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Abstract. To improve the efficiency of the currently known evolution-
ary algorithms, we have proposed two complementary efficiency speed-up
strategies in our previous research work respectively: the exclusion-based
selection operators and the Fourier series auxiliary function. In this pa-
per, we combine these two strategies together to search the global optima
in parallel, one for optima in large attraction basins and the other for op-
tima in very narrow attraction basins respectively. They can compliment
each other to improve evolutionary algorithms (EAs) on efficiency and
safety. In a case study, the two strategies have been incorporated into
evolution strategies (ES), yielding a new type of accelerated exclusion
and Fourier series auxiliary function ES: the EFES. The EFES is ex-
perimentally tested with a test suite containing 10 complex multimodal
function optimization problems and compared against the standard ES
(SES). The experiments all demonstrate that the EFES consistently and
significantly outperforms the SES in efficiency and solution quality.

1 Introduction

Evolutionary algorithms (EAs) are global search procedures based on the evolu-
tion of a set of solutions viewed as a population of interacting individuals. They
have been successfully used for optimization problems. But for solving large scale
and complex optimization problems, EAs have not demonstrated themselves to
be very efficient [4] [5]. We believe the main factor which causes low efficiency
of the current EAs is the convergence towards undesired attractors. This phe-
nomenon occurs when the objective function has some local optima with large
attraction basins or its global optimum is located in a small attraction basin in
a minimization case. The relationship between the convergence to a global min-
imum and the geometry (landscape) of the difficult function problems is very
important. If the population of EAs gets trapped into suboptimal states, which
locate in comparative large attraction basins, then it is difficult for the variation
operators to produce an offspring which outperforms its parents. In the second
case, if global optima are located in relatively small attraction basins, and the
individuals of EAs have not found these basins yet, the probability of the varia-
tion operators to produce offspring which locate in these small attraction basins
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is quite low. In both cases, the stochastic mechanism of EAs yields unavoid-
able resampling, which increases the algorithm’s complexity and decelerates the
search efficiency.

To overcome these two limitations that cause low efficiency of the currently
known EAs, we have proposed two complementary efficiency speed-up strategies
in our previous research work respectively [6]: the exclusion-based selection op-
erators and the Fourier series auxiliary function. The exclusion-based selection
operators could efficiently prevent the individuals of EAs from getting into the at-
traction basins of local optima. While the Fourier series auxiliary function could
guide an algorithm to search for optima with small attraction basins efficiently.
Moreover, this strategy can compensate the deficiency of the exclusion-based
selection operators on the algorithm’s safety, i.e. the avoidance of excluding a
global optimum contained in a narrow attraction basin. In this paper, we devel-
oped a new algorithm, the EFES, which incorporate the exclusion and Fourier
series auxiliary function into the evolution strategies (ES) [2]. We expect that
EFES will have the advantages of both two strategies — efficiency and safety.

This paper is organized as follows: we will explain the two novel efficiency
speed-up strategies for EAs implementation in Sections 2 and 3 respectively.
Particularly, a set of “exclusion-based” selection operators is proposed in Sec-
tion 2 to simulate the “survival of the fittest” principle more powerfully and
a Fourier series auxiliary function is introduced in Section 3. In Section 4, we
will demonstrate how to embed the exclusion-based selection operators and the
Fourier series auxiliary function into ES to generate EFES. In Section 5, the
EFES is experimentally examined, analyzed and compared with a set of typical,
multi-modal function optimization problems. The last section is the conclusion.

2 Exclusion-Based Selection Operators

This section defines and explores a somewhat different selection mechanism —
the exclusion-based selection operators.

Any EAs solve an optimization problem, say,

(P) min{f(x) : x ∈ Ω},

where f : Ω ⊂ Rn → R is a function. For simplicity, consider the problem
(P) with the domain Ω specified by Ω = [u1, v1] ∗ [u2, v2] ∗ · · · [un, vn]. The new
scheme is based on the cellular partition methodology. Given an integer d, let
hi = vi−ui

d , we define
σ(j1, j2, · · · , jn) =

{x = (x1, x2, · · · , xn) ∈ Ω : (ji − 1) × hi ≤ xi − ui ≤ ji × hi, 1 ≤ ji ≤ d}
and let the subregion σ(j1, j2, · · · , jn), be a cell, and the cell collection Γ (d) is

called a cellular partition of Ω. The vector representing the center of the cell is
defined by

m(σ(j1, · · · , jn)) = ((u1 + (j1 +
1
2
) × h1), · · · , (un + (jn +

1
2
) × hn)).



