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Abstract. A hybrid genetic algorithm is proposed for the sequential or-
dering problem. It is known that the performance of a genetic algorithm
depends on the survival environment and the reproducibility of building
blocks. For decades, various chromosomal structures and crossover opera-
tors were proposed for the purpose. In this paper, we use Voronoi quan-
tized crossover that adopts complete graph representation. It showed
remarkable improvement in comparison with state-of-the-art genetic al-
gorithms.

1 Introduction

Given n nodes, sequential ordering problem (SOP) is the problem of finding
a Hamiltonian path of minimum cost satisfying given precedence constraints.
Formally, given a set of nodes V = {1, 2, . . . , n} and cost matrix C = (cij),
cij ∈ N ∪ {∞}, i, j ∈ V , it is the problem of finding a Hamiltonian path π that
satisfies precedence constraints and minimizes the following:

Cost(π) =
n−1∑

i=1

cπ(i)π(i+1).

Here, the precedence constraints are marked by infinity (∞) in the cost matrix,
i.e., if cji = ∞, node j cannot precede node i in the path. The relationship is
denoted by i ≺ j; node i is called a predecessor of node j and node j is called
a successor of node i. It is assumed that the path starts at node 1 and ends
at node n, i.e., 1 ≺ i and i ≺ n for all i ∈ V \ {1, n}. Generally, the cost ma-
trix C is asymmetric and the precedence constraints are transitive and acyclic.
The problem is also called ‘asymmetric Hamiltonian path problem with prece-
dence constraints’. The special case of SOP with empty precedence constraints
is reduced to asymmetric traveling salesman problem (ATSP). As ATSP is an
NP-hard problem, so is SOP.

The problem arises in various practical fields such as manufacturing, rout-
ing, and scheduling. However, not very much attention has been paid to the
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problem, while TSP, which is a reduction of SOP, has been one of the most pop-
ular problems in the combinatorial optimization area. Cutting-plane approach
[1], Lagrangian relax-and-cut method [2], and branch-and-cut algorithm [3] are
mathematical model-based approaches. The genetic algorithm using a crossover
called maximum partial order/arbitrary insertion (MPO/AI) [4] and the hy-
brid ant colony system called HAS-SOP [5] are state-of-the-art metaheuristics
for SOP. Path preserving 3-Opt (pp-3-Opt) algorithm and its variants such as
SOP-3-exchange [5] are the most popular local improvement heuristics for hybrid
metaheuristics.

In this paper, we propose a new genetic algorithm for SOP. We adopt Voronoi
quantized crossover to exploit the topological linkages of genes in the genetic
search. The crossover is based on complete graph representation.

The rest of this paper is organized as follows. We mention the background
in Section 2 and describe the proposed genetic operators in Section 3. The ex-
perimental results are provided in Section 4. Finally, the conclusions are given
in Section 5.

2 Background

The building block hypothesis implies that the power of a genetic algorithm
lies in its ability to create and grow the building blocks efficiently. Building
blocks appear in interactive gene groups. The interaction between genes means
the dependence of a gene’s contribution to the fitness upon the values of other
genes. The interaction is also called epistasis in GA, although it is wider than
the biological definition of epistasis [6,7,8].

A gene group is said to have strong linkage if the survival probability of the
corresponding schema is higher than normal, and it is said to have weak link-
age otherwise [6]. To make building blocks survive through recombinations, we
must let the strongly epistatic gene groups have stronger linkage than ordinary
gene groups [6,9]. The linkage of a gene group is affected by various factors.
Particularly, the linkage determined by the relative positions of genes in the
chromosome is called topological linkage [10]. In the case, each gene is placed in
an Euclidean or non-Euclidean space, called chromosomal space, to represent the
linkages between genes. In order to make the topological linkages reflect well the
epistatic structure of a given problem, we need to choose an appropriate chromo-
somal structure. The chromosomal structure here means the conceptual struc-
ture of genes used for the crossover operator. A typical chromosomal structure
is one-dimensional array. In general, multi-dimensional representations are more
advantageous than simple one-dimensional representations for highly epistatic
problems [10]. For example, two-dimensional array, two-dimensional real space
(plane), and complete graph are available.

