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Abstract. Continuous Time Recurrent Neural Networks (CTRNNs)
have previously been proposed as an enabling paradigm for evolving
analog electrical circuits to serve as controllers for physical devices [6].
Currently underway is the design of a CTRNN-EH VLSI chips that com-
bines an evolutionary algorithm and a reconfigurable analog CTRNN
into a single hardware device capable of learning control laws of physical
devices. One potential application of this proposed device is the control
and suppression of potentially damaging thermoacoustic instability in
gas turbine engines. In this paper, we will present experimental evidence
demonstrating the feasibility of CTRNN-EH chips for this application.
We will compare our controller efficacy with that of a more traditional
Linear Quadratic Regulator (LQR), showing that our evolved controllers
consistently perform better and possess better generalization abilities.
We will conclude with a discussion of the implications of our findings
and plans for future work.

1 Introduction

An area of particular interest in modern combustion research is the study of lean
premixed (LP) fuel combustors that operate at low fuel-to-air ratios. LP fuels
have the advantage of allowing for more complete combustion of fuel products,
which decreases harmful combustor emissions that contribute to the formation
of acid rain and smog. Use of LP fuels however, contributes to flame instabil-
ity, which causes potentially damaging acoustic oscillations that can shorten the
operational life of the engine. In severe cases, flame-outs or major engine com-
ponent failure are also possible. One potential solution to the thermoacoustic
instability problem is to introduce active control devices capable of sensing and
suppressing dangerous oscillations by introducing appropriate control efforts.

Because combustion systems can be so difficult to model and analyze, self-
configuring evolvable hardware (EH) control devices are likely to be of enormous
value in controlling real engines that might defy more traditional techniques.
Further, an EH controller would be able to adapt and change online, continuously
optimizing its control over the service life of a particular combustor. This paper
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Fig. 1. Schematic of a Test Combustor

will discuss our efforts to control the model combustor presented in [10] [11] with
a simulated evolvable hardware device. We will begin with brief summaries of
the simulated combustor and our CTRNN-EH device. Following, we will discuss
our evolved CTRNN-EH control devices and how their performance compares
to a traditional LQR controller. Finally, we will discuss the implications of our
results and discuss future work in which we will apply CTRNN-EH to the control
of real engines.

2 The Model Combustor

Figure 1 shows a schematic of a simple combustor. Premixed fuel and air is intro-
duced at the closed end and the flame is anchored on a perforated disk mounted
inside the chamber a short distance from the closed end (the flameholder). Com-
bustion products are forced out the open end. Thermoacoustic instability can
occur due to positive feedback between combustion dynamics of the flame and
acoustic properties of the combustion chamber. Qualitatively speaking, flame
dynamics are affected by mechanical vibration of the combustion chamber and
mechanical vibration of the combustion chamber is affected by heat release/flame
dynamics. When these two phenomena reinforce one another, it is possible for the
vibrations of the combustion chamber to grow to unsafe levels. Figure 2 shows
the engine pressure with respect to time for the first 0.04 seconds of uncontrolled
operation of an unstable engine. Note that maximum pressure amplitude is grow-
ing exponentially and would quickly grow to unsafe levels. In the model engine,
a microphone is mounted on the chamber to monitor the frequency and magni-
tude of pressure oscillations. A loudspeaker effector used to introduce additional
vibrations is mounted either at the closed end of the chamber or along its side.
Figure 1 shows both speaker mounting options, though for any experiment we
discuss here, only one would be used at a time.
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Fig. 2. Time Series Response of the Uncontrolled EM1 Combustor

A full development of the simulation state equations, which have been veri-
fied against a real propane burning combustor, is given in [10]. Using these state
equations, we implemented C language simulations of four combustor configura-
tions. All four simulations assumed a specific heat ratio of 1.4, an atmospheric
pressure of 1 atmosphere, an ambient temperature of 350K, a fuel/air mixture
of 0.8, a speed of sound of 350 m/s, and a burn rate of 0.4 m/s. The four engine
configurations, designated SM1, SM2, EM1, and EM2, were drawn from [10] and
represent speaker side-mount configurations resonant at 542 Hz and 708 Hz and
end-mount configurations resonant at 357 Hz and 714 Hz respectively.