Evolution Strategies with Exclusion-Based Selection Operators 587

Let us first formalize the exclusion operators with reference to the cellular
partition Γ (d) of Ω.
Definition 1: An exclusion operator is a computationally verifiable test for
nonexistence of solution to problem (P) which can be implemented on every cell
of Γ (d).

For example, assume that f satisfies the Lipschitz condition: |f(x) − f(y)| ≤
α||x − y||. Then, for any σ ∈ Γ (d), there is a global minimizer x∗ in σ only if
| f(m(σ)) − f(x∗) |≤ α||m(σ) − x∗|| ≤ α

2 ω(σ), where ω(σ) is the mesh size of
Γ (d), defined by

ω(σ) = max1≤i≤n{vi − ui

d
}

This implies that f(m(σ)) − α
2 ω(σ) ≤ f(x∗) is a necessary condition for the

existence of the global optimum of (P). Thus f(m(σ)) − α
2 ω(σ) > f(x∗) gives a

nonexistence test for the solution. This test is an exclusion operator because it
can be computationally verified in each cells of Γ (d).

By Definition 1, any exclusion operator can serve to computationally test
the nonexistence of the solution of (P) in any given cells of Γ (d). It therefore
can be used to check if a given cell in Γ (d) is prospective or not as a global
optimum (or, as a portion of a attraction basin of a global optimum) of (P).
Accordingly, the non-global optimum, or, more loosely, less prospective cells can
be identified and can be deleted from further consideration. This is the key
mechanism that is adopted in the present work to accelerate EAs. Hereafter
any selection mechanism based on such exclusion principle will be called an
exclusion-based selection operator.

Let σ be an arbitrary cell in Γ (d) with its center m(σ) and the mesh size ω(σ).
The following provides us with a series of exclusion operators for minimization
problems. Please note that these operators (tests) can be equally applied to
maximization problems by reversing the inequality signs.

Example 1: Concavity Test Operator
Suppose f is continuous, then a necessary condition for a point x to be a

global minimizer is that f is convex at the neighborhood of x. Therefore, when
d is sufficiently large, the following tests (E1) and (E2) are exclusion operators.

(E1): There is a direction e ∈ Rn such that

f(m(σ)) >
1
2
[f(x+) + f(x−)]

where x− = x − ηe, x+ = x + ηe and 0 < η ≤ 1
2ω(σ)

(E2): There is a direction e ∈ Rn such that max{f(x+), f(x−)} > fbestand

[f(x+) − f(m(σ))][f(x−) − f(m(σ))] < 0

where x+ and x− are the same as in (E1), and fbest is the current known
best fitness value.

The tests (E1) and (E2) can immediately follow from the observations that
every m(σ) is in the interior of Ω, the (E1) features the concave property of f
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on cell σ, and (E2) characterizes the convex and concave overlapped property in
which no global optimum of f exists.

Example 2: Lipschitz Test Operator
Let £(f, α) denote the family of all continuous functions that satisfies the

Lipschitz conditions: | f(x) − f(y) |≤ α(Ω)||x − y||, x, y ∈ Ω ∈ Γ (d). Then the
following tests (E3) and (E4) are exclusion operators.

(E3): fbest < f(m(σ)) − α(σ)
2 ω(σ), if f ∈ £(f, α)

(E4): fbest < f(m(σ)) − α(σ)
8 ω2(σ), if f ′ ∈ £(f, α)

where fbest is again the “best-so-far” fitness value, and f ′ is the derivative of f .
Example 3: Formal Series Test Operator
Let � be the class of all functions that can be expressed as a finite number

of superpositions of formal series and their absolute values A(f) of f is defined
by

A(f) = A(f (1)) +
k∑

j=2

A(f (j))(x).

For any f ∈ � and g � A(f), it is known [8] that the following basic inequality
holds:

|f(x) − f(y)| ≤ A(g)(|y| + |x − y|) − A(g)(|y|),∀x, y ∈ Rn

This implies, similar to test (E3), that the following test (E5) is an exclusion
operator.

(E5): There is a formal series g � A(f)such that

fbest ≤ f(m(σ)) − [A(g)(|m(σ)| +
1
2
ω(σ)) − A(g)(|m(σ)|)]

Various other exclusion operators may also be constructed by virtue of other
delicate mathematical tools such as interval arithmetic [1] and the cell mapping
methods [7] [8].

