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Abstract. We present the result of our work on use of genetic programming for
evolving social behavior of agents situated in inherently cooperative environ-
ment. We use predators-prey pursuit problem to verify our hypothesis that rela-
tively complex social behavior may emerge from simple, implicit, locally de-
fined, and therefore – robust and highly-scalable interactions between the
predator agents. We propose a proximity perception model for the predator
agents where only the relative bearings and the distances to the closest predator
agent and to the prey are perceived. The instance of the problem we consider is
more realistic than commonly discussed in that the world, the sensory and
moving abilities of agents are continuous; and the sensors of agents feature lim-
ited range of “visibility”. The results show that surrounding behavior, evolved
using proposed strongly typed genetic programming with exception handling
(STGPE) emerges from local, implicit and proximity-defined interactions be-
tween the predator agents in both cases when multi-agents systems comprises (i)
partially inferior predator agents (with inferior moving abilities and superior
sensory abilities) and with (ii) completely inferior predator agents. In the latter
case the introduction of short-term memory and explicit communication con-
tributes to the improvement of performance of STGPE.

1   Introduction

Over the past few years, multi-agent systems (MAS) have become more and more
important in many aspects of computer science such as distributed artificial intelli-
gence, distributed computing systems, robotics, artificial life, etc. MAS introduce the
issue of collective intelligence and of the emergence of behavior through interactions
between the agents. An agent is a virtual entity that can act, perceive the proximity of
its environment and communicate with others; it is autonomous and has abilities to
achieve its objectives. MAS contain a world (environment), entities (agents), relations
between the entities, a way the world is perceived by the entities, a set of operations
that can be performed by the entities and the changes of the world as a result of these
actions. Currently, the main application areas of MAS are problem solving, simula
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tion, collective robotics, software engineering, and construction of synthetic worlds
[4]. Considering the latter application area and focusing on the autonomy of agents
and the interactions that link them together [14], the following important issues can be
raised: What is minimum amount of perception information needed to agents in order
to perceive the world? How can agents cooperate? What are the methods, and what are
the lower bounds of communications, required for them to coordinate their actions?
What is the architecture they should feature so that they can achieve their goals? What
approaches can be applied to automatically construct the agents’ functionality, with
the quality of such a design being competitive to the design handcrafted by human?
These issues are of special interest, since the aim is to create MAS which is scalable,
robust, flexible, and the able to automatically adapt to changes. These features of
MAS are believed to be particularly important in real world applications where the
approaches to construct synthetic worlds can be viewed as a practical methods, a tech-
niques towards creating complex “situational aware” multi-computer, multi-vehicle, or
multi-robot systems based on the concepts of agents, communication, cooperation and
coordination of actions.

Within considered context, the objective of our research is an automatic design of
autonomous agents which situated in inherently cooperative environment are capable
of accomplishing complex tasks through interaction. We adhere to the methodological
holism based on the belief that any complex system or society (Heraclitus, Aristotle,
Hegel, and more recently – [12][13]), and multi-agent society in particular [7] is more
than the sum of its individual entities, more than the sum of the parts that compose it.
The social behavior, needed to accomplish the complex task might emerge in MAS
from relatively simply defined interactions between the agents. We are particularly
interested in the ultimate case of such simplicity – local, implicit, proximity defined,
and therefore, robust, flexible and highly scalable interactions between the agents,
situated in more realistic (than commonly considered), inherently cooperative envi-
ronments. This document is intended to highlight the issues of applying genetic pro-
gramming for investigating the sufficiency of implicit interaction and the role of ex-
plicit communication in emergence of social behavior in MAS.

The remaining of the document is organized as follows. Section 2 introduces the
task which we use to test our hypotheses – an instance of the general, well-defined yet
difficult to solve predator-prey pursuit problem. The same section addresses the issue
of developing the software architecture of the agents. Section 3 elaborates the strongly
typed genetic programming with exceptions handling (STGPE), proposed as an algo-
rithmic paradigm used to evolve the functionality of agents. Empirical results are
presented in Section 4 and conclusion is drawn in Section 5.

