
A Hybrid Immune Algorithm with Information
Gain for the Graph Coloring Problem

Vincenzo Cutello, Giuseppe Nicosia, and Mario Pavone

University of Catania,
Department of Mathematics and Computer Science

V.le A. Doria 6, 95125 Catania, Italy
{cutello,nicosia,mpavone}@dmi.unict.it

Abstract. We present a new Immune Algorithm that incorporates a
simple local search procedure to improve the overall performances to
tackle the graph coloring problem instances. We characterize the algo-
rithm and set its parameters in terms of Information Gain. Experiments
will show that the IA we propose is very competitive with the best
evolutionary algorithms.

Keywords: Immune Algorithm, Information Gain, Graph coloring prob-
lem, Combinatorial optimization.

1 Introduction

In the last five years we have witnessed an increasing number of algorithms,
models and results in the field of Artificial Immune Systems [1,2]. Natural Im-
mune System provide an excellent example of bottom up intelligent strategy, in
which adaptation operates at the local level of cells and molecules, and useful
behavior emerges at the global level, the immune humoral response. From an
information processing point of view [3] the Immune System (IS) can be seen
as a problem learning and solving system. The antigen (Ag) is the problem to
solve, the antibody (Ab) is the generated solution. At the beginning of the pri-
mary response the antigen-problem is recognized by poor candidate solution. At
the end of the primary response the antigen-problem is defeated-solved by good
candidate solutions. Consequently the primary response corresponds to a train-
ing phase while the secondary response is the testing phase where we will try to
solve problems similar to the original presented in the primary response [4].

Recent studies show that when one faces the Graph Coloring Problem (GCP)
with evolutionary algorithms (EAs), the best results are often obtained by hybrid
EAs with local search and specialized crossover [5]. In particular, the random
crossover operator used in a standard genetic algorithm performs poorly for
combinatorial optimization problem and, in general, the crossover operator must
be designed carefully to identify important properties, building blocks, which
must be transmitted from parents population to offspring population. Hence the
design of a good crossover operator is crucial for the overall performance of the

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2723, pp. 171–182, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Ø©M) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

172 V. Cutello, G. Nicosia, and M. Pavone

EAs. The drawback is that is might happen to recombine good individuals from
different regions of the search space, having different symmetries, producing poor
offspring [6]. For this reason, we use an Immunological Algorithm (IA) to tackle
the GCP. IAs do not have a crossover operator, and the crucial task of designing
an appropriate crossover operator is avoided at once. The IA we will propose
makes use of a particular mutation operator and a local search strategy without
having to incorporate specific domain knowledge.

For sake of clarity, we recall some basic definitions. Given an undirected graph
G = (V, E) with vertex set V, edge set E and a positive integer K ≤| V |, the
Graph Coloring Problem asks whether G is K–colorable, i.e. whether there exists
a function f : V → {1, 2, ..., K} such that f(u) �= f(v) whenever {u, v} ∈ E. The
GCP is a well-known NP–complete problem [7]. Exact solutions can be found
for simple or medium instances [8,9]. Coloring problems are very closely related
with cliques [10] (complete subgraphs). The size of the maximum clique is a
lower bound on the minimum number of colors needed to color a graph, χ(G).
Thus, if ω(G) is the size of the maximum clique: χ(G) ≥ ω(G).

2 Immune Algorithms

We work with a simplified model of the natural immune system. We will see
that the IA presented in this work is very similar to De Castro, Von Zuben’s
algorithm, CLONALG [11,12] and to Nicosia et al. immune algorithm [4,13].
We consider only two entities: Ag and B cells. Ag is the problem and the B
cell receptor is the candidate solution. Formally, Ag is a set of variables that
models the problem; and, B cells are defined as strings of integers of finite length
� = | V |. The input is the antigen–problem, the output is basically the
candidate solutions–B cells that solve–recognize the Ag.

By P (t) we will denote a population of d individuals of length �, which repre-
sent a subset of the space of feasible solutions of length �, S�, obtained at time
t. The initial population of B cells, i.e. the initial set P (0), is created randomly.
After initialization, there are three different phases.