Recently, a large number of genetic algorithms that exploit the topological
linkages of genes have been proposed. They are classified into three models:
static linkage model, adaptive linkage model, and evolvable linkage model [10].
The linkages are fixed during the genetic process in the static linkage model.



A Hybrid Genetic Algorithm Based on Complete Graph Representation 671

1. VQX(n, k, dg, p1, p2)
2. {
3. I ← {1, 2, . . . , n}; K ← {1, 2, . . . , k};
4. Select a subset R = {s1, s2, . . . , sk} ⊂ I at random;
5. for each i ∈ I {
6. r[i]← arg min

j∈K
{dg(sj , i)}, sj ∈ R;

7. }
8. for each j ∈ K { u[j]← 0 or 1 at random; }
9. for each i ∈ I {
10. if (u[r[i]] = 0 and u[r[p1[i]]] = 0) then o[i]← p1[i];
11. else if (u[r[i]] = 1 and u[r[p2[i]]] = 1) then o[i]← p2[i];
12. else o[i]← nil;
13. }
14. o← GreedyRepair(o);
15. return o;
16. }

Fig. 1. Voronoi quantized crossover for SOP.

They adaptively changes in the adaptive linkage model, and evolve in parallel
with the allele values in the evolvable linkage model. We adopt the Voronoi
quantized crossover [11] and apply the static linkage model in this paper.

3 Genetic Operators

3.1 Voronoi Quantized Crossover

In Voronoi quantized crossover (VQX), a chromosome is a complete graph of
genes where each edge weight, called genic distance, reflects the epistatic strength
between the two corresponding genes. The graph is directed if the genic distance
is asymmetric. In fact, the genes are assigned a position in a non-Euclidean space
defined by the genic distances. By adopting such a non-Euclidean chromosomal
space, we aim to reflect the epistases with minimal distortion in the crossover.
The proposed heuristic for the genic distance assignment is described in Section
3.2. VQX was applied to the traveling salesman problem for the first time [11].
Applying VQX to SOP needs considerable modification. We describe the VQX
for SOP in the following.

For the problem, we use the locus-based encoding1 as in [12]; one gene is
allocated for every node and the gene value represents the index of its next
node in the path. VQX has a simple structure. Figure 1 shows the pseudo code
1 The term encoding here must be distinguished from the term representation because

we mean by encoding the actual scheme to store solutions not for crossover in this
paper.
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1. GreedyRepair(o)
2. {
3. S ← Extract path segments from o;
4. S ← PrecCycleDecomposition(S);
5. s0 ← the segment that contains node 1 in S;
6. S ← S \ {s0};
7. do {
8. s← the nearest segment from s0 among the segments, in S,
9. all whose predecessors are already contained in the segment
10. itself or in s0;
11. Attach s to s0; S ← S \ {s};
12. } while (|S| > 0);
13. o′ ← the solution of the segment s0;
14. return o′;
15. }

Fig. 2. Greedy repair.

of VQX where n is the number of genes and k is the crossover degree ranged
from 2 to n. The function dg : I2 → R represents the genic distance. The two
parents and the offspring are denoted by p1, p2, and o, respectively. Following
the convention, the notation “arg min” takes the argument that minimizes the
value. Given a number of vectors, the Voronoi region of a vector is defined to
be the nearest neighborhood of the vector [13]. In VQX, the chromosomal space
defined by dg is quantized into k Voronoi regions determined by the k randomly
selected genes (lines 4–7), then a sort of block-uniform crossover [14] is performed
on the regions (lines 8–13). We use a random tie-breaking in the calculation of
“arg min” in the crossover (line 6).

The part of gene inheritance (lines 8–13) goes as follows. At first, each region
is masked white or gray at random. The white and gray correspond to 0 and 1,
respectively, in line 8. Then the genes in the white regions are inherited from
parent 1 and the others are inherited from parent 2 (lines 9–13). At this time,
the gene values are not always copied but only when a gene (gene i) and the gene
pointed by it (gene p1[i] or gene p2[i]) belong to the same-colored region. That
is, an arc in a parent has a chance to survive in the offspring when both end
points belong to the same-colored region(s). The word nil is used for the genes
whose values are not determined. As a result, a partial solution consisting of path
segments is generated. We use a greedy approach to repair it. Figure 2 shows the
pseudo code of the greedy repair. Beginning with the segment containing node
1 (lines 5–6), it repeatedly merge segments available (lines 7–12). An available
segment is a segment all whose predecessors are contained in the segment itself
or in the segments already merged.

