

E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2723, pp. 134–139, 2003.
© Springer-Verlag Berlin Heidelberg 2003

A New Approach to Improve Particle Swarm
Optimization

Liping Zhang, Huanjun Yu, and Shangxu Hu

College of Material and Chemical Engineering, Zhejiang University,
Hangzhou 310027, P.R. China

zhanglp@infotech.zju.edu.cn
yuhj@zjuem.zju.edu.cn
sxhu@mail.hz.zj.cn

Abstract. Particle swarm optimization (PSO) is a new evolutionary computa-
tion technique. Although PSO algorithm possesses many attractive properties,
the methods of selecting inertia weight need to be further investigated. Under
this consideration, the inertia weight employing random number uniformly dis-
tributed in [0,1] was introduced to improve the performance of PSO algorithm
in this work. Three benchmark functions were used to test the new method. The
results were presented to show that the new method is effective.

1 Introduction

Particle swarm optimization (PSO) is an evolutionary computation technique intro-
duced by Kennedy and Eberhart in 1995[1-3]. The underlying motivation for the de-
velopment of PSO algorithm was social behavior of animals such as bird flocking,
fish schooling, and swarm [4]. Initial simulations were modified to incorporate near-
est-neighbor velocity matching, eliminate ancillary variable, and acceleration in
movement. PSO is similar to genetic algorithm (GA) in that the system is initialized
with a population of random solutions. However, in PSO, each individual of the
population, called particle, has an adaptable velocity, according to which it moves
over the search space. Each particle keeps track of its coordinate in hyperspace, which
are associated with the solution (fitness) it has achieved so far. This value is called
pbest. Another “best” value is called gbest that is obtained so far by any particle in
the population and stored the overall best value.
Suppose that the search space is D-dimensional, then the i-th particle of the swarm
can be represented by a D-dimensional vector, Xi=(xi1, xi2,...,xiD). The velocity of this
particle, can be represented by another D-dimensional vector Vi=(vi1, vi2,...,viD). The
best previously visited position of the i-th particle is denoted as Pi=(pi1, pi2,...,piD). De-
fining g as the index of the best particle in the swarm, then the velocity of particle and
its new position will be assigned according to the following two equations:

)()(2211 idgdidididid xprcxprcvv −+−+= (1)

mailto:zhanglp@infotech.zju.edu.cn
mailto:yuhj@zjuem.zju.edu.cn
mailto:sxhu@mail.hz.zj.cn

A New Approach to Improve Particle Swarm Optimization 135

ididid vxx += (2)

where c1 and c2 are positive constant, called acceleration, and r1 and r2 are two random
numbers, uniformly distributed in [0,1].
 Velocities of particles on each dimension are clamped by a maximum velocity Vmax.
If the sum of accelerations would cause the velocity on that dimension to exceed Vmax,
which is a parameter specified by the user, then the velocity on that dimension is lim-
ited to Vmax. Vmax influences PSO performance sensitively. A larger Vmax facilitates
global exploration, while a smaller Vmax encourages local exploitation [5].
 The PSO algorithm is still far from mature, many authors have modified the origi-
nal version. Firstly, in order to better control exploration, an inertia weight in the PSO
algorithm was first introduced in 1998 [6]. Recently, for insuring convergence, Clerc
proposed the use of a constriction factor in the PSO [7]. Equation (3), (4), and (5) de-
scribes the modified algorithm.

))()((2211 idgdidididid xprcxprcwvv −+−+= χ (3)

ididid vxx += (4)

ϕϕϕ
χ

42

2
2 −−−

= (5)

where w is the inertia weight, and χ is a constriction factor, and 4,21 >+= ϕϕ cc .

 The use of the inertia weight for controlling the velocity has resulted in high effi-
ciency for PSO. Suitable selection of the inertia weight provides a balance between
global and local explorations. The performance of PSO using an inertia weight was
compared with performance using a constriction factor [8], and Eberhart et al. con-
cluded that best approach is to use the constriction factor while limiting the maximum
velocity Vmax to the dynamic range of the variable Xmax on each dimension. For exam-
ple, Vmax= Xmax.
 In this work, we proposed a method using random number inertia weight called
RNM to improve the performance of PSO.

