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Abstract. We explore the advantages of DNA-like genomes for evolutionary
computation in silico. Coupled with simulations of chemical reactions, these ge-
nomes offer greater efficiency, reliability, scalability, new computationally fea-
sible fitness functions, and more dynamic evolutionary algorithms. The proto-
type application is the decision problem of HPP (the Hamiltonian Path Prob-
lem.) Other applications include pre-processing of protocols for biomolecular
computing and novel fitness functions for evolution in silico.

1   Introduction

The advantages of using DNA molecules for advances in computing, known as bio-
molecular computing (BMC), have been widely discussed [1], [3]. They range from
increasing speed by using massively parallel computations to the potential storage of
huge amounts of data fitting into minuscule spaces. Evolutionary algorithms have been
used to find word designs to implement computational protocols [4]. More recently,
driven by efficiency and reliability considerations, the ideas of BMC have been ex-
plored for computation in silico by using computational analogs of DNA and RNA
molecules [5]. In this paper, a further step with this idea is taken by exploring the use
of DNA-like genomes and online fitness for evolutionary computation.

The idea of using sexually split genomes (based on pair attraction) has hardly been
explored in evolutionary computation and genetic algorithms. Overwhelming evidence
from biology shows that “the [evolutionary] essence of sex is Mendelian recombina-
tion” [11]. DNA is the basic genomic representation of virtually all life forms on
earth. The closest approach of this type is the DNA-based computing approach of
Adleman [1]. We show that an interesting and intriguing interplay can exist between
the ideas of biomolecular-based and silicon-based computation. By enriching Adle-
man’s solution to the Hamiltonian Path Problem (HPP) with fitness-based selection in
a population of potential solutions, we show how these algorithms can exploit bio-
molecular and traditional computing techniques for improving solutions to HPP on
conventional computers. Furthermore, it is conceivable that these fitness functions
may be implemented in vitro in the future, and so improve the efficiency and reliabil-
ity of solutions to HPP with biomolecules as well.
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In Section 2, we describe the experiments performed for this purpose, including the
programming environment and the genetic algorithms based on DNA-like genomes. In
Section 3, we discuss the results of the experiments. A preliminary analysis of some of
these results has been presented in [5], but here we present further results and a more
complete analysis. Finally, we summarize the results, discuss the implications of ge-
netic computation, and envision further work.

2   Experimental Design

As our prototype we took the problem that was used by Adleman [1], the Hamiltonian
Path Problem (HPP), for a proof-of-concept to establish the feasibility of DNA-based
computation. An instance of the problem is a digraph and a given source and destina-
tion; the problem is to determine whether there exists a path from the source to the
destination that passes through each vertex in the digraph exactly once. Solutions to
this problem have a wide-ranging impact in combinatorial optimization areas such as
route planning and network efficiency.

In Adleman’s solution [1], the problem is solved by encoding vertices of the graph
with unique strands of DNA and encoding edges so that their halves will hybridize
with the end vertex molecules. Once massive numbers of these molecules are put in a
test tube, they will hybridize in multiple ways and form longer molecules ultimately
representing all possible paths in the digraph. To find a Hamiltonian path, various
extraction steps are taken to filter out irrelevant paths, such as those not starting at the
source vertex or ending at the destination. Good paths must also have exactly as many
vertices as there are in the graph, and each vertex has to be unique within the final
path. Any paths remaining represent desirable solution Hamiltonian paths.

There have been several improvements on this technique. In [10], the authors at-
tempt to automate Adleman’s solution so that the protocols more intelligently con-
struct promising paths. Another improvement [2] uses reflective PCR to restrict or
eliminate duplicated vertices in paths. In [8], the authors extend Adleman’s solution,
by adding weights associated with melting temperatures to solve another NP-complete
problem, the Traveling Salesman Problem (TSP).