Because the segments are inherited from the two parents, it may include
precedence cycles. Therefore, a precedence cycle decomposition algorithm is re-
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1. PrecCycleDecomposition(S)
2. {
3. START:
4. D ← ∅; T ← ∅;
5. do {
6. Select a segment s from S \D at random;
7. D ← D ∪ {s}
8. for each node i in s {
9. for each predecessor ip of i {
10. sp ← the segment contains ip in S;
11. if (sp �= s and (s, sp) /∈ T ) {
12. if ((sp, s) ∈ T ) {
13. Split s into s′ and s′′;
14. S ← S \ {s} ∪ {s′, s′′};
15. goto START;
16. } else {
17. T ← T ∪ {(s, sp)};
18. T ← TransitiveClosure(T );
19. }
20. }
21. }
22. }
23. } while (|D| < |S|);
24. return S;
25. }

Fig. 3. Precedence cycle decomposition algorithm.

quired before merging the segments (line 4 in Figure 2). Figure 3 shows the
pseudo code of the algorithm. The algorithm inspects the precedence relation-
ships between the segments and if it finds a precedence cycle, it decomposes the
cycle by splitting a segment involved in the cycle into two sub-segments (lines
13–14). The splitting point is determined to be the position before the node i
or the position after the node i in the figure. The position with more balanced
sizes of the resulting segments is preferred. The splitting is repeated until no
cycle is found (lines 3–23). TransitiveClosure() returns the transitive closure of
a precedence relation T (line 18).

Figure 4 shows an example of VQX for SOP. In the figure, the nodes (genes)
and the non-trivial precedence constraints are drawn by small circles and dashed
arrows, respectively. For the convenience of illustration, we assumed the chro-
mosomal space to be a two-dimensional Euclidean space. The assumption is
merely for the visualization. At first, the chromosomal space is quantized into
nine Voronoi regions as in (a). Then, the offspring inherits path segments from
the parents. Figures 4(b)–(c) shows the two parents and Figure 4(d) shows the
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node 21
node 1

(a)

(c)

s’’

s’

(e)

(b)

s

(d)

(f)

Fig. 4. An illustration of VQX for SOP. (a) A chromosomal space quantized into nine
Voronoi regions. (b) Parent 1. (c) Parent 2. (d) Inherited path segments. (e) After
precedence cycle decomposition. (f) Repaired path segments.

inherited path segments. By the precedence cycle decomposition, the segment s
in (d) is split into segments s′ and s′′ in (e). Finally, an offspring is generated
by the greedy repair as in (f).

3.2 Genic Distance Assignment

We apply the static linkage model to the genetic algorithm, i.e., the genic dis-
tances are assigned statically before running the genetic algorithm. Intuitively,
an ideal value of a genic distance is a value inversely proportional to the strength
of the epistasis. However, no practical method to get the exact values of the epis-
tases is known yet. Therefore, we rely on heuristics. The genic distance from gene
i to gene j is defined as

dg(i, j) = |{l ∈ V : cil < cij}| (1)
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where V is the set of nodes and cpq is the (p, q) element of the cost matrix. It is
based on the fact that the epistasis reflects the topological locality of the nodes.
The genic distance is asymmetric as the cost matrix C is asymmetric.

3.3 Heterogeneous Mating

It is known that VQX shows faster convergence than other crossovers; this may
cause the premature convergence of genetic algorithms. To avoid it, we use a
special type of mating used in [11]. In the mating, each individual is mated with
one of its dissimilar individuals. Hollstien called this type of breeding a negative
assortive mating [15]. The heterogeneous mating is done similarly to a selection
method called crowding [16]. First, given an individual p1, m candidate indi-
viduals are selected from the population P by roulette-wheel selection. Among
them, the most different one from p1 is selected as p2. Hamming distance2 is
used for the distance measure. The heterogeneous mating improved the perfor-
mance of VQX by slowing down the convergence of the genetic algorithm. It is
notable that we could not found any synergy effect between the mating and other
crossovers such as k-point crossover and uniform crossover in our experiments.