3 CTRNN-EH

CTRNN-EH devices combine a reconfigurable analog continuous time recurrent
neural network (CTRNN) and Star Compact Genetic Algorithm (*CGA) into a
single hardware device.

CTRNNs are networks of Hopfield continuous model neurons [2][5][12] with
unconstrained connection weight matrices. Each neuron’s activity can be ex-
pressed by an equation of the following form:

τi
dyi

dt
= −yi +

N∑

j=1

wjiσ (yj + θj) + siIi (t) (1)

where yi is the state of neuron i, τi is the time constant of neuron i, wji is
the connection weight from neuron j to neuron i, σ (x) is the standard logistic
function, θj is the bias of neuron j, si is the sensor input weight of neuron i, and
Ii (t) is the sensory input to neuron i at time t.

CTRNNs differ from Hopfield networks in that they have no restrictions on
their interneuron weights and are universal dynamics approximators [5]. Due to
their status as universal dynamics approximators, we can be reasonably assured
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that any control law of interest is achievable using collections of CTRNN neu-
rons. Further, a number of analog and mixed analog-digital implementations are
known [13] [14] [15] and available for use.

*CGAs are any of a family of tournament-based modified Compact Genetic
Algorithms [9] [7] selected for this application because of the ease in which they
may be implemented using common VLSI techniques [1] [8]. The *CGAs require
far less memory than other EAs because they represent populations as compact
probability vectors rather than as sets of actual bit strings. In this work, we
employed the mCGA variation similar to that documented in [9]. The algorithm
can be stated as shown in figure 3.

Figure 4 shows a schematic representation of our CTRNN-EH device used in
intrinsic mode to learn the control law of an attached device. In this case, the
user would provide a hardware or software system that produces a scalar measure
(performance score) of the controlled devices effectiveness based upon inputs
from some associated instrumentation. This is represented in the rightmost block
of Figure 4. The CTRNN-EH device, represented by the leftmost block in the
figure, would receive fitness scores from the evaluator and sensory inputs from
the controlled device. The CGA engine would evolve CTRNN configurations that
monitor device sensors and supply effector efforts that maximized the controlled
devices performance.

4 CTRNN-EH Control Experiments

In the experiments reported in this paper, we employed a simulated CTRNN-
EH device that contained a five neuron, fully-connected CTRNN as the analog
neuromorphic component and a mCGA [8] as the EA component. The CTRNN
was interfaced to the combustor as shown in Figure 5. Each neuron received
the raw microphone value as input. The outputs of two CTRNN neurons con-
trolled the amplitude and frequency of a voltage controlled oscillator that itself
drove the loudspeaker (I.E. The CTRNN had control over the amplitude and
frequency of the loudspeaker effector). Speaker excitations could range from 0
to 10 mA in amplitude and 0 to 150 Hz in frequency. The error function (per-
formance evaluator) was the sum of amplitudes of all pressure peaks observed in
a period of one second. This error function roughly approximates and produces
the same relative rankings that would be produced by using simple hardware
to integrate the area under the microphone signal in the time domain. mCGA
parameters were chosen as follows: simulated population size of 1023, a maxi-
mum tournament count of 100,000, and a bitwise mutation rate of 0.05. Forty
CTRNN parameters (five time constants, five biases, five sensor weights, and
twenty-five intra-network weights) were encoded as eight bit values resulting in
a 320 bit genome. All experiments were run on a 16 node SGI Beowulf cluster.