We further these genetic techniques by adding several on-line fitness functions for
an implementation in silico. By rewriting these biomolecular techniques within the
framework of traditional computing, we hope to begin the exploration of algorithms
based on concepts inspired by BMC. In this case, a large population of possible solu-
tions is evolved in a process that is also akin to a developmental process. Specifically,
a population of partially formed solutions is maintained that could react (hybridize), in
a pre-specified manner, with other partial solutions within the population to form a
more complete (fitter) solution. Several fitness functions ensure that the new solution
inherits the good traits of the mates in the hybridization. For potential future imple-
mentation in vitro, the fitness functions are kept consistent with biomolecular com-
puting by placing the genomes within a simulation of a test tube to allow for random
movement and interaction. Fitness evaluation is thus more attuned to developmental
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and environmental conditions than customary fitness functions solely dependent on
genome composition.

2.1   Virtual Test Tubes

The experimental runs were implemented using an electronic simulation of a test tube,
the virtual test tube Edna of Garzon et al. [5], [7] which simulates BMC protocols in
silico. As compared to a real test tube, Edna provides an environment where DNA
analogs can be manipulated much more efficiently, can be programmed and controlled
much more easily, cost much less, and produce results comparable to real test tubes
[5]. Users simply need to create object-oriented programming classes (in C++) speci-
fying the objects to be used and their interactions. The basic design of the entities that
are put in Edna represents each nucleotide within DNA strands as a single character
and the entire strand of DNA as a string, which may contain single- or double-stranded
sections, bulges, and other secondary structures. An unhybridized strand represents a
strand of DNA from the 5’-end to the 3’-end. In addition to the actual DNA strand
composition, other statistics were also saved such as the vertices making up the strand
and the number of encounters since extension.

The interactions among objects in Edna are chemical reactions through hybridiza-
tions and ligations resulting in longer paths. They can result in one or both reactants
being destroyed and a new entity possibly being created. In our case, we wanted to
allow the entities that matched to hybridize to each other’s ends so that an edge could
hybridize to its adjacent vertex. We called this reaction extension since the path, ver-
tex, or edge represented by one entity is extended by the path, vertex, or edge repre-
sented by the other entity, in analogy with the PCR reaction used with DNA. Edna
simulates the reactions in successive iterations. One iteration moves the objects ran-
domly in the tube’s container (the RAM really) and updates their status according to
the specified interactions based on proximity parameters that can be varied within the
interactions. The hybridization reactions between strands were controlled by the h-
distance [6] of hybridization affinity. Roughly speaking, the h-distance between two
strands provides the number of Watson-Crick mismatching pairs in a best alignment of
the two strands; strands at distance 0 are complementary, while the hybridization af-
finity decreases as the h-distance increases. Extension was allowed if the h-distance
was zero (which would happen any time the origin or destination of a path hybridized
with one of its adjacent edges); or half the length of a single vertex or edge (such as
when any vertex encountered an adjacent edge); or, more generally, when two paths,
both already partially hybridized, encountered each other, and each had an unhy-
bridized segment (of length equal to half the length of a vertex or edge) representing a
matching vertex and edge. These requirements essentially ensured perfect matches
along the sections of the DNA that were supposed to hybridize. Well-chosen DNA
encodings make this perfectly possible in real test tubes [4].

The complexity of the test tube protocols can be measured by counting the number
of iterations necessary to complete the reactions or achieve the desired objective. Al-
ternatively, one can measure the wall clock time. The number of iterations taken be-
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fore a correct path is found has the advantage of being indifferent to the speed of the
machine(s) running the experiment. However, it cannot be a complete picture because
each iteration will last longer as more entities are put in the test tube. For this reason,
processor time (wall clock) was also measured.

2.2   Fitness Functions

Our genetic approach to solving HPP used fitness functions to be enforced online as
the reactions proceeded. The first stage, which was used as a benchmark, included
checks that vertices did not repeat themselves, called promise fitness. This original
stage also enforced a constant number of the initial vertices and edges in the test tube
in order to ensure an adequate supply of vertices and edges to form paths as needed.

Successive refinements improve on the original by using three types of fitnesses:
extension fitness, demand fitness, and repetition fitness, as described below. The goal
in adding these fitnesses was to improve the efficiency of path formation. The purpose
of the fitnesses implemented here was to bring down the number of iterations it took to
find a solution since Edna’s speed, although parallel, decreases with more DNA. To-
ward this goal, we aimed at increasing the opportunity for an object to encounter an-
other object that is likely to lead to a correct path. This entailed increasing the quantity
of entities that seemed to lead to a good path (were more fit) and decreasing the con-
centration of those entities that were less fit. By removing the unlikely paths, we
moved to improve the processor time by lowering the overall concentration in the test
tube. At this point, the only method to regulate which of its adjacent neighbors an
entity encounters is by adjusting the concentration and hence adjusting the probability
that its neighbors are of a particular type.