In the Interaction phase the population P (t) is evaluated. f(x) = m is the
fitness function value of B cell receptor x. Hence for the GCP, the fitness function
f(x) = m indicates that there exists a m–coloring for G, that is, a partition of
vertices V = S1 ∪ S2 ∪ . . . ∪ Sm such that each Si ⊆ V is a subset of vertices
which are pairwise not adjacent (i.e. each Si is an independent set).

The Cloning expansion phase is composed of two steps: cloning and hyper-
mutation. The cloning expansion events are modeled by cloning potential V and
mutation number M, which depend upon f. If we exclude all the adaptive mech-
anisms [14] in EA’s (e.g., adaptive mutation and adaptive crossover rates which
are related to the fitness function values), the immune operators, contrary to
standard evolutionary operators, depend upon the fitness function values[15].
Cloning potential is a truncated exponential: V (f(x)) = e−k(�−f(x)), where the
parameter k determines the sharpness of the potential. The cloning operator
generates the population P clo. The mutation number is a simple straight line:

A Hybrid Immune Algorithm with Information Gain 173

M(f(x)) = 1 − (�/f(x)) , and this function indicates the number of swaps be-
tween vertices in x. The mutation operator chooses randomly M(f(x)) times
two vertices i and j in x and then swaps them. The hypermutation function from
population P clo generates the population Phyp. The cell receptor mutation mech-
anism is modeled by the mutation number M, which is inversely proportional to
the fitness function value. The cloning expansion phase triggers the growth of a
new population of high–value B cells centered around a higher fitness function
value.

In the Aging phase, after the evaluation of Phyp at time t, the algorithm elim-
inates old B cells. Such an elimination process is stochastic, and, specifically, the
probability to remove a B cell is governed by an exponential negative law with
parameter τB , (expected mean life for the B cells): Pdie(τB) = (1−e(− ln(2)/τB)).
Finally, the new population P (t+1) of d elements is produced. We can use two
kinds of Aging phases: pure aging phase and elitist aging phase. In the elitist
aging, when a new population for the next generation is generated, we do not
allow the elimination of B cells with the best fitness function. While in the pure
aging the best B cells can be eliminate as well. We observe that the exponen-
tial rate of aging, Pdie(τB), and the cloning potential, V (f(x)), are inspired by
biological processes [16].

Sometimes it might be useful to apply a birth phase to increase the population
diversity. This extra phase must be combined with an aging phase with a longer
expected mean life τB . For the GCP we did not use the birth phase because it
produced a higher number of fitness function evaluation to solutions.

Assignment colors. To assign colors, the vertices of the solution represented
by a B cell are examined and assigned colors, following a deterministic scheme
based on the order in which the graph vertices are visited. In details, vertices
are examined according to the order given by the B cell and assigned the first
color not assigned to adjacent vertices. This method is very simple. In literature
there are more complicated and effective methods [5,6,10]. We do not use those
methods because we want investigate the learning and solving capability of our
IA. In fact, the IA described does not use specific domain knowledge and does
not make use of problem-dependent local searches. Thus, our IA can be improved
simply including ad hoc local search and immunological operators using specific
domain knowledge.

2.1 Termination Condition by Information Gain

To analyze the learning process, we use the notion of Kullback information, also
called information gain [17], an entropy function associated to the quantity of
information the system discovers during the learning phase. To this end, we
define the B cells distribution function f

(t)
m as the ratio between the number,

Bt
m, of B cells at time t with fitness function value m, (the distance m from the

antigen–problem) and the total number of B cells:

f (t)
m =

Bt
m

∑h
m=0 Bt

m

=
Bt

m

d
. (1)

174 V. Cutello, G. Nicosia, and M. Pavone

It follows that the information gain can be defined as:

K(t, t0) =
∑

m

f (t)
m log(f (t)

m /f (t0)
m). (2)

The gain is the amount of information the system has already learned from the
given Ag–problem with respect to initial distribution function (the randomly
generated initial population P (t0=0)). Once the learning process starts, the in-
formation gain increases monotonically until it reaches a final steady state (see
figure 1). This is consistent with the idea of a maximum information-gain prin-
ciple of the form dK

dt ≥ 0. Since dK
dt = 0 when the learning process ends, we use

it as a termination condition for the Immune Algorithms. We will see in section
3 that the information gain is a kind of entropy function useful to understand
the IA’s behavior and to set the IA’s parameters.