Remark 1:
(i) The exclusion-based selection is the main component and contributor to

the accelerated evolutionary algorithms (the fast-EAs). Aiming at suppressing
the resampling effect of EAs, such type of selection provides a smart guidance to
EAs search towards promising areas through eliminating non-promising areas.
Different in principle from the conventional selection operators, the construction
of which is based on sufficient condition for the existence of solution to (P), the
exclusion-based selection operators can be constructed based on necessary con-
dition. This presents a general methodology of constructing exclusion operators.
The above listed tests (E1)-(E5) show such examples of the construction.

(ii) The application of exclusion-based operator has another advantage: It can
very naturally incorporate some useful properties of the objective function into
the EAs search, providing other acceleration means whenever possible. Indeed,
Examples 1-3 all have taken advantage of properties of f in certain ways (say,
continuity in Examples 1, Lipschitz conditions in Example 2 and analyticity in
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Example 3). As a general rule, the more exclusive properties of f are utilized, the
more accurate a test could be deduced (For example, (E3) is more accurate than
(E4) when the Lipschitz condition was applied for the derivative f ′ instead of
for f ). These different tests deduced from different properties by no means have
to be applied for a problem in the same time. They can, for instance, be applied
either independently, or with several others together, or totally simultaneously,
depending on the available information on f that can actually be made use of.

3 A Fourier Series Auxiliary Function

The exclusion-based selection operators are the efficient accelerating operators
based on the interval arithmetic and the cell mapping methods. However, if the
function optimization problem is very complex, say there are many sharp basins,
the optima may be excluded by mistake using the above operators. Meanwhile,
searching an optimum with a small attraction basin is difficult for standard
evolutionary algorithms. To solve the above problem, a Fourier series auxiliary
function is introduced in this section.

As we know, if f(x) is continuous or merely piecewise continuous (continuous
except for finitely many finite jumps in the interval of integration), then the
Fourier series of f(x) is convergent. Its sum is f(x), except at a point x0 at
which f(x) is discontinuous and the sum of the series is the average of the left-
and right-hand limits of f(x) at x0 [3]. We define the finite partial sum of the
Fourier series called F k

� (x)(e.g. for one dimension),

F k
� (x) =

k∑

n=�

(an cos
2nπ

u − v
x + bn sin

2nπ

u − v
x), x ∈ [u, v].

The infinite Fourier series F∞
1 (x) converges to f(x) at any point, but the

convergent speed of the finite partial sum F �
1 (x)(� < ∞) is different at each

point. For numerical function optimization, the finite partial sum F �
1 (x∗)(� < ∞)

converges to f(x∗) much slower for optimum x∗ with small attraction basin in
f(x) than that of optimum x∗ with a large attraction basin. This indicates the
partial sum |F∞

� (x∗)| = |f(x∗) − F �
1 (x∗)| at x∗ with a small attraction basin is

larger than at x∗ with a large attraction basin. Because when an integer k → ∞,
the coefficients of the kth Fourier series term ak and bk → 0, the infinite partial
sum F∞

k (x) → 0. So we consider the finite partial sum F k
� (x)(� < k) instead of

F∞
� (x). The proposition |F∞

� (x∗)| > |F∞
� (x)| equals to |F k

� (x∗)| > |F k
� (x)|(� <

k) when x∗ locates in a small attraction basin.
The features of the finite partial sum F k

� (x)(� < k) include enlarging small
attraction basins, and smoothing large attraction basins of f(x) as shown in
Fig.1. We have designed three strategies: the region partition strategy, the one-
element strategy and the double integral strategy to construct auxiliary function
g(x). The first strategy is designed for representing all optima with small attrac-
tion basins by the F k

� (x)(� < k) with a small number of terms. The second
one is for significantly reducing the computational complexity. The last one is
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Fig. 1. A schematic illustration for the feature of the Fourier finite partial sum F k
� (� =

100, k = 1000).

for expanding the dummy optima out of the original feasible region, and keep-
ing the original position of the optimum unchanged (Fig.2). Consequently, we
could construct the auxiliary function g(x) using the finite partial sum of the
one element of the Fourier trigonometric system

g(x) =
k∑

m=�

am

n∏

i=1

cos mxi,

where n is dimensions, � = 100 and k = 200;

am =
1

u − 2v

∫ 2v

u

f(x) cos
2mπ

2v − u
xdx;

to locate the optima of the origin function f(x).
Since the auxiliary function g(x) can enlarge the small attraction basins of the

optima and flatten the large attraction basins, the g(x) can guide an algorithm to
search the optima with small attraction basins more efficient, and these optima
are difficult to find in the original objective function by EAs. Furthermore, this
strategy runs in parallel with first strategy and compensates the deficiency of
the exclusion-based selection operators on the algorithm’s risk of missing optima
with many sharp attraction basins.