2 The Ways to Determine the Inertia Weight

As mentioned precedingly, the inertia weight was found to be an important parameter
to PSO algorithms. However, the determination of inertia weight is still an unsolved
problem. Shi et al. provided methods to determine the inertia weight. In their earlier
work, inertia weight was set as constant [6]. By setting maximum velocity to be 2.0, it
was found that PSO with an inertia weight in the range [0.9, 1.2] on average has a
better performance. In a later work, inertia weight was set to be continuously de-
creased linearly during run [9]. Still later, a time decreasing inertia weight from 0.9 to
0.4 was found to be better than a fixed inertia weight. The linearly decreasing inertia

136 L. Zhang, H. Yu, and S. Hu

weight (LDW) was used by many authors so far [10-12]. Recently another approach
was suggested to use a fuzzy variable to adapt the inertia weight [12,13]. The results
reported in their papers showed that the performance of PSO can be significantly im-
proved. However, it is relatively complicated.
 The right side of equation (1) consists of three parts: the first part is the previous
velocity of the particle; the second and third parts are contributing to the change of the
velocity of a particle. Shi and Eberhart concluded that the role of the inertia weight w
is considered to be crucial for the convergence of PSO [6]. A larger inertia weight fa-
cilitates global exploration (searching new areas), while a smaller one tends to facili-
tate local exploitation. A general rule of thumb suggests that it is better to initially set
the inertia weight to a larger value, and gradually decrease it. Unfortunately, the phe-
nomenon that the global search ability is decreasing when inertia weight is decreasing
to zero indicates that inertia weight may exit some unclear mechanism [14]. However,
the deceased inertia weight is subject to trap the algorithms into the local optima and
slows the convergence speed when it is near a minimum. Under this consideration,
many cases were tested, and we finally set the inertia weight as random numbers uni-
formly distributed in [0,1], which is more capable of escaping from the local optima
than LDW, therefore better results were obtained. Our motivation is that local ex-
ploitation combining with global exploration can be processing parallel. The new ver-
sion is:

)()(22110 idgdidididid xprcxprcvrv −+−+= (6)

where r0 is a random number uniformly distributed in [0,1], and the other parameters
are same as before.
 Our method can overcome two drawbacks of LDW. For one thing, decreasing the
dependence of inertial weight on the maximum iteration that is difficultly predicted
before experiments. Another is avoiding the lacks of local search ability at early of
run and global search ability at the end of run.

3 Experimental Studies

In order to test the influence of inertia weight on the PSO performance, three non-
linear benchmark functions reported in literature [15,16] were used since they are well
known problems. The first function is the Rosenbrock function:

∑
=

+ −+−=
n

i
iii xxxxf

1

222
11))1()(100()((7)

where x=[x1, x2,...,xn] is an n-dimensional real-valued vector.
 The second is the generalized Rastrigrin function:

∑
=

+−=
n

i
ii xxxf

1

2
2)10)2cos(10()(π (8)

 The third is the generalized Griewank function:

A New Approach to Improve Particle Swarm Optimization 137

∑ ∏
= =

+−=
n

i

n

i

i
i

i

x
xxf

1 1

2
3 1)cos(

4000

1
)((9)

Three different amounts dimensions were tested: 10, 20 and 30. The maximum num-
bers of generations were set as 1000, 1500 and 2000 corresponding to the dimensions
10, 20 and 30, respectively. For investigation the scalability of PSO algorithm, three
population sizes 20, 40 and 80 were used for each function with respect to different
dimensions. Acceleration constants took the values c1=c2=2. Constriction factor χ
=1. For the purpose of comparison, all the Vmax and Xmax were assigned by same pa-
rameter settings as in literature [13] and listed in table 1. 500 trial runs were taken for
each case.

Table 1. X
max

 and V
max

 values used for tests

Function Xmax Vmax

f1 100 100
f2 10 10
f3 600 600

4 Results and Discussions

Table 2, 3 and 4 listed the mean best fitness value of the best particle found for the
Rosenbrock, Rastrigrin, and Griewank function with two inertia weight selecting
methods, LDW and RNW respectively.

Table 2. Mean best fitness value for the Rosenbrock function

By comparing the results of two methods, it is clearly to see that the performance of
PSO can be improved with random number inertia weight for Rastrigrin and Ro-

Population
Size

No. of
Dimensions

No. of
Generations

LDW
Method

RNW
Method

10 1000 106.63370 65.28474
20 1500 180.17030 147.5237220
30 2000 458.28375 409.23443
10 1000 61.36835 41.32016
20 1500 171.98795 95.4842240
30 2000 289.19094 253.81490
10 1000 47.91896 20.77741
20 1500 104.10301 82.7546780
30 2000 176.87379 156.00258

138 L. Zhang, H. Yu, and S. Hu

senbrock function, while for the Griewank function, results of two methods are com-
parable.