0

5

10

15

20

25

5 10 15 20 25 30 35 40 45 50

In
fo

rm
at

io
n

G
ai

n

Generations

K(t0,t)

7

7.5

8

8.5

9

9.5

5 101520253035404550

Clones’ avg fit.
Pop’s avg fit.

Best fit.

Fig. 1. Information Gain versus generations for the GCP instance queen6 6.

In figure 1 we show the information gain when the IA faces the GCP instance
queen6 6 with vertex set | V |= 36, edge set | E |= 290 and optimal coloring
7. In particular, in the inset plot one can see the corresponding average fitness
of population Phyp, the average fitness of population P (t+1) and the best fitness
value. All the values are averaged on 100 independent runs. Finally, we note that
our experimental protocol can have other termination criteria, such as maximum
number of evaluations or generations.

2.2 Local Search

Local search algorithms for combinatorial optimization problems generally rely
on a definition of neighborhood. In our case, neighbors are generated by swapping
vertex values. Every time a proposed swap reduces the number of used colors,
it is accepted and we continue with the sequence of swaps, until we explore the
neighborhood of all vertices. Swapping all pair of vertices is time consuming,
so we use a reduced neighborhood: all n =| V | vertices are tested for a swap,
but only with the closer ones. We define a neighborhood with radius R. Hence

A Hybrid Immune Algorithm with Information Gain 175

we swap all vertices only with their R nearest neighbors, to left and to right.
A possible value for radius R is 5. Given the large size of neighborhood and n,
we found it convenient to apply the previous local search procedure only on the
population’s best B cell. We note that if R = 0 the local search procedure is
not executed. This case is used for simple GCP instances, to avoid unnecessary
fitness function evaluations. The local search used is not critical to the searching
process. Once a maximum number of generations has been fixed, the local search
procedure increases only the success rate on a certain number of independent
runs and, as drawback, it increases the average number of evaluations to solu-
tions. However, if we omit it, the IA needs more generations, hence more fitness
function evaluations, to obtain the same results of IA using local search.

Table 1. Pseudo–code of Immune Algorithm

Immune Algorithm(d, dup, τB , R)
1. t := 0;
2. Initialize P (0) = {x1, x2, ..., xd} ∈ S�

3. while (dK
dt

�= 0) do
4. Interact(Ag, P (t)); /* Interaction phase */
5. P clo := Cloning (P (t), dup); /* First step Cloning expansion */
6. P hyp := Hypermutation (P clo); /* Second step Cloning expansion */
7. Evaluate (P hyp); /* Compute P hyp fitness function */
8. P ls:=Local Search(P hyp, R); /* LS procedure */
9. P (t+1):=aging(P hyp � P (t) � P ls, τB); /* Aging Phase */
10. K(t, t0):=InformationGain(); /* Compute K(t, t0) */
11. t := t + 1;
12. end while

In figure 2 we show the fitness function value dynamics. In both plots, we show
the dynamics of average fitness of population Phyp, P (t+1), and the best fit-
ness value of population P (t+1). Note that the average fitness of Phyp shows
the diversity in the current population, when this value is equal to average
fitness of population P (t+1), we are close a premature convergence or in the
best case we are reaching a sub–optimal or optimal solution. It is possible
to use the difference between Phyp average fitness and P (t+1) average fitness,
| avgfitness(Phyp)−avgfitness(P (t+1) |= Popdiv as a standard to measure popu-
lation diversity. When Popdiv rapidly decreases, this is considered as the primary
reason for premature convergence. In the left plot we show the IA dynamic when
we face the DSCJ250.5.col GCP instance (| V |= 250 and | E |= 15, 668).
We execute the algorithm with population size d = 500, duplication parameter
dup = 5, expected mean life τB = 10.0 and neighborhood’s radius R = 5. For
this instance we use pure aging and obtain the optimal coloring. In the right plot