4 EFES: The Evolution Strategies with Exclusion-Based
Selection Operators and a Fourier Series Auxiliary
Function

In this section, we demonstrate how all the strategies developed in the previous
sections could be embedded into the known evolutionary algorithms, to yield new
versions of the algorithms. We will particularly take evolution strategies (ES)
as an example. Consequently, a new type of ES the EFES will be developed.
The incorporation of the developed strategies with other known evolutionary
algorithms might be straightforward, and could be done similarly as that in the
example presented below.
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Fig. 2. A graphical illustration of the g(x). (a) shows the complete Fourier system rep-
resentation; (b) shows one element Fourier representation with parameters determined
by [u, v]; (c) shows one element Fourier representation with parameters are determined
by [u, 2v].

The EFES Algorithm Is Given as Follows:

I. Initialization Step
I.1. Set k = 0, Ω(0) = Ω, n(0) = 1 and f0

best = 108; set the pre-determined
number of cellular partition d, and stopping criteria ε1 and ε2, where ε1 is
the solution precision requirement and ε2 is the space discretization precision
tolerance.

I.2. Initialize all the ES parameters including:
N− the population size;
M− the maximum number of ES evolution.

II. Iteration Step (Epoch)
II.1.ES Search in the auxiliary function g(x):

(a) randomly select N individuals from Ω(0) to form an initial population;
(b) perform M steps of ES search, yielding the currently best minimum g(x∗)

in the region Ω(0);
(c) if generation = 1, we put these points into population of ES for f(x); if

generation > 1, we will compare the fitness of f(x) at these points with
the current optimum of f(x), and only put the points which values of f(x)
smaller than the current optimum of f(x).

The two steps II.2 and II.3 below will use the cellular partition method,
assuming Ω(k) consists of n(k) subregions, say, Ω(k) = Ω

(k)
1 ∪Ω

(k)
2 ∪ ...∪Ω

(k)
n(k).

For each subregion Ω
(k)
i , do the following:

II.2.ES Search in the objective function f(x):
(a) use the fixed points by step II.1 and some random selected points from

Ω
(k)
i to form initial population;

(b) perform M steps of ES search, yielding the currently best minimum f
(k)
i

in the subregion Ω
(k)
i ;

(c) let f
(k)
best := min{f

(k)
i , f

(k−1)
best }.

II.3. Exclusion-based Selection:
With the “best-so-far” fitness value f

(k)
best guided, eliminate the “less prospec-

tive” individuals (cells) from Ω
(k)
i by employing appropriate exclusion oper-

ator(s) and a specific exclusion scheme. The remaining cells are denoted by
Π

(k)
i .



592 K.-S. Leung and Y. Liang

II.4. Space Shrinking:
(a) generate a cell Ω

(k+1)
i such that Π

(k)
i ⊂ Ω

(k+1)
i and ω(Ω(k+1)

i ) < ω(Ω(k)
i )

whenever possible; in this case, set Ω
(k+1)
i1 = Ω

(k+1)
i and Ω

(k+1)
i2 = ∅;

(b) bisect Π
(k)
i and construct two large cells Ω

(k+1)
i1 and Ω

(k+1)
i2 such that

Π
(k)
i ⊂ Ω

(k+1)
i1 ∪ Ω

(k+1)
i2 and max{ω(Ω(k+1)

i1 ), ω(Ω(k+1)
i2 )} < ω(Π(k)

i ).

III. Termination Test Step
If ω(Ω(k)) ≤ ε2 and |f (k) −f (k−1)| ≤ ε1 hold for three consecutive iteration steps,

then stop; Otherwise, go to step II with k := k + 1, and

Ω(k+1) = Ω
(k+1)
i1 ∪ Ω

(k+1)
i2 · · · ∪ Ω

(k)
n(k).

Detailed remarks on each step of the above algorithm are given in [6].
The iteration step (step II) is the core of the algorithm. Step II.1 performs

the ES for M generations to search in the auxiliary function g(x), the best indi-
viduals are potential global optima, which are difficult to find in f(x). Adopting
the comparison criterion could efficiently eliminate interference caused by other
kinds of points (like discontinuous point). In order to ensure the safety of the
algorithm, we do not apply the exclusion-based selection operators in the search
process of g(x).