2   The Problem and the Agents Architecture

2.1   Instance of Predator Prey Pursuit Problem

The general, well-defined and well-studied yet difficult to solve predator-prey pursuit
problem [2] is used to verify our hypothesis that relatively complex social behavior
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might emerge from simple, local, implicit, proximity-defined, and therefore – robust
and highly-scalable interactions between the predator agents. The problem comprises
four predator agents whose goals are to capture a prey by surrounding it on all sides in
a world.  In our work we consider an instance of the problem, which is more realistic
than commonly considered in the previous work [5][6][9]. The world is a simulated
two-dimensional continuous torus 1600mm x 1000mm. The moving abilities of four
predator agents are continuous too – the predators can turn left and right to any angle
from their current heading and can run with speed equal to 0, 0.25, 0.5, 0.75 and 1.0 of
maximum speed. In addition, we introduce an proximity perception model for predator
agents in that they can see the prey and only the closest predator agent, and only when
they are within the limited range of visibility of their simulated (covering an area of
360 degrees) sensors. The prey employs random wandering if there is no predator in
sight and a priory handcrafted optimal escaping strategy as soon as predator(s) become
“visible”. The maximum speed of prey is higher than the maximum speed of predator
(i.e. predator-agents feature inferior moving abilities). In order to allow for predators
to stalk and collectively approach the prey, in the first of the two considered cases the
range of visibility of predators is more than the range of visibility of the prey (i.e.
superior are only the sensory abilities of predators, therefore they can be considered
partially inferior). In the second case the range of visibility of predators is equal to the
range of visibility of the prey (i.e. completely inferior predator agents). We consider
these two cases in order to create an inherently cooperative environment in that the
mission of predators is nearly impossible unless they collaborate with each other. We
are not interested in cases when predators are superior in their moving abilities, since
the capturing of the prey in this case seems trivial, can be accomplished by single
agent, and therefore does not require collective behavior from MAS. Analogically, the
situation comprising completely inferior agents who besides being slower feature
more myopic (rather than equal) sensory abilities than the prey is intractable for the
conditions give above, and therefore is beyond our current consideration.

2.2   Architecture of the Agents

We adopted the subsumption architecture [3] of the agents comprising of functional
modules distributed in three levels, corresponding to the three different aspects (“lev-
els of competence“) of agent’s behavior: wandering/exploring, greedy chase and social
behavior - surrounding (Figure 1a). Given that we focus our attention on evolving the
top-level, highest priority module – surrounding the prey (assuming that the rest two
modules are handcrafted), our objective of automatic design of autonomous agents via
simulated evolution, which we declared earlier, can be rephrased as evolving the sur-
rounding module in subsumption architecture of the agents.

In order to coordinate the functionalities of each of architectural modules we intro-
duce the notion of agent‘s state. At every instant, the agent can be in one of the three
states, corresponding to the module which is currently governing the agent’s behavior:
surrounding, greedy chase and wandering/exploring. The agent is in surrounding state
if and only if there is a match (response) for the currently perceived proximity of the
world (stimuli) in the functionality of evolved surrounding module. Being in sur-
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rounding state, the agent is fully controllable by the functionality of the surrounding
module, while functionalities of hunting and wandering/exploring modules are inhib-
ited. If there is no match of the perceived proximity of the world in the functionality of
evolved surrounding module, the agents state switches to greedy chase if prey is in
sight or to wandering/exploring state otherwise (Figure 1b).

We would like to emphasize that the proposed implicit interstate-transition scheme
is fully controllable by evolved functionality of the surrounding module, which allows
to simultaneously evolve (i) the capability of agents to resolve social dilemmas, de-
termined by the way social behavior overrides greedy chase when prey is in sight, and
(ii) the capability to resolve the exploration-exploitation dilemma, determined by the
ability of social behavior to override wandering/exploring when prey is invisible.