176 V. Cutello, G. Nicosia, and M. Pavone

26

28

30

32

34

36

38

40

42

44

0 200 400 600 800 1000

F
itn

es
s

va
lu

es

Generations

Graph coloring instance: DSJC250.5.col

Clones’ average fitness
Population’s average fitness

Best fitness

20

25

30

35

40

45

50

0 100 200 300 400 500 600

F
itn

es
s

va
lu

es

Generations

Graph coloring instance: flat_300_20_0

Clones’ average fitness
Population average fitness

Best fitness

Fig. 2. Average fitness of population P hyp, average fitness of population P (t+1), and
best fitness value vs generations. Left plot: IA with pure aging phase. Right plot: IA
with elitist aging

we tackle the flat 300 20 GCP instance (| V |= 300 and | E |= 21, 375), with
the following IA’s parameters: d = 1000, dup = 10, τB = 10.0 and R = 5. For
this instance the optimal coloring is obtained using elitist aging. In general, with
elitist aging the convergence is faster, even though it can trap the algorithm
in a local optimum. Although, with pure aging the convergence is slower and
the population diversity is higher, our experimental results indicate that elitist
aging seems to work well. We can define the ratio Sp = 1

dup as the selective
pressure of the algorithm: when dup = 1, obviously we have that Sp = 1 and
the selective pressure is low, while increasing dup we increase the IA’s selective
pressure. Experimental results show that high values of d denote high clones
population average fitness and, in turn, high population diversity but, also, a
high computational effort during the evolution.

3 Parameters Tuning by Information Gain

To understand how to set the IA parameters, we performed some experiments it
with the GCP instance queen6 6. Firstly, we want to set the B cell’s mean life,
τB . We fix the population size d = 100, duplication parameter dup = 2, local
search radius R = 2 and total generations gen = 100. For each experiment we
performed runs = 100 independent runs.

3.1 B Cell’s Mean Life, τB

In figure 3 we can see the best fitness values (left plot) and the Information Gain
(right plot) with respect the following τB values {1.0,5.0,15.0,25.0,1000.0}. When
τB = 1.0 the B cells have a shorter mean life, only one time step, and with this
value the IA performed poorly. With τB = 1.0 the maximum information gain
obtained at generation 100 is about 13. As τB increases, the best fitness values
decreases and the Information Gain increases. The best value for τB is 25.0.
With τB = 1000.0, and in general when τB is greater than a number of fixed

A Hybrid Immune Algorithm with Information Gain 177

7

7.2

7.4

7.6

7.8

8

0 20 40 60 80 100

B
es

t F
itn

es
s

Generations

tauB = 1.0
tauB = 5.0
tauB = 15.0
tauB = 25.0

tauB = 1000.0

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

In
fo

rm
at

io
n

G
ai

n

Generations

tauB = 1.0
tauB = 5.0
tauB = 15.0
tauB = 25.0

tauB = 1000.0

Fig. 3. Best fitness values and Information Gain vs generations.

generations gen, we can consider B cells mean life infinite and obtain a pure
elitist selection scheme. In this special case, the behavior of IA shows slower
convergence in the first 30 generations in both plots. For values of τB greater
than 25.0 we obtain slightly worse results. Moreover, when τB ≤ 10 the success
rate (SR) on 100 independent runs is less than 98 while when τB ≥ 10 the
IA obtains a SR=100 with a lower Average number of Evaluations to Solution
(AES) located when τB = 25.0.

3.2 Duplication Parameter Dup

Now we fix τB = 25.0 and vary dup. In fig.4 (left plot) we note that the IA obtains
quickly more Information Gain at each generation with dup = 10, moreover it
reaches faster the best fitness value with dup = 5. With both values of dup the

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

In
fo

rm
at

io
n

G
ai

n

Generations

dup = 2
dup = 3
dup = 5

dup = 10

7

7.2

7.4

7.6

7.8

8

0 10 20 30 40 50 60

dup = 5
dup = 10

7

7.5

8

8.5

9

9.5

0 5 10 15 20 25 30 35 40 45 50

F
itn

es
s

Generations

Clones’ average fitness, dup = 5
Clones’ average fitness, dup = 10
Pop(t)’s average fitness, dup = 5

Pop(t)’s average fitness, dup = 10

Fig. 4. Left plot, Information Gain and Best fitness value for dup. Right plot, average
fitness of Clones and Pop(t) for dup ∈ {5, 10}.

largest information gain is obtained at generation 43. Moreover, with dup = 10
the best fitness is obtained at generation 22, whereas with dup = 5 at generation
40. One may deduce that dup = 10 is the best value for the cloning of B cells

178 V. Cutello, G. Nicosia, and M. Pavone

since we obtain faster more information gain. This is not always true. Indeed,
if we observe figure 4 (right plot) we can see how the IA with dup = 5 obtains
a larger amount of clones average fitness and hence a greater diversity. This
characteristic can be useful in avoiding premature convergence and in finding
more optimal solutions for a given combinatorial problem.

