal. In the G-GAPS, the offspring
chromosome will be selected and collected to form a new generation, and the
population size of the new generation is the same as previous one. This feature
has no longer been maintained in the HG-GAPS. Due to the limited pages, the
analyses of the timings of generating chromosomes, the population size of each
group and the convergent speed are not included in this paper.

A Random Number Generator is required for the XOC and the MTC to
generate the desired crossover probability Pc and mutation probability Pm. In
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addition, it also provides a random number for some random processes in the
GA operation. After the crossover operation, two mated chromosomes are sepa-
rately forwarded into the MTCs. Meanwhile, they are also bypassed to Fitness
components, one for each, to calculate their fitness values and then to queue in a
temp pool (i.e., the Filter). As the pairs of the original parents and the produced
offsprings are all stored in the temp pool, two chromosomes with better fitness
values will be selected and pushed into the Offspring Candidate Pool for elitism,
which is similar to the concept of enlarged sampling space [8].

Finally, the SLC equips two Accumulators: one is used to accumulate the
fitness values of the current chromosome group and the other is used to count
the number of chromosomes queued in this group. Both of them dedicate the
necessary information for the roulette wheel method adopted in SLC. When
the last chromosome queued in Offspring Pool is forwarded to the XOC, the
Offspring Candidate Pool will pass whole group of chromosomes into SLC by
selection and duplication. (That is why we use the ’chromosome group’ to replace
’generation’ as a set of chromosomes to calculate the selection probability of the
chromosome in the HG-GAPS.) Thus these two Accumulators will be reset for
the next group. As soon as the offspring is produced in the Offspring Pool, it
can be as a new parent for the next GA cycle.

4 Simulation Model and Results

4.1 Simulation Model

In the simulation, we construct the GAPS simulation model with several re-
alistic system parameters: the number of time units consumed by each XOC
(= x), MTC (= y) and SLC (= z). Besides, there are N chromosomes in both
base generations in the G-GAPS and the HG-GAPS. During simulating, we set
the time units to be N = 10, x = 2, y = 1 and z = 2. (Here, we assume the
crossover and the selection operations are more complicated than the mutation
operation.) The simulation probabilities of the crossover (Pc) and the mutation
(Pm) operations are 0.9 and 0.05, respectively. To simplify the model, we con-
sider the deterministic service rate in each wavelength is measured in the preset
time units. The traffic arrival rate of a wavelength in each input fiber is following
a Poisson distribution with a mean λ. The packet length is following an expo-
nential distribution with a mean L in the preset time units. The number of the
wavelengths in each input or output fiber is K. Thus, the total traffic load Λ is
equal to K ×λ×L. Furthermore, in order to simulate a real-time system, we fix
the scheduling time period to enforce the G-GAPS and the HG-GPAS to output
its current optimal schedule within the due time.

4.2 Simulation Results

Fig. 7 shows the average TRSTs derived from the G-GAPS and the HG-GAPS
under the variable collection windows (C) and fixed the scheduling time interval
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Fig. 7. The average TRSTs are simulated under the different collection window sizes
(C) from 10 to 30 time units, when K = 8, Λ = 8 and L = 5.

at K = 8, Λ = 8 and L = 5 time units. Here, we consider the collection window
varying from 10 to 30 time units and the scheduling time period is fixed at 105
time units. In Fig. 7, we can see that the G-GAPS will generate a schedule with a
smaller TRST as soon as a generation is completed. That is, the improvements
on TRST in the G-GAPS will occur at the time units of 35, 70 and 105. On
the contrary, our HG-GAPS starts to minimize the TRST within a short period
and obtains the near-optimal TRST at approximate 35 time units. In addition,
we also note that under a larger collection window size, the more gain in the
decrease TRST will be obtained by the HG-GAPS comparing to the G-GAPS.

Fig. 8 presents the difference in the accumulated chromosome generating
rates between the G-GAPS and the HG-GAPS. During the same scheduling
time period of 105 time units, the G-GAPS evolves three generations (including
the first generation) and only generates 30 chromosomes. On the contrary, the
HG-GAPS requires a shorter period to increase the generating rate than the
G-GAPS due to its chromosome group and the pipeline concepts. HG-GAPS
does not only have the advantage in continuously generating offsprings during
a short period, but also keeps the advantage in having a large candidates space
for selection operation. Therefore, HG-GAPS can evolve 56 chromosomes during
105 time units.

Fig. 9 shows the consecutively snap shops during a period of 500 time units
with a randomly selection from the whole simulation run. We set both of the
scheduling time period and the collection windows to be 50 time units. The
other system parameters are set as following: K = 8, Λ = 6.4 and L = 5 time
units. Within a limited scheduling window, the HG-GAPS always provides a
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Fig. 9. A comparison between the G-GAPS and the HG-GAPS in the TRSTs of the
chromosomes during 10 consecutively scheduling windows.

smaller TRST than the one from the G-GAPS. In fact, if we further shorten
the scheduling window to conform a real-time situation, the performance differ-
ence between these two GAPSs will become more obvious. During a very short
period, the HG-GAPS can generate a scheduling result to approach to a near-
optimal solution, but the G-GAPS cannot. In a real continuous transmission
environment, a larger TRST from the data transmission will defer the following
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scheduling tasks. Thus, the difference between the accumulated TRSTs from the
G-GAPS and the HG-GAPS will become larger and larger as the time expired,
and the packet loss is also getting larger due to the buffer overflow. Therefore, we
conclude that the proposed HG-GAPS cannot only indeed provide a significant
improvement in solving an optimization problem, but also further support more
complicated real-time systems.

5 Conclusions

In this paper, a novel and faster convergent GAPS mechanism, the hyper-
generation GAPS (HG-GAPS) mechanism, for scheduling variable-length pack-
ets in high-speed optical networks was proposed. It is a powerful mechanism to
provide a near-optimal solution for scheduling an optimization problem within
a limited response time. This proposed HG-GAPS utilizes the hyper-generation
and pipeline concepts to speed up the way of generating chromosomes and to
shorten the evolutional consuming time produced from traditional genetic al-
gorithms. From the simulation results, we proved that the HG-GAPS is indeed
more suitable for solving the complex optimization problems, such as the packets
scheduling and the wavelength assignment problem in a real-time environment.
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