Table 1. The test suite used in our experiments.

f1 = 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 , n = 2, x ∈ [−5, 5];

f2 = x2
2 + 2x2

1 − 0.3cos(3πx2) − 0.4cos(3πx1) + 0.7, n = 2, x ∈ [−5.12, 5.12] ;

f3 =

n/4∑
i=1

(x4i−3+10x4i−2)2+5(x4i−1 −x4i)
2+(x4i−2 −2x4i−1)2+10(x4i−3 −x4i)

4,n = 40, x ∈ [−100, 100];

f4 =

n/4∑
i=1

3[exp(x4i−3 − x4i−2)2 + 100(x4i−2 − x4i−1)6 + [tan(x4i−1 − x4i)
4 + x8

4i−3],n = 40, x ∈ [−4, 4];

f5 =

n/4∑
i=1

{100[x2
4i−3 −x4i−2]2+(x4i−3 −1)2+90(x2

4i−1 −x4i)
2+10.1[(x4i−2 −1)2+(x4i −1)2]+19.8(x4i−2 −

1)(x4i − 1)}, n = 40, x ∈ [−50, 50];

f6 = 1
4000

n∑
i=1

x2
i

−
n∏

i=1

cos(
xi√

i
) + 1, n = 40, x ∈ [−600, 600];

5 Simulations and Comparisons

We will experimentally evaluate the performance of the EFES, and compare it
with the standard evolution strategies (SES). The EFES was implemented with
k = 10, N = 1000 and ε1 = ε2 = 10−8. The maximal number M of ES evolution
was taken uniformly to be 500 on f(x) and g(x) respectively, called a epoch. All
these parameters and schemes were kept invariant unless noted otherwise. For
fairness of comparison, we also implemented the SES with the same parameter
settings and the same initial population. The maximum number of SES evolution
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Fig. 3. The search space (the white cells) shrinking process when the EFES applied
to f1. (b) shows the locations of the global optima of f1 (denoted by “•”); (c) and
(d) show the cells excluded by the algorithm in epochs 1 and 2 (current best search
point is denoted by “*”. In epoch 3, the search space is forked into two subregions in
(e) because the two global optima all lie in the husk layer of the search space. After
forking, one more epoch yields the two global optima with precision 10−8.

is 105. All experiments were run for ten times with random initial populations,
and the averages of the ten runs were taken as the final result.

The test suite used in our experiments include those minimization problems
listed in Table 1. The suite mainly contains some representative, complex, mul-
timodal functions with many local optima and being highly nonseparable in
features. Our experiments were divided into two groups with different purposes.
We report the results of each group below.

Explanatory Experiments: This group of experiments aims to exhibit the
evolution processes of the EFES in detail. To clearly demonstrate the running
process of the exclusion-based selection operators, this simulation first studies
the ES with exclusion-based selection operators and without the Fourier series
auxiliary function to solve the problem f1. Fig.3-(a) shows the function f1 that
has only two global minimizers. The evolution details (particularly, the search
space shrinking details) of the EFES when applied to minimization of this func-
tion is presented in Figs.3 (b)-(f), which demonstrate clearly how the remaining
cells are accumulated around the currently acceptable search point (denoted by
“*”) for the global minimum, and how local minima are successively excluded.
This demonstrates the common features of the EFES. The experiments also
demonstrate that the number of subregions, n(k), contained in search space
Ω(k) in each step are uniformly bounded. These bounds are seen to be very
small in each case, but vary with the problems under consideration. Particularly
we observed in the experiments that the bounds n(k) are generally related (ac-



594 K.-S. Leung and Y. Liang

tually, proportional) to the number of the global optima of the function to be
optimized.
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Fig. 4. A schematic illustration that the EFES to search on f2. (a) shows random
version of f2. (b) and (c) show the results after a first and second epoches respectively.
The points (1), (2) and (3) show the optima (−1, 10−5), (−0.5, 10−3) and (−0.5, 10−3),
respectively.

We designed the test function based on benchmark multimodal functions
f2 to demonstrate the feature of the auxiliary function g(x). Three optima
with small attraction basins are generated randomly in the feasible solution
space of f(x) and they have the following properties respectively: (−0.5, 10−3),
(−0.5, 10−3) and (−1, 10−5), representing the value of the optima and the width
of its attraction basin in the bracket, respectively. The locations of these optima
are decided in random.