3.3 Dup and τB

In 3.1 we saw that for dup = 2, the best value of τB is 25.0. Moreover, in 3.2
experimental results show better performance for dup = 5. If we set dup = 5
and vary τB , we obtain the results in fig.5. We can see that for τB = 15 we reach
the maximum Information Gain at generation 40 (left plot) and more diversity
(right plot). Hence, when dup = 2 the best value of τB is 25.0, i.e. on average we
need 25 generations for the B cells to reach a mature state. On the other hand,
when dup = 5 the correct value is 15.0 Thus, increasing dup the average time
for the population of B cells to reach a mature state decreases.

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

In
fo

rm
at

io
n

G
ai

n

Generations

tauB = 15
tauB = 20
tauB = 25
tauB = 50

17
18
19
20
21
22
23
24

20 25 30 35 40 45 50

tauB = 15
tauB = 20
tauB = 25
tauB = 50

7

7.5

8

8.5

9

9.5

0 5 10 15 20 25 30 35 40 45 50

F
itn

es
s

Generations

Clones’ average fitness, tauB = 25
Clones’ average fitness, tauB = 20
Clones’ average fitness, tauB = 15
Pop(t)’s average fitness, tauB = 25
Pop(t)’s average fitness, tauB = 20
Pop(t)’s average fitness, tauB = 15

Fig. 5. Left plot Information Gain for τb ∈ {15, 20, 25, 50}. Right plot average fitness
of population P hyp and population P (t) for τb ∈ {15, 20, 25}

3.4 Neighborhood’s Radius R, d and Dup

Local search is useful for large instances (see table 2). The cost of local search,
though, is high. In figure 6 (left plot) we can see how the AES increases as
the neighborhood radius increases. The plot reports two classes of experiments
performed with 1000 and 10000 independent runs. In figure 6 (right plot) we
show the values of parameters d and dup as functions of the Success Rate (SR).
Each point has been obtained averaging 1000 independent runs. How we can see
there is a certain relation between d and dup in order to reach a SR = 100. For
the queen6 6 instance, for low values for the population we need a high value
of dup to reach SR = 100. For d = 10, dup = 10 is not sufficient to obtain the
maximum SR. On the other hand, as the population number increases, we need
smaller values for dup. Small values of dup are a positive factor.

A Hybrid Immune Algorithm with Information Gain 179

Table 2. Mycielsky and Queen graph instances. We fixed τB = 25.0, and the number
of independent runs 100. OC denotes the Optimal Coloring.

Instance G | V | | E | OC (d,dup,R) Best Found AES

Myciel3 11 20 4 (10,2,0) 4 30
Myciel4 23 71 5 (10,2,0) 5 30
Myciel5 47 236 6 (10,2,0) 6 30
Queen5 5 25 320 5 (10,2,0) 5 30
Queen6 6 36 580 7 (50,5,0) 7 3750
Queen7 7 49 952 7 (60,5,0) 7 11,820
Queen8 8 64 1,456 9 (100,15,0) 9 78,520
Queen8 12 96 2,736 12 (500,30,0) 12 908,000
Queen9 9 81 1,056 10 (500,15,0) 10 445,000
School1 nsh 352 14,612 14 (1000,5,5) 15 2,750,000
School1 385 19,095 9 (1000,10,10) 14 3,350,000

We recall that dup is similar to the temperature in Simulated Annealing [18].
Low values of dup corresponds to a system that cools down slowly and has a
high EAS.

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

1 5 10 15 20 25 30 35

A
E

S

Neighbourhood’s Radius

runs = 1000
runs = 10000

10
20

30
40

50
Population size 1 2 3 4 5 6 7 8 9 10

Dup

10
20
30
40
50
60
70
80
90

100

SR

Fig. 6. Left plot: Average number of Evaluations to Solutions versus neighborhood’s
radius. Right plot: 3D plot of d, dup versus Success Rate (SR).