3.4 Properties of VQX

VQX has two notable properties:

– Convexity — Voronoi regions are convex3 (see [13] p. 330).
– Diversity — It has

(
n
k

)
2k crossover operators.

In VQX, genes in the chromosome are quantized into several groups by randomly
selected Voronoi regions, and the gene values in the same group are inherited
from the same parent. Therefore, the first property that Voronoi regions are
convex implies that the gene groups of relatively short genic distance have high
survival probabilities, i.e., strong linkages.

The other property means that VQX has a lot of crossover operators. The
number of crossover operators affects the creativity of new schemata. The num-
ber of crossover operators of k-point crossover is

(
n−1

k

)
. For n = 10000 and

k = 12, for example, VQX has about 1043 crossover operators, while k-point
crossover has about 1039. However, we should mention that we do not pursue
the maximal number of crossover operators.

4 Experimental Results

The genetic algorithms used in this paper are steady-state hybrid genetic algo-
rithms. Figure 5 shows the template. In the template, n is the problem size, m
is the group size of heterogeneous mating, k is the crossover degree, and dg is
2 the number of different edges between two paths.
3 A set S ∈ Rk is convex if a, b ∈ S implies that αa + (1− α)b ∈ S for all 0 < α < 1.
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1. VGA(n, m, k, dg)
2. {
3. Initialize population P ;
4. repeat {
5. p1 ← Selection(P );
6. p2 ← MateSelection(P, m, p1);
7. o← VQX(n, k, dg, p1, p2);
8. o← Mutation(o);
9. o← LocalImprovement(o);
10. P ← Replacement(P, p1, p2, o);
11. } until (stopping condition);
12. return the best of P ;
13. }

Fig. 5. The steady-state hybrid genetic algorithm for SOP.

a b b’ c c’ d

a c c’ b b’ d

Fig. 6. An illustration of the path-preserving 3-exchange.

the genic distance. The two selected parents and the offspring are denoted by
p1, p2, and o, respectively. The genetic operators and their parameters used in
this paper are summarized in the following.

– Population Initialization — Initial solutions are generated at random, then
the local improvement algorithm is applied to each of them. All the solutions
in the population are feasible.

– Population Size — |P | = 50.
– Selection — Roulette-wheel selection, i.e., the fitness value fi of the solution

i is calculated as

fi = (Cw − Ci) + (Cw − Cb)/4 (2)

where Ci, Cw, and Cb are the costs of the solution i, the worst solution, and
the best solution in the population, respectively. The fitness value of the best
solution is five times as great as that of the worst solution in the population.

– Group Size of Heterogeneous Mating — m = 3.
– Crossover Degree — k = 6.
– Mutation — Five random feasible-path-preserving 3-exchanges are applied

to each offspring with probability 0.1. Figure 6 shows a symbolic drawing of
the exchange.
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Table 1. The experimental results for ESC78 and ft70.∗.

Graph GA BK#/t Best (%) Avg (%) σ/
√

t Gen Time
(Bst-Kn) (s)

DGA 1000/1000 18230 (0.000) 18230.00 (0.000) 0.00 223 2.68
ESC78 MGA 1000/1000 18230 (0.000) 18230.00 (0.000) 0.00 335 1.83
(18230) VGA 1000/1000 18230 (0.000) 18230.00 (0.000) 0.00 115 0.91

DGA 953/1000 39313 (0.000) 39315.75 (0.007) 0.39 268 4.40
ft70.1 MGA 548/1000 39313 (0.000) 39351.03 (0.097) 1.35 2256 8.48

(39313) VGA 1000/1000 39313 (0.000) 39313.00 (0.000) 0.00 629 6.27
DGA 718/1000 40419 (0.000) 40421.26 (0.006) 0.59 710 7.66

ft70.2 MGA 117/1000 40419 (0.000) 40424.45 (0.013) 0.68 601 3.48
(40419) VGA 930/1000 40419 (0.000) 40419.18 (0.000) 0.02 1190 7.66

DGA 526/1000 42535 (0.000) 42549.87 (0.035) 0.50 205 2.41
ft70.3 MGA 619/1000 42535 (0.000) 42546.86 (0.028) 0.48 177 1.45