Fig.4-(a) shows random version of f2. Figs.4-(b) and (c) show the results
of the EFES within the first and second epoches respectively, the points ∗ are
obtained from the EFES in the search in g(x). Fig.4-(b) demonstrates that the
EFES can find the two optima (−0.5, 10−3) in the first epoch(1000 generations),
however the optimum (−1, 10−5) is not represented in g(x) at this time. In
the second epoch, after bisecting the whole space between these two optima
(−0.5, 10−3), the optimum (−1, 10−5) is represented by g(x) and identified by the
EFES(c.f. Fig.4-(c)). These results confirm that the EFES can find these three
optima with small attraction basins in g(x). Fig.4-(d) shows SES is converged to
the optimum f1(0, 0) = 0 after 10000 generations, which is the global optimum of
the original version of function f2. However, this point is not the global optimum
of random version of f2.

Comparisons: To assess the effectiveness and efficiency of the EFES, its per-
formance is compared with the standard ES (SES). We define that f7 − f10 are
the random versions of f3 − f6. Functions f7 − f10 have one optimum with a
small attraction basin (−1, 10−5), representing the value of the optimum and
the width of its attraction basin in the bracket, respectively. The location of
the optimum are decided in random. The comparisons are made in terms of the
solution quality and computational efficiency and on the basis of applications of
the algorithms to the test functions f3 − f10 in the test suite. As each algorithm
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has its associated overhead, a time measurement was taken as a fair indication of
how effectively and efficiently each algorithm could solve the problems. The so-
lution quality and computational efficiency are therefore respectively measured
by the solution precision and the fitness attained by each algorithm within an
equal period of fixed time. Unless mentioned otherwise, the time is measured in
minutes as measured on the computer.

Table 2 and Fig.5 present the solution quality comparison results in terms of
f

(t)
best when the EFES and SES are applied to the test functions f3 − f10. We can

observe that while the EFES consistently converges to the global optima for all
test functions, SES is unable to find the global solutions for f3 − f6 and their
random versions, f7 − f10. On the other hand, Table 2 and Fig.5 also show that
the EFES can always locate the global optimum with higher solution precision.
That is, the EFES outperforms SES in solution effectiveness.

The computational efficiency comparison results are shown in Fig.5. It is
clear from these figures that the EFES significantly outperform the SES for all
test functions. In addition, we could see from Figs.5 (e)-(h) that the efficiency in-
creases because the auxiliary function g(x) efficiently guide the EFES to find the
global optimum with a small attraction basin. Even with such efficiency speed-
up, the guaranteed monotonic convergence of the EFES is still clearly observed
in all these experiments. All these comparisons show the superior performance
of the EFES in efficacy and efficiency.

Table 2. The results of the EFES and SES when applied to test functions

Function Epoches The running time (minute) The solution precision attained

SES EFES SES EFES
f3 5 17.2 17.2 10−4 10−8

f4 5 19.0 19.0 10−3 10−8

f5 5 21.6 21.6 10−3 10−8

f6 5 16.8 16.8 10−3 10−8

f7 3 17.2 7.3 10−4 10−8

f8 2 19.0 5.8 10−3 10−8

f9 3 21.6 15.8 10−3 10−8

f10 3 16.8 9.1 10−3 10−8

6 Conclusion

In this paper, we have developed a new evolutionary algorithm— EFES, which
incorporates two strategies, exclusion-based selection operators and the Fourier
series auxiliary function into ES, to solve global optimization problems.

The EFES has been experimentally tested with a difficult test suite consisted
of two groups of complex multimodal function optimization examples. The per-
formance of the EFES is compared against the standard evolution strategies
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Fig. 5. The solution quality and computational efficiency comparisons of the EFES and
SES when applied to problems f3(a), f4(b), f5(c), f6(d), f7(e), f8(f), f9(g), f10(h),
where the abscissa is the time (minutes), and the ordinate is the solution precision
|f (t)

best − f∗|(absolute error)(Keys: v – EFES, . – SES).

(SES). All experiments have demonstrated that the EFES consistently and sig-
nificantly outperforms the SES in efficiency and solution quality, particularly
towards problems whose global optima are located in small attraction basins.
Since the Fourier series auxiliary function could be used on discontinuous func-
tion optimization problems and prevent accidental deletion of the global optima
with very narrow attraction basins by the exclusion-based selection operators,
EFES has wider application, both for continuous and discontinuous problems.
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