Table 3. Mean best fitness value for the Rastrigrin function

Population
Size

No. of
Dimensions

No. of
Generations

LDW
Method

RNW
Method

10 1000 5.25230 5.04258
20 1500 22.92156 20.3110920
30 2000 49.21827 42.58132
10 1000 3.56574 3.22549
20 1500 17.74121 13.8480740
30 2000 38.06483 32.15635
10 1000 2.37332 1.85928
20 1500 13.11258 9.9500680
30 2000 30.19545 25.44122

Table 4. Mean best fitness value for the Griewank function

Population
Size

No. of
Dimensions

No. of
Generations

LDW
Method

RNW
Method

10 1000 0.09620 0.09926
20 1500 0.03000 0.0367820
30 2000 0.01674 0.02007
10 1000 0.08696 0.07937
20 1500 0.03418 0.0301440
30 2000 0.01681 0.01743
10 1000 0.07154 0.06835
20 1500 0.02834 0.0287480
30 2000 0.01593 0.01718

5 Conclusions

In this work, the performance of the PSO algorithm with random number inertia
weight has been extensively investigated by experimental studies of three non-linear
functions. Because local exploitation combining with global exploration can be proc-
essing parallel, random number inertia weight (RNW) method can obtain better re-
sults than linearly decreasing inertia weight (LDW) method. Lacks of local search
ability at early stage of run and global search ability at the end of run using linearly
decreasing inertia weight method were overcomed. However, only three benchmark
problems had been tested. To fully claim the benefits of the random number inertia
weight to PSO algorithm, more problems need to be tested.

A New Approach to Improve Particle Swarm Optimization 139

References

1. J. Kennedy and R. C. Eberhart. Particle swarm optimization. Proc. IEEE Int. Conf. on
Neural Networks (1995) 1942–1948

2. R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. Proceedings
of the Sixth International Symposium on Micro Machine and Human Science. Nagoya,
Japan (1995) 39–43

3. R. C. Eberhart, Simpson, P. K., and Dobbins, R. W. Computational Intelligence PC Tools.
Boston, MA: Academic Press Professional (1996)

4. M. M. Millonas. Swarm, phase transition, and collective intelligence. In C.G. Langton,
Eds., Artificial life III. Addison Wesley, MA (1994)

5. K. E. Parsopoulos and M. N. Vrahatis. Recent approaches to global optimization problems
through particle swarm optimization. Natural Computing 1 (2002) 235–306

6. Y. Shi and R. Eberhart. A modified particle swarm optimizer. IEEE Int. Conf. on Evolu-
tionary Computation (1997) 303–308

7. M. Clerc. The swarm and queen: towards a deterministic and adaptive particle swarm op-
timization. Proc. Congress on Evolutionary Computation, Washington, DC,. Piscataway,
NJ:IEEE Service Center (1999) 1951–1957

8. R. C. Eberhart and Y. Shi. Comparing Inertia weight and constriction factors in particle
swarm optimization. In Proc. 2000 Congr. Evolutionary Computation, San Diego, CA
(2000) 84–88

9. H. Yoshida, K. Kawata, Y. Fukuyama, and Y. Nakanishi. A particle swarm optimization
for reactive power and voltage control considering voltage stability. In G. L. Torres and A.
P. Alves da Silva, Eds., Proc. Int. Conf. on Intelligent System Application to Power Sys-
tems, Rio de Janeiro, Brazil (1999) 117–121

10. C. O. Ouique, E. C. Biscaia, and J. J. Pinto. The use of particle swarm optimization for
dynamical analysis in chemical processes. Computers and Chemical Engineering 26
(2002) 1783–1793

11. Y. Shi and R. Eberhart. Parameter selection in particle swarm optimization. Proc. 7th An-
nual Conf. on Evolutionary Programming (1998) 591–600

12. Y. Shi, and Eberhart, R. Experimental study of particle swarm optimization. Proc.
SCI2000 Conference, Orlando, FL (2000)

13. Y. Shi and R. Eberhart. Fuzzy adaptive particle swarm optimization. 2001. Proceedings of
the 2001 Congress on Evolutionary Computation, vol. 1 (2001) 101–106

14. X. Xie, W. Zhang, and Z. Yang. A dissipative particle swarm optimization. Proceedings
of the 2002 Congress on Evolutionary Computation, Volume: 2 (2002) 1456–1461

15. J. Kennedy. The particle swarm: social adaptation of knowledge. Proc. IEEE International
Conference on Evolutionary Computation (Indianapolis, Indiana), IEEE Service Center,
Piscataway, NJ (1997) 303–308

16. P. J. Angeline. Using selection to improve particle swarm optimization. IEEE International
Conference on Evolutionary Computation, Anchor age, Alaska, May (1998) 4–9

17. J. Kennedy, R.C. Eberhart, and Y. Shi. Swarm Intelligence, San Francisco: Morgan
Kaufmann Publishers (2001)

	1 Introduction
	2 The Ways to Determine the Inertia Weight
	3 Experimental Studies
	4 Results and Discussions
	5 Conclusions
	References