(42535) VGA 909/1000 42535 (0.000) 42537.82 (0.007) 0.28 319 2.38
DGA 405/1000 53530 (0.000) 53560.35 (0.057) 0.88 594 4.59

ft70.4 MGA 12/1000 53530 (0.000) 53571.90 (0.078) 0.29 666 2.54
(53530) VGA 618/1000 53530 (0.000) 53543.97 (0.026) 0.58 559 3.83

– Local Improvement — A simple path-preserving 3-Opt (pp-3-Opt) algorithm
is used. In the algorithm, a path-preserving 3-exchanges of maximum gain
is selected and performed repeatedly. The gain of an exchange, with Figure
6 as an example, is computed by

gain = cab + cb′c + cc′d − cac − cc′b − cb′d (3)

where cpq is the (p, q) element of the cost matrix. For efficient feasibility
checking, a marking technique is used as the SOP labeling procedure in [5].

– Replacement — A variant of preselection [17] is used as in [12]. Each offspring
is replaced with (i) its more similar parent if the offspring is better, (ii)
the other parent if the offspring is better, (iii) the worst solution in the
population, otherwise.

– Stopping Condition — Until 70 percent of the population converges with the
same cost as the best solution. This takes account of the cases that more
than one best solution of the same quality competes with each other.

The algorithms were implemented in C on Pentium III 1132 MHz running
Linux 2.2.14. We tested on eighteen SOP instances taken from [18]. They are all
instances that have more than seventy nodes.

Tables 1–3 compare the performance of VGA with DGA and MGA. VGA
represents the genetic algorithms using Voronoi quantized crossover (VQX) with
the genic distance assignment heuristic described in Section 3.2. DGA and MGA
represent the genetic algorithms using distance preserving crossover (DPX) and
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Table 2. The experimental results for kro124p.∗ and prob.100.

Graph GA BK#/t Best (%) Avg (%) σ/
√

t Gen Time
(Bst-Kn) (s)

DGA 357/1000 39420 (0.000) 39481.95 (0.157) 1.58 431 25.46
kro124p.1 MGA 565/1000 39420 (0.000) 39505.79 (0.218) 6.12 902 15.64

(39420) VGA 930/1000 39420 (0.000) 39426.45 (0.016) 0.95 518 12.92
DGA 876/1000 41336 (0.000) 41344.27 (0.020) 0.70 529 27.96

kro124p.2 MGA 543/1000 41336 (0.000) 41566.05 (0.557) 12.77 1079 14.91
(41336) VGA 789/1000 41336 (0.000) 41353.22 (0.042) 1.76 688 12.49

DGA 6/1000 49499 (0.000) 50035.24 (1.083) 9.16 3884 42.68
kro124p.3 MGA 78/1000 49499 (0.000) 50029.73 (1.072) 12.81 3051 17.05

(49449) VGA 705/1000 49499 (0.000) 49582.64 (0.169) 6.27 1146 12.71
DGA 999/1000 76103 (0.000) 76103.27 (0.000) 0.27 227 11.75

kro124p.4 MGA 841/1000 76103 (0.000) 76138.68 (0.047) 2.61 298 7.00
(76103) VGA 1000/1000 76103 (0.000) 76103.00 (0.000) 0.00 249 8.36

DGA 0/50 1197 (0.588) 1260.72 (5.943) 5.62 112869 5108
prob.100 MGA 1/50 1175 (−1.261) 1244.36 (4.568) 4.28 2165330 54166

(1190) VGA 2/50 1163 (−2.269) 1255.86 (5.534) 5.85 122586 1767

maximum partial order/arbitrary insertion (MPO/AI)4 [4], respectively. DPX
tries to generate an offspring that has equal Hamming distance to both of its
parents, i.e., its aim is to achieve that the three Hamming distances between off-
spring and parent 1, offspring and parent 2, and parent 1 and parent 2 are identi-
cal. It was proposed originally for traveling salesman problem [19]. In MPO/AI,
the longest common subsequence (maximum partial order) of the two parents is
inherited to the offspring and the crossover is completed by repeatedly inserting
arbitrary nodes (arbitrary insertion) not yet included into a feasible position of
minimum cost. The same local improvement algorithm was used in all the ge-
netic algorithms. In the tables, the frequency of finding solutions better than or
equal to the best-known (BK#), the best cost (Best), average cost (Avg), group
standard deviation (σ/