4 Results

In this section we report our experimental results. We worked with classical
benchmark graph [10]: the Mycielski, Queen, DSJC and Leighton GCP
instances. Results are reported in Tables 2 and 3. In these experiments the IA’s
best found value is always obtained SR = 100. For all the results presented in
this section, we used elitist aging. In tables 4 and 5 we compare our IA with two of
the best evolutionary algorithms, respectively Evolve AO algorithm [19] and the

180 V. Cutello, G. Nicosia, and M. Pavone

Table 3. Experimental results on subset instances of DSJC and Leighton graphs. We
fixed τB = 15.0, and the number of independent runs 10.

Instance G | V | | E | OC (d,dup,R) Best Found AES

DSJC125.1 125 736 5 (1000,5,5) 5 1,308,000
DSJC125.5 125 3,891 12 (1000,5,5) 18 1,620,000
DSJC125.9 125 6,961 30 (1000,5,10) 44 2,400,000
DSJC250.1 250 3,218 8 (400,5,5) 9 1,850,000
DSJC250.5 250 15,668 13 (500,5,5) 28 2,500,000
DSJC250.9 250 27,897 35 (1000,15,10) 74 4,250,000
le450 15a 450 8,168 15 (1000,5,5) 15 5,800,000
le450 15b 450 8,169 15 (1000,5,5) 15 6,010,000
le450 15c 450 16,680 15 (1000,15,10) 15 10,645,000
le450 15d 450 16,750 9 (1000,15,10) 16 12,970,000

HCA algorithm [5]. For all the GCP instances we ran the IA with the following
parameters: d = 1000, dup = 15, R = 30, and τB = 20.0. For these classes of
experiments the goal is to obtain the best possible coloring, no matter the value
of AES. Table 4 shows how the IA outperform the Evolve AO algorithm, while
is similar in results to HCA algorithm and better in SR values (see table 5).

Table 4. IA versus Evolve AO Algorithm. The values are averaged on 5 independent
runs.

Instance G χ(G) Best–Known Evolve AO IA Difference

DSJC125.5 12 12 17.2 18.0 + 0.8
DSJC250.5 13 13 29.1 28.0 -0.9
flat300 20 0 ≤ 20 20 26.0 20.0 -6.0
flat300 26 0 ≤ 26 26 31.0 27.0 -4.0
flat300 28 0 ≤ 28 29 33.0 32.0 -1.0
le450 15a 15 15 15.0 15.0 0
le450 15b 15 15 15.0 15.0 0
le450 15c 15 15 16.0 15.0 -1.0
le450 15d 15 15 19.0 16.0 -3.0
mulsol.i.1 – 49 49.0 49.0 0
school1 nsh ≤ 14 14 14.0 15.0 +1.0

5 Conclusions

We have designed a new IA that incorporates a simple local search procedure
to improve the overall performances to tackle the GCP instances. The IA pre-
sented has only four parameters. To set correctly these parameters we use the
Information Gain function, a particular entropy function useful to understand

A Hybrid Immune Algorithm with Information Gain 181

Table 5. IA versus Hao et al.’s HCA algorithm. The number of independent runs is
10.

Instance G HCA’s Best–Found and (SR) IA’s Best–Found and (SR)

DSJC250.5 28 (90) 28 (100)
flat300 28 0 31 (60) 32 (100)
le450 15c 15 (60) 15 (100)
le450 25c 26 (100) 25 (100)

the IA’s behavior. The Information Gain measures the quantity of information
that the system discovers during the learning process. We choose the parameters
that maximize the information discovered and that increases moderately the in-
formation gain monotonically. To our knowledge, this is the first time that IAs,
and in general the EAs, are characterized in terms of information gain. We define
the average fitness of population Phyp as the diversity in the current population,
when this value is equal to average fitness of population P (t+1), we are close
a premature convergence. Using a simple coloring method we have investigated
the IA’s learning and solving capability. The experimental results show how the
proposed IA is comparable to and, in many GCP instances, outperforms the best
evolutionary algorithms. Finally, the designed IA is directed to solving GCP in-
stances although the solutions’ representation and the variation operators are
applicable more generally, for example Travelling Salesman Problem.