We ran 100 evolutionary trials for each of the four engine configurations. On
average, 589, 564, 529, and 501 tournaments were required to evolve effective os-
cillation suppression for SM1, SM2, EM1, and EM2 respectively. Each of the the
resulting four hundred evolved champions was tested for control efficacy across all
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1. Initialize probability vector
for i := 1 to L do p[i] := 0.5

2. Generate two individuals from the vector
a := generate(p);
b := generate(p);

3. Let them compete
winner, loser := evaluate(a, b)

4. Update the probability vector toward the winner
for i := 1 to L do

if winner[i] <> loser[i] then
if winner[i] = 1 then

p[i] := p[i] + (1 / N)
else

p[i] := p[i] - (1 / N)

5. Mutate champ and evaluate
if winner = a then

c := mutate(a);
evaluate(c);
if fitness(c) > fitness(a) then

a := c;
else

c := mutate(b);
evaluate(c);
if fitness(c) > fitness(b) then

b := c;

6. Generate one individual from the vector
if winner = a then

b := generate(p);
else

a := generate(p);

7. Check if probability vector has converged
for i := 1 to L do

if p[i] > 0 and p[i] < 1 then goto step 3

8. P represents the final solution

Fig. 3. Pseudo-code for mCGA

four modeled engine configurations (SM1, SM2, EM1, and EM2). All were effec-
tive in suppressing vibrations under the conditions for which they were evolved.
In addition, all were capable of effectively suppressing vibrations in the engine
configurations for which they were not evolved. Typical engine noise suppression
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Fig. 4. Schematic of CTRNN-EH Controller

results for both a side mounted CTRNN-EH controller and a Linear Quadratic
Regulator (LQR) are shown in Figure 6. Tables 1, 2 3, and 4 summarize the
average settling times (the time the controller requires to stabilize the engine)
across all experiments. Note that in Figure 6, our evolved controller settles to
stability significantly faster than the LQR. The LQR controllers presented in
[10] and [11] had settling times of about 40 mS and 20 mS for the end-mounted
and side-mounted configurations respectively. Note that our evolved CTRNNs
compare very well to LQR devices. On average, they evolved to produce set-
tling times of better than 20 ms. The very best CTRNN controllers settle in
as few as 8 ms. Further, the presented LQR controllers failed to function prop-
erly when used in a mounting configuration for which they were not designed,
while all of our evolved controllers appear capable of controlling oscillations ir-
regardless of where the effector is mounted. Both of these results suggest that
our evolved controllers may be both faster (in terms of settling time) and more
flexible (in terms of effector placement) than the given LQR devices. Presuming
that we implemented only the analog CTRNN portion of the CTRNN-EH de-
vice, this improved capability would be achieved without a significant increase
in the amount of analog hardware required.

In other, related work, we have observed that mCGA seems better able to
evolve CTRNN controllers than the population based Simple Genetic Algorithm
(sGA) that it emulates [7]. This effect was observed in experiments reported here
as well. We evolved 100 CTRNN controllers for the each engine configuration
using a tournament based simple GA with uniform crossover, a bitwise mutation
rate of 0.05, and a population size of 1023. On average, the sGA required 5000
tournaments to evolve effective control. The difference between the number of
generations required for sGA and mCGA is statistically significant. Table 5 shows
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Fig. 5. CTRNN to Combustor Interface

the average settling times of sGA and mCGA controllers evolved in the SM1
configuration. These results are representative of those observed under other
evolutionary conditions.

5 Conclusions and Discussion

In this paper, we demonstrated that, against an experimentally verified combus-
tor model, CTRNN-EH evolvable hardware controllers are consistently capable
of evolving highly effective active oscillation suppression abilities that general-
ized to control different engine configurations as well. Further, we demonstrated
that we could surpass the performance of a benchmark LQR device reported
in the literature as a means of solving the same problem. These results are in
themselves significant. More significant, however, are the implications of those
results.