3   Algorithmic Paradigm Employed to Evolve Predator Agents

3.1   Strongly-Typed Genetic Programming with Exception Handling

Limiting the Search Space of Genetic Programming. We consider a set of stimulus-
response rules as a natural way to model the reactive behavior of predator agents [7]
which in general can be evolved using artificial neural networks, genetic algorithms,
and genetic programming (GP). GP is a domain-independent problem solving ap-
proach in which a population of computer programs (individuals) is evolved to solve
problems [8]. The simulated evolution in GP is based on the Darwinian principle of
reproduction and survival of the fittest. In GP genetic programs (individuals) can be
represented as parsing trees whose nodes are functions, variables or constants. The
nodes that have sub-trees are non-terminals - they represent functions where the sub-
trees represent the arguments to function of that node. Variables and constants are
terminals – they take no arguments and they always are leaves in the parsing tree. The
set of terminals for evolving agent’s behavior includes the perceptions (stimuli), and
the actions (response) which the agent is able to perform. The set of functions com-
prises the arithmetical and logical operators, and the IF-THEN function, establishing
the relationship between certain stimulus and corresponding response(s). Without
touching the details of representation of genetic programs, which will be elaborated
later in Section 3.2, a human readable form of sample stimulus-response rule is shown
in Figure 2. It expresses a reactive behavior of turning to the bearing of the peer agent
(Peer_a) plus 10 (degrees) as a result of stimulus of its own speed being less than 20
(mm/s).

The strength of GP to automatically evolve a set of stimulus-response rules of arbi-
trary complexity without the need to a priory specify the extent of such complexity
might imply an enormous computational effort caused by the need to discover a huge
search space while looking for potential solution to the problem. Agreeing with [13]
that for huge and multidimensional search spaces the introduction of “pruning algo-
rithms” is a critical step towards efficient solution search, we impose a restriction on
the syntax of evolved genetic programs based on some a priory known semantics. The
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approach is known as strongly typed genetic programming and its advantage over
canonical GP in achieving better computational effort is well proven [11].

                               a)                                                                              b)

Fig. 1. Subsumption architecture of the agents: functional structure (a) and states (b)

     IF (Speed<20) THEN Turn(Peer_a+10)

Fig. 2. Sample stimulus-response rule

Considering the sample rule, shown in Figure 2 it is noticeable that both the func-
tions and their operands are associated with data types such as speed (e.g. Speed, 20),
angle of visibility (bearing)  (Peer_a, 10), and  Boolean (Speed<20). An eventual
arbitrary creation or modification of genetic program semantically would make little
sense: indeed, it is unfeasible to maintain Boolean expressions comparing operands of
different data types at least because they have different physical units. Moreover, since
we introduce sensor’s range limits, there is a clear possibility of maintaining introns in
genetic programs when, for example Boolean expressions include comparison of per-
ception variable of certain data type with constant value beyond the limits of the data
type of that variable (e.g. Peer_d>1000, in case that sensor range is only 400).
Analogically, the semantics of action Turn() implies a parameter of data type angle.
And allowing just addition and subtraction as arithmetical operations implies that all
the operands involved in the expression which defines the turning parameter should
have the same data type angle. Addressing the mentioned concerns, the grammar of
STGPE establishes generic data types of visible angle, distance, speed, and Boolean
with the corresponding allowed ranges of the values for their respective instances
(variables and ephemeral constants). In addition, it stipulates the data type of the re-
sults of arithmetical and logical expressions, and the allowed data type of operands
(perception variables and ephemeral constants) involved in these expressions.
    We would like to emphasize that proposed approach is not based on domain-
specific knowledge, and therefore STGPE can not be considered as a “stronger” ap-
proach compromising the domain-neutrality of the very GP paradigm itself. The limi-
tations imposed to the syntax of genetic programs are solely based (i) on the natural
presumption that the predator agents are fully aware of their physically reasonable
limits of his perception- and moving abilities; and (ii) on the common rule in strongly-
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typed 3G algorithmic languages that all the operands in addition, subtraction and com-
parison operations should have the same data types. In no way these limitations incor-
porate a priory obtained knowledge, specific for the domain or for the world where the
agents are situated.

Exception Handling. The notion of exception handling is introduced in a way, much
similar to the 3G algorithmic languages. In our approach, an exception is an event,
raised when a runtime error occurs in an evaluation of the Boolean expression in the
conditional part of IF-THEN rule. Due to the limited range of simulated sensors of
predator agents, such an error would happen when the Boolean condition involving
perception variable(s) related to perceiving another entity in the world (e.g. closest
predator agent and/or the prey) can not be evaluated because the corresponding entity
is currently “invisible”. In addition to IF-THEN we introduce IF-THEN-NA (IF-THEN-
“not available”) type of stimulus-response rule with exception handling capabili-
ties. The human readable syntax and the corresponding semantics of sample stimulus
response rule with exception are shown in Figure 3.