√
t), average generation (Gen), and average running time

(Time) are presented. We got the results from 1000 (= t) runs on ESC78, ft70.∗,
kro124p.∗, rbg1∗, and 50 runs on prob.100, rbg2∗, and rbg3∗. The values (%) af-
ter the best and average costs represent the percentages above the best-known5.
VGA outperformed other genetic algorithms for twelve instances, while DGA
and MGA outperformed the others for four instances and one instance, respec-
tively. VGA broke the best-known for prob.100, rbg323a, and rbg341a. All three
genetic algorithms consumed comparable running time for all instances except
prob.100, rbg341a, rbg358a, and rbg378a. The overall results show that VGA is
the most efficient and stable among them.

4 Available at http://www.cs.cmu.edu/afs/cs.cmu.edu/user/chens/WWW/MPOAI
SOP.tar.gz.

5 Available at http://www.idsia.ch/˜luca/has-sop.html.
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Table 3. The experimental results for rbg∗.

Graph GA BK#/t Best (%) Avg (%) σ/
√

t Gen Time
(Bst-Kn) (s)

DGA 956/1000 1038 (0.000) 1038.07 (0.007) 0.01 97 11.19
rbg109a MGA 177/1000 1038 (0.000) 1039.88 (0.181) 0.04 772 16.51

(1038) VGA 953/1000 1038 (0.000) 1038.12 (0.011) 0.02 209 11.88
DGA 987/1000 1750 (0.000) 1750.04 (0.002) 0.01 77 31.14

rbg150a MGA 108/1000 1750 (0.000) 1752.63 (0.150) 0.03 331 33.12
(1750) VGA 901/1000 1750 (0.000) 1750.30 (0.017) 0.03 216 34.20

DGA 994/1000 2033 (0.000) 2033.01 (0.001) 0.01 192 78.37
rbg174a MGA 623/1000 2033 (0.000) 2033.71 (0.035) 0.04 381 67.14

(2033) VGA 927/1000 2033 (0.000) 2033.15 (0.007) 0.02 433 85.85
DGA 36/50 2950 (0.000) 2950.32 (0.011) 0.08 199 346

rbg253a MGA 47/50 2950 (0.000) 2950.08 (0.003) 0.05 155 222
(2950) VGA 50/50 2950 (0.000) 2950.00 (0.000) 0.00 382 325

DGA 1/50 3141 (0.000) 3144.20 (0.102) 0.28 866 2559
rbg323a MGA 0/50 3142 (0.032) 3142.42 (0.045) 0.07 628 1281

(3141) VGA 16/50 3140 (−0.032) 3141.94 (0.030) 0.13 1358 2515
DGA 0/50 2572 (0.078) 2575.30 (0.206) 0.33 1281 4262

rbg341a MGA 0/50 2571 (0.039) 2578.32 (0.324) 0.55 1686 3174
(2570) VGA 12/50 2568 (−0.078) 2571.88 (0.073) 0.28 5620 10164

DGA 3/50 2545 (0.000) 2553.98 (0.353) 0.76 1890 7345
rbg358a MGA 0/50 2549 (0.157) 2555.24 (0.402) 0.54 17355 34675

(2545) VGA 9/50 2545 (0.000) 2548.56 (0.140) 0.41 8640 24340
DGA 0/50 2819 (0.107) 2819.86 (0.137) 0.31 1065 7785

rbg378a MGA 2/50 2816 (0.000) 2818.96 (0.105) 0.22 3873 11669
(2816) VGA 22/50 2816 (0.000) 2818.44 (0.087) 0.45 7814 33774

5 Conclusions

In this paper, we proposed a new hybrid genetic algorithm for the sequential or-
dering problem (SOP). It adopts a crossover, called Voronoi quantized crossover
(VQX), on a complete graph representation. The crossover was modified by em-
ploying several new features for SOP. In the experiments, the proposed genetic
algorithm outperformed state-of-the-art genetic algorithms for SOP. We suspect
that the power of VQX is based on two main properties, convexity and diversity.
The properties are believed to improve the performance of genetic algorithms by
encouraging the survival probability and reproducibility of high-quality building
blocks in the genetic process.
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