First, the LQR devices referenced were developed based upon detailed knowl-
edge of the system to be controlled. A model needed to be constructed and val-
idated before controllers could be constructed. Even in the case of the relatively
simple combustion device that was modeled and simulated, this was a significant
effort. Though it may be the case that improved control can be had by using
other model-based methods, any such improvements would be purchased at the
cost of significant additional work. Further, it is not clear that one would be
able to construct appropriately detailed mathematical models of more realistic
combustor systems with more realistic engine actuation methods. Thus, it is not
clear if model-based control methods could be applied to more realistic engines.
Our CTRNN-EH controllers were developed without specific knowledge of the
plant to be controlled. A *CGA evolved a very general dynamics approximator
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Table 1. Controllers Evolved in SM1 Configuration

Statistic Tested in EM1 Tested in EM2 Tested in SM1 Tested in SM2
Average 12.51 ms 11.80 ms 11.141 ms 11.78 ms
Stdev 5.38 ms 5.22 ms 5.21 ms 1.08 ms

Table 2. Controllers Evolved in EM1 Configuration

Statistic Tested in EM1 Tested in EM2 Tested in SM1 Tested in SM2
Average 14.68 ms 13.84 ms 13.05 ms 12.20 ms
Stdev 6.37 ms 6.23 ms 5.97 ms 1.14 ms

Table 3. Controllers Evolved in SM2 Configuration

Statistic Tested in EM1 Tested in EM2 Tested in SM1 Tested in SM2
Average 21.93 ms 21.41 ms 20.06 ms 13.03 ms
Stdev 3.74 ms 3.80 ms 3.92 ms 0.67 ms

Table 4. Controllers Evolved in EM2 Configuration

Statistic Tested in EM1 Tested in EM2 Tested in SM1 Tested in SM2
Average 13.22 ms 12.53 ms 11.85 ms 11.91 ms
Stdev 5.79 ms 5.58 ms 5.58 ms 1.07 ms

Table 5. Controllers Evolved with sGA in SM1 Configuration

Statistic Tested in EM1 Tested in EM2 Tested in SM1 Tested in SM2
Average 14.72 ms 17.31 ms 13.65 ms 14.03 ms
Stdev 4.92 ms 5.61 ms 5.16 ms 3.23 ms
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Fig. 6. Typical LQR Response vs. CTRNN-EH Response

to stabilize the engine. Such a technique could be applied without modification
to any engine and/or combustor system – with any sort of engine effectors. Nat-
urally, one might argue that the evolved control devices would be too difficult
to understand and verify, rendering them less attractive for use in important
control applications. However, especially in cases where there are few sensor
inputs, we have already developed analysis techniques that should be able to
construct detailed explanations of CTRNN operation with respect to specific
control problems [3] [4]. The engine controllers we presented in this paper are
currently undergoing analysis using these dynamical systems methods and we
expect to construct explainations of their operation in the near future.

Second, although our initial studies have been of necessity in simulation, we
have made large strides in constructing hardware prototypes on our way to a
complete, self-contained VLSI implementation. We have already constructed and
verified a reconfigurable analog CTRNN engine using off-the-shelf components
[6] and have implemented the mCGA completely in hardware with FPGAs [7].
Our early experiments suggest that our hardware behaves as predicted in sim-
ulation. We are currently integrating these prototypes to create the first, fully
hardware CTRNN-EH device. This first integrated prototype will be used to
evolve oscillation suppression on a physical test combustor patterned after that
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modeled in [10]. Our positive results in simulation make moving to this next
phase possible.

Third, earlier in this paper, we reported that mCGA evolves better solutions
than does a similar simple GA. This phenomenon is not unique to the engine
control problem, in fact, we have observed it in evolving CTRNN based con-
trollers for other physical processes [7]. Understanding why this is the case will
likely lead to important information about the nature of CTRNN search spaces,
the mechanics of the *CGAs, or both. This study is also currently underway.

Evolvable hardware has the potential to produce computational and control
devices with unprecedented abilities to automatically configure to specific re-
quirements, to automatically heal in the face of damage, and even to exploit
methods beyond what is currently considered state of the art. The results in
this paper argue strongly for the feasibility of EH methods to address a difficult
problem of practical import. They also point the way toward further study and
development of general techniques of potential use to the EH community.
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