3.2   Main Attributes of STGPE

Function and Terminal Sets. Function and terminal sets of adopted STGPE are
summarized in Table 1. Notice the local, proximity defined sensory abilities of agents.

Representation of Genetic Programs. Inspired by flexibility and recently emerged
widespread adoption of document object model (DOM) and extensible markup lan-
guage (XML), we represent genetic programs as a DOM-parsing trees featuring corre-
sponding flat XML text. Our additional motivation stems from the fact that despite of
the recently reported use of DOM/XML for representing computer architectures,
source codes, and agents’ communication languages we are not aware about any at-
tempts to employ XML technology for representing evolvable structures such as ge-
netic programs in generic, standard, and portable way. Our approach implies per-
forming genetic operations on DOM-parsing tree using off-the shelf, platform- and
language neutral DOM-parsers, and using XML-text representation (rather than S-
expression) as a flat format, feasible for migration of genetic programs among the
computational nodes in eventual distributed implementation of STGPE. The fragment
of XML representation of the above discussed sample stimulus-response rule (refer to
Figure 3) is shown in Figure 4. The benefits of using DOM/XML-based representa-
tions of genetic programs, as documented in [15] can be briefly summarized as fol-
lows: (i) XML tags offer a generic support for maintaining data types in STGPE; (ii)
W3C-standard XML schema offers generic way for representing the grammar of
STGPE; (iii) using standard built-in API of DOM-parsers for maintaining and ma-
nipulating genetic programs; (iv) OS neutrality of parsers; (v) algorithmic language
neutrality of DOM-parsers, and (vi) inherent Web-compliance of eventual parallel
distributed implementation of STGPE.

Genetic Operations.  Binary tournament selection is employed – a robust, commonly
used selection mechanism, which has proved to be efficient and simple to code.
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TRY IF (Peer_d<20)
THEN Turn(Peer_a+10)

EXCEPT  Turn(10);

IF (Peer is Visible) THEN BEGIN
  IF (Peer_d<20) THEN Turn(Peer_a+10);
END ELSE Turn(10); // invisible preda-
tor agent

                a)                                                              b)

Fig. 3. Syntax (a) and semantics (b) of sample stimulus-response rule with exception handling

Table 1. Function Set and Terminal Set of STGPE

Category Designation Remarks

Function set

IF-THEN,  IF-THEN-
NA

LE, GE, WI, EQ, NE, +,
-

IF-THEN without/with exception handling
��������������	��
������

Sensory abilities

Prey_d;  Peer_d
Prey_a;   Peer_a
PreyVisible; PeerVisible

Distance to the prey and to the closest agent, mm.
Bearing of the prey and of the closest agent,
degrees
True if prey /  agent  is “visible”, false otherwise

State variable Speed Speed of the agent, mm/s

Ephemeral
constants

Integer

T
er

m
in

al
 s

et

Moving abilities

���� �

Stop, Go_1.0
Go_0.25, Go_0.5,
Go_0.75

������������������� ���������� ��������� ����

Sets speed to 0, Sets speed to maximum
Sets speed to 25%, 50%, 75% of maximum

<IF-THEN-NA>
   <COND-THEN-NA><COND_TDistance>
       <VAR_TDistance>Peer_d</VAR_TDistance >
       <OPER TDistance>LE</OPER_TDistance >
       <CONST TDistance>20</CONST_TDistance >
   </COND_TDistance ></COND-THEN-NA>
   <THEN> ... </THEN>
   <NA>   ... </NA>
</IF-THEN-NA>

Fig. 4.  Fragment of XML representation of sample stimulus-response rule

Crossover operation is defined in a strongly typed way in that only the nodes (and
corresponding subtrees) of the same data type (i.e. labeled with the same tag) from
parents can be swapped. The sub-tree mutation is also allowed in strongly typed way
in that a random node in genetic program is replaced by syntactically correct sub-tree.
The routine refers to the type of node it is going to currently alter and applies the ran-
domly chosen rule from the set of applicable rules as defined in the grammar of
STGPE. The transposition mutation also operates on single genetic program by swap-
ping two random nodes having the same data type.