Promise Fitness. As part of the initial design, we limited the type of extensions that
were allowed to occur beyond the typical requirement of having matching nucleotides
and an h-distance as described above. Any two entities that encountered each other
could only hybridize if they did not contain any repeated vertices. It was checked
during the encounter by comparing a list of vertices that were represented by each
strand of DNA. A method similar to this was proposed in [2] to work in vitro. As a
consequence, much of the final screening otherwise needed to find the correct path
was eliminated. Searching for a path can stop once one is found that contains as many
vertices as are in the graph. Since all of the vertices are guaranteed to be unique, this
path is guaranteed to pass through all of the vertices in the graph. Because the origin
and destination are encoded as half the length of any other vertex, the final path’s
strand can only have them on the two opposite ends and hence the path travels from
the origin to the destination.
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Constant Concentration Enhancement. The initial design also kept the concen-
tration of the initial vertices and edges constant. Simply put, whenever vertices and
edges encountered each other and were extended, neither of the entities was removed
although the new entity was still put into the test tube. It is as if the two original
entities were copied before they hybridized and all three were returned to the mixture.
The same mechanism was used when the encountering objects were not single vertices
or edges but instead were paths. This, however, did not guarantee that the
concentration of any type of path remained constant since new paths could still be
created. The motivation behind this enhancement was to allow all possible paths to be
created without worrying about running out of some critical vertex or edge. It also
removed some of the complications about different initial concentrations of certain
vertices or edges and what paths may be more likely to be formed. However, this
fitness, while desirable and enforceable in silico (although not easily in vitro just yet)
creates a huge number of molecules that made the simulation slow and inefficient.

Extension Fitness. The most obvious paths to be removed are lazy paths that are not
being extended. These paths could be stuck in dead-ends where no extension to a
Hamiltonian path is possible. To make finding them easier, all paths were allowed to
have the same, limited number of encounters without being extended (an initial
lifespan) which, when met, would result in their being removed from the tube. If,
however, a path was extended before meeting its lifespan then the lifespan of both
reacting objects was increased by 50%. The new entity created during an extension
received the larger lifespan of its two parents.

Demand Fitness. The concentration of vertices and edges in the tube can be tweaked
based on the demand for each entity to participate in reactions. The edges that are used
most often (e.g., bridge edges) have a high probability of being in a correct
Hamiltonian path since they are likely to be a single or critical connection between
sections of the graph. Hence we increase the concentration of edges that are used the
most often. Since all vertices must be in a correct solution, those vertices that are not
extended often have a disadvantage in that they are less likely to be put into the final
solution. In order to remedy this, vertices that are not used often have their
concentration increased. The number of encounters and the number of extensions for
each entity was stored so a ratio of extensions to encounters was used to implement
demand fitness. To prevent the population of vertices and edges from getting out of
control, we set a maximum number of any individual vertex or edge to eight unless
otherwise noted.

Repetition Fitness. To prevent the tube from getting too full with identical strands,
repetition fitness was implemented. It filtered out low performing entities that were
repeated often throughout the tube. Whenever an entity encountered another entity, the
program checked to see if they encoded the same information. If they did, then they
did not extend, and they increased their count of encounters with the same path. Once
a path encountered a duplicate of itself too many times, it was removed if it was a low
enough performer in terms of its ratio of extensions to encounters.
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2.3   Test Graphs and Experimental Conditions

Graphs for the experiments were made using Model A of random graphs [12]. Given a
number of vertices, an edge existed between two vertices with probability given by a
parameter p= (0.2, 0.4, or 0.6) of including an edge (more precisely, an arc) from the
set of all possibilities. For positive instances, one witness Hamiltonian path was placed
randomly connecting source to destination. For negative instances, the vertices were
divided into two random sets, one containing the origin and one containing the desti-
nation; no path was allowed to connect the origin set to the set containing the destina-
tion, although the reverse was allowed so that the graph may be connected.