Acknowledgments. The authors wish to thank the anonymous referees for
their excellent revision work. GN wishes to thank the University of Catania
project “Young Researcher” for partial support and is grateful to Prof. A. M.
Anile for his kind encouragement and support.

References

1. Dasgupta, D. (ed.): Artificial Immune Systems and their Applications. Springer-
Verlag, Berlin Heidelberg New York (1999)

2. De Castro L.N., Timmis J.: Artificial Immune Systems: A New Computational
Intelligence Paradigm. Springer-Verlag, UK (2002)

3. Forrest, S., Hofmeyr, S. A.: Immunology as Information Processing. Design Princi-
ples for Immune System & Other Distributed Autonomous Systems. Oxford Univ.
Press, New York (2000)

4. Nicosia, G., Castiglione, F., Motta, S.: Pattern Recognition by primary and sec-
ondary response of an Artificial Immune System. Theory in Biosciences 120 (2001)
93–106

5. Galinier, P., Hao, J.: Hybrid Evolutionary Algorithms for Graph Coloring. Journal
of Combinatorial Optimization Vol. 3 4 (1999) 379–397

6. Marino, A., Damper, R.I.: Breaking the Symmetry of the Graph Colouring Prob-
lem with Genetic Algorithms. Workshop Proc. of the Genetic and Evolutionary
Computation Conference (GECCO’00). Las Vegas, NV: Morgan Kaufmann (2000)

182 V. Cutello, G. Nicosia, and M. Pavone

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory
of NP-completeness. Freeman, New York (1979)

8. Mehrotra, A., Trick, M.A.: A Column Generation Approach for Graph Coloring.
INFORMS J. on Computing 8 (1996) 344–354

9. Caramia, M., Dell’Olmo, P.: Iterative Coloring Extension of a Maximum Clique.
Naval Research Logistics, 48 (2001) 518–550

10. Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring and Satisfiability: Second DI-
MACS Implementation Challenge. American Mathematical Society, Providence,
RI (1996)

11. De Castro, L. N., Von Zuben, F. J.: The Clonal Selection Algorithm with Engineer-
ing Applications. Proceedings of GECCO 2000, Workshop on Artificial Immune
Systems and Their Applications, (2000) 36–37

12. De Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal
selection principle. IEEE Trans. on Evolutionary Computation Vol. 6 3 (2002)
239–251

13. Nicosia, G., Castiglione, F., Motta, S.: Pattern Recognition with a Multi–Agent
model of the Immune System. Int. NAISO Symposium (ENAIS’2001). Dubai,
U.A.E. ICSC Academic Press, (2001) 788–794

14. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Trans. on Evolutionary Computation, Vol. 3 2 (1999) 124–141

15. Leung, K., Duan, Q., Xu, Z., Wong, C.W.: A New Model of Simulated Evolu-
tionary Computation – Convergence Analysis and Specifications. IEEE Trans. on
Evolutionary Computation Vol. 5 1 (2001) 3–16

16. Seiden P.E., Celada F.: A Model for Simulating Cognate Recognition and Response
in the Immune System. J. Theor. Biol. Vol. 158 (1992) 329–357

17. Nicosia, G., Cutello, V.: Multiple Learning using Immune Algorithms. Proceedings
of the 4th International Conference on Recent Advances in Soft Computing, RASC
2002, Nottingham, UK, 12–13 December (2002)

18. Johnson, D.R., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by sim-
ulated annealing: An experimental evaluation; part II, graph coloring and number
partitioning. Operations Research 39 (1991) 378–406

19. Barbosa, V.C., Assis, C.A.G., do Nascimento, J.O.: Two Novel Evolutionary For-
mulations of the Graph Coloring Problem. Journal of Combinatorial Optimization
(to appear)

	Introduction
	Immune Algorithms
	Termination Condition by Information Gain
	Local Search

	Parameters Tuning by Information Gain
	B Cell's Mean Life, $tau _B$
	Duplication Parameter Dup
	Dup and $tau _B$
	Neighborhood's Radius R, d and Dup

	Results
	Conclusions