Breeding Strategy. We adopted a homogeneous breeding strategy in which the per-
formance of single genetic program, cloned to all the agents is evaluated. Anticipating
that the symmetrical nature of the world, populated with identical predator agents is
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unlikely to promote any specialization in the behavior of agents, we consider the fea-
tures of such a homogeneous multi-agent society as (i) adequate to the world and (ii)
consistent with our previously declared intention to create robust and well scalable
multi-agent system.

Fitness Function. In order to obtain more general solutions to the problem the fitness
of the genetic program is evaluated as average of the fitness measured over 10 differ-
ent initial situations. However, based on the empirically proven data that on the initial
stages of evolution agents are hardly able to successfully resolve more than few (out
of 10) initial situations in order to enhance the computational performance of STGPE
we applied the approach of noisy evaluation of the fitness function [10].  The amount
of initial situations used to evaluate the genetic programs in population gradually in-
creases as population evolves. Starting from 4 for the first generation of each run, the
amount of situations is revised on completion of each generation and it is set to exceed
by number of 2 the amount of situations, successfully solved by the best-of-generation
genetic program. Given that with addition of another initial situation(s) they have to
resolve, the agents would perform either better or, most probably worse, the fitness of
the best-of-current generation could be occasionally somewhat worse than fitness of
best genetic program from previous generation. Therefore, it is reasonable to expect
non-monotonous fitness convergence characteristics of STGPE.

The fitness F measured for the trial starting with particular initial situation is
evaluated as a length of the radius vector of the derived agents’ behavior in the virtual
energy-distance-time space as:

F 

 = 222 TDdE AA ++ (1)

where dEA is the average energy loss during the trial, DA is the average distance to the
prey by the end of the trial, and T is the elapsed time of the trial. The quantities dEA

and DA are averaged over the all predator agents. The energy loss estimation dE for
each of predator agents takes into account both the basal metabolic rate, equal to 0.05
units per second, and the energy loss for moving activities equal to 0.01 units per mm
of path traversed during the trial. The trial is limited to 300s of “real” time or to the
instance when prey is captured; and with sampling rate of 500ms it is simulated with
up to 600 time steps. Smaller values of fitness function correspond to better perform-
ing predator agents.

4    Empirical Results

4.1   Parameter Values of STGPE

The parameters of STGPE used in our experiments are as follows: the population size
is 400 genetic programs, the selection ratio is 0.1 (including 0.01 elitism), and the
mutation ratio is 0.02, equally divided between sub-tree mutation and transposition.
The termination criterion is defined as a disjunction of the following three termination
conditions: (i) fitness of the best genetic program in less than 300 and the amount of
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initial situations in which the prey is captured (successful situations) equals 10 (out of
10), (ii) the amount of elapsed generations is more than a 100, and (iii) the amount of
recent generations without fitness improvement is more than 16.

4.2   Partially Inferior Predator Agents

In the first case a superior sensory abilities of predators (range of visibility 400mm vs.
200mm for prey) and inferior moving abilities are considered (20mm/s vs. 24mm/s).
The computational effort (amount of genetic programs needed to be evaluated in order
to obtain the solution with specified probability, e.g. 0.95), is obtained from the prob-
ability of success p(t) by each of 20 independent runs in a way as suggested in [8]. The
result, shown in Figure 5a indicates that p(t)=0.95 by generation 80 which yields a
computational effort of about 32,000 genetic programs. Typical fitness convergence
characteristic is shown in Figure 5b.

                                      a)                                                                      b)

Fig. 5.  Probability of success (a) and typical fitness convergence characteristic (b)

Human-readable representation of sample best-of-run genetic program is shown in
Figure 6, and the traces of the entities in the world for one of the 10 initial situations is
shown in Figure 7. The prey, originally situated in the center of the world, is captured
by time step 140. The emergence of following behavioral traits of predator agents are
noticeable: (i) switch from greedy chase into surrounding approach of agents #3 (time
step 65, on right part of the world) and agent #2 (time step120, top left) as soon as
other agents appear in sight; (ii) zigzag move by agent #0 which results a lower chas-
ing speed indicating “intention” to trap the prey (after time step 100, far right and far
left) and (iii) surrounding approach demonstrated by agents #1 and #3 during the final
stages of the trial (top left).