The input to Edna was a set of non-crosshybridizing strands of size 64 consisting of
20-oligomers designed by a genetic algorithm using the h-distance as fitness criterion.
One copy of each vertex and edge was placed initially in the tube. The quality of the
encoding set is such that even under a mildly stringent hybridization criterion, two
sticky ends will not hybridize unless they’re perfect Watson-Crick complements. In
the first set of experiments, the retrieval time was measured in a variety of conditions
including variable library concentration, variable probe concentrations, and joint vari-
able concentration. At first, we permitted only paths that were promising to become
Hamiltonian. Later, other fitness constraints were added to make the path assembly
process smarter as discussed below with the results.

Each experiment was broken down into many different runs of the application all
with related configurations. All of the experiments went through several repetitions
where one or two parameters were slightly changed so that we could evaluate the
differences over these parameters (number of vertices and edge density), although we
sometimes changed other parameters such as maximum concentration allowed, maxi-
mum number of repeated paths, or tube size. Unless otherwise noted, all repetitions
were run 30 times with the same parameters, although a different randomly generated
graph was used for each run. We report below the averages of the various performance
measures. A run was considered unsuccessful if it went through 3000 iterations with-
out finding a correct solution, in which case the run was not included within the aver-
ages. We began with the initial implementation as discussed above and added each
fitness so that each could be studied without the other fitnesses interfering. Finally we
investigated the scalability of our algorithms by adding a population control parameter
and running the program on graphs with more vertices.

3   Analysis of Results

The initial implementation provided us with a benchmark from which to judge the
fitness efficiency. In terms of iterations (Fig. 1, left) and processor time (Fig. 1, right),
the results of this first experiment are not at all surprising. Both measures increase as
the number of vertices increases. There is also a noticeable trend where the 40% edge
densities take the most time. Edge density of 20% is faster because the graph contains
fewer possible paths to search through whereas 60% edge density shows a decrease in
time of search because the additional edges provide significantly more correct solu-
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tions. It should be noted that altogether there were only two unsuccessful attempts,
both with 9 vertices, one at 20% edge density and the other at 40% edge density. This
places the probability of success with these randomized graphs above 99%.

Fig. 1. Successful completion time for the baseline runs (only unique vertices and constant
concentration restrictions in force) in number of iterations (left) and processor time (right)

The first comparison made was with extension fitness. The test was done with the
initial lifespan set to 150 and the maximum lifespan also set to 150. As seen in Fig. 2,
the result cut the number of iterations 54% for 514 fewer iterations on average.

Fig. 2. Successful completion times with extension fitness

From what data is available at this time, demand fitness did not show as impressive an
improvement as extension fitness although it still seemed to help. The greatest gain
from this fitness is expected to be for graphs with larger numbers of vertices where
small changes in the number of vertices and edges will have more time to have a large
effect. The number of iterations recorded, on average, can be seen in Fig. 3. The
minimum ratio of extensions to encounters before an edge was copied, the edge ratio,
was set to .17. The maximum ratio of extensions to encounters below which a vertex
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was copied, the vertex ratio, was set to .07. Although it was not measured, the proces-
sor time for this fitness seemed to be considerably greater then that of the other fit-
nesses.

Fig. 3. Successful completion times with demand fitness

The last fitness to be implemented, repetition fitness, provided a 49% decrease in
iterations resulting in 465 less iterations on average (Fig. 4). The effect seems to be-
come especially pronounced as the number of vertices increases.

Fig. 4. Successful completion times with the addition of repetition fitness

Finally, we combined all of the fitnesses together. The results can be seen in Fig. 5 in
terms of iterations (left) and in terms of processor time (right). Note that the scale for
both graphs changed from the comparable ones above. We also increased the radius of
each entity from one to two. The initial lifespan of entities was 140, and it was al-
lowed to reach a maximum lifespan of 180. The edge ratio was set to .16, and the
vertex ratio was set to .07. For demand fitness, the number of paths allowed was 20,
and the removal ratio was .04. All of the fitnesses running together resulted in de-
creasing the number of iterations by 93% for 880 iterations less, on average. The proc-
essor time was cut by 69% saving, on average, 219.90 seconds per run.
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Fig. 5. Successful completion time with all fitnesses running in terms of number of iterations
(left) and running time (right)