4.3   Completely Inferior Predator Agents

In this case the same range of visibility of predators (400mm vs. 400mm respectively)
and inferior moving abilities are considered (20mm/s vs. 24mm/s). These conditions
definitely render the task more difficult for predator agents. As empirical results indi-
cate that for the same values of GP-parameters (as sated in Section 4.1) a probability
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of success of 0.95 is hardly achievable. In order to illustrate the very ability of STGPE
to discover the solution in these conditions we present plotted values of fitness of the
best-of-run genetic program and the amount of successfully resolved situations for 20
independent runs. The results are shown in Figure 8a.

Program Main;
type TDistance =    0..400;
     TVisAngle = -180..180;
     TSpeed    =    0..22;
var  Peer_d, Prey_d           : TDistance;
     Peer_a, Prey_a           : TVisAngle;
     Speed                    : TSpeed;
     PreyVisible, PeerVisible : Boolean;
Procedure GP;
begin
 try if (Prey_a >= -26)
   then try if (Prey_a within -5)
     then begin
       if (not PeerVisible) then Turn(Prey_a);
       try if (Prey_a <= -139)
         then begin
           Null;
           Go_0.25;
         end;
       except Turn(-24-Peer_a+7-24);
     end;
   except Null;
 except try if (Peer_d <= 136) then Null; except Turn(Prey_a);
end;
begin // main program
  GP;

      end.

Fig. 6.  Human-readable representation of sample best-of-run genetic program

Fig. 7.  Traces of the entities with agents governed by the genetic program shown in Figure 6.
The prey is captured in 140 simulated time steps (top left). Larger white and small black circles
denote the predator agents in their initial and final position respectively. The small white circle
indicates the prey, initially situated in the center of the world. The numbers in rectangles show
the timestamp information.
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Fig. 8. Fitness and amount of successful situation of the best-of-run genetic program in 20
independent runs when agents are implicitly interacting (a) and when agents are employing
short term memory with explicit communication.

As figure illustrates, only 25% of runs have been successfully completed (i.e. termi-
nated by criteria (i) as described in Section 4.1) and the average and the standard de-
viation of fitness and successful situations are FA=362, 2

F=63, SA=8 and 2
S=1.9. The

results with introduced short term (working) memory [1], storing the direction where
in which prey has been recently seen and explicit communication allowing the ex-
change the currently or recently seen direction to the prey  (i.e. predator agents still
remain mechanically inferior) are shown in Figure 8b. Although the solution can be
evolved by STGPE even with implicit interactions between the predator agents, intro-
ducing short term memory and explicit communication improves the performance of
simulated evolution: 35% of 20 runs have been successfully completed with more
favorable statistical results of FA=346, 2

F=53, SA=9 and 2
S=1.1.

5 Conclusion

We presented the result of our work on use of genetic programming for evolving so-
cial behavior of agents situated in inherently cooperative environment. We use preda-
tors-prey pursuit problem to verify our hypothesis that relatively complex social be-
havior may emerge from simple, implicit, locally defined, and therefore – robust and
highly-scalable interactions between the predator agents. We proposed a proximity
perception model for the predator agents where only the relative bearings and the
distances to the closest predator agent and to the prey are perceived. The instance of
the problem we consider is more realistic than commonly discussed in that the world,
the sensory and moving abilities of agents are continuous; and the sensors of agents
feature limited range of “visibility”. Adopted subsumption architecture and developed
implicit inter-state transition model allow for simultaneous evolution of the capabili-
ties of predator agents to resolve both the social dilemma and the dilemma between
exploration and exploitation. The empirical results show that surrounding behavior,
evolved using proposed strongly typed genetic programming with exception handling
(STGPE) emerges from local, implicit and proximity-defined interactions between the
predator agents in both cases when multi-agents systems comprises (i) partially infe-
rior predator agents (with inferior moving abilities and superior sensory abilities) and
with (ii) completely inferior predator agents. In the latter case the introduction of
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short-term memory and explicit communication contributes to the improvement of
performance of STGPE.
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