An important objective of these experiments is to explore the limits of Adleman’s
approach, at least in silico. What is the largest problem that could be solved? In order
to allow the program to run on graphs with large numbers of vertices, we put an upper
limit on the number of entities present in the tube at any time. Each entity, of course,
takes up a certain amount of memory and processing time so this limitation would
help keep the program’s memory usage in check. Unfortunately, when the limit on the
number of entities is reached, the fitnesses, if they are configured with reasonable
settings, will not remove very many paths during each iteration meaning that many
new paths cannot be added. The dark red line in Fig. 6 shows the results; as the num-
ber of entities in the tube reaches the maximum, only a small number of entities are
removed, thus not allowing room for many new entities to be created and preventing
new, possibly good paths, from forming.

It is necessary to not only limit the population but also to control it. The desired ef-
fect would be for the fitnesses to be aggressive as the entity count nears the maximum
and reasonable as it falls back down to some minimum. Additionally it would be ad-
vantageous for the more aggressive settings to be applied to shorter paths and not
longer ones since the shorter paths can be remade much faster then the longer ones.
Longer paths have more “memory” of what may constitute a good solution. In order to
achieve this, once the maximum number of vertices was reached a population control
parameter was multiplied by the values of the extension and repetition fitnesses. The
population control parameter is made up of two parts: the vertex effect, used on paths
with less vertices so that they are more likely to be effected by the population control
parameter, and the entities effect, used to change the population control parameter as
the number of entities in the tube changes. The vertex effect is calculated by:

���� ���number of vertices in path / largest number of vertices in any path) . (1)

��	
��
�� ����	�������������
���������������	�����

(max entities – actual entities in the tube) / (max entities – min entities) . (2)

The population control parameter is then calculated using the vertex effect and entities
effect with:
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Entities Effect + ( 1 – Entities Effect ) * Vertex Effect . (3)

����������������� 	������������������
� �� ���� !��"�����#����	��� ��� ��!���!
and minimum vertices of 6000, the dark blue line (population control parameter) in
Fig. 6 shows the number of entities added over time. In order to show that the popula-
tion control parameter also has the effect of improving the quality of the search, Fig. 6
also shows the length of the longest path, in terms of number of vertices times 100, for
both the use of just a simple maximum (in light red) and when using the population
control parameter (in light blue).
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Fig. 6. Comparison of use of a simple maximum versus a population control parameter in terms
of both the number of entities added over time and the length of the longest path

Under these conditions, random graphs under 10 vertices can be run with high reli-
ability on a single processor in a matter of hours. The nature of the approach in this
paper is instantly scalable to a cluster of processors. Experiments under way may test
whether running on a cluster of p processors, Edna is really able to handle random
graphs of about 10*p vertices, the theoretical maximum.

4   Summary and Conclusions

The results of this paper provide a preliminary estimation of the improved effective-
ness and reliability of evolutionary computations in vitro that DNA-like genomic
representations and environmentally dependent online fitness functions may bring to
evolutionary computation. DNA-like computation brings in advantages that biological
molecules (DNA, RNA and the like) have gained in the course of millions of years of
evolution [11], [7]. First, their operation is inherently parallel and distributable to any
number of processors, with the consequent computational advantages. Further, their
computational mode is asynchronous and includes massive communications over
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noisy media, load balancing, and decentralized control. Second, it is equally clear that
the savings in cost and perhaps even time, at least in the range of feasibility of small
clusters of conventional sequential computers, is enormous. The equivalent biochemi-
cal protocols in silico can solve the same problems with a few hundred virtual mole-
cules while requiring trillions of molecules in wet test tubes. Virtual DNA thus inher-
its the customary efficiency, reliability, and control now standard in electronic com-
puting, hitherto only dreamed of in wet tube computations.

On the other hand, it is also interesting to contemplate the potential to scale these
algorithms up to very large graphs when conducting these experiments, either in a real
or in virtual test tubes. Biomolecules seem unbeatable by electronics in their ability to
pack enormous amounts of information in tiny regions of space and to perform their
computations with very high thermodynamical efficiency [13]. This paper also sug-
gests that this efficiency can be brought to evolutionary algorithms in silico as well
using the DNA-inspired architecture Edna used herein.
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