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64, avenue Jean Portalis 37200 Tours, France
{labroche,monmarche,venturini}@univ-tours.fr

http://www.antsearch.univ-tours.fr/

Abstract. In this paper, we propose a new ant-based clustering algo-
rithm called AntClust. It is inspired from the chemical recognition sys-
tem of ants. In this system, the continuous interactions between the
nestmates generate a “Gestalt” colonial odor. Similarly, our clustering
algorithm associates an object of the data set to the odor of an ant and
then simulates meetings between ants. At the end, artificial ants that
share a similar odor are grouped in the same nest, which provides the
expected partition. We compare AntClust to the K-Means method and
to the AntClass algorithm. We present new results on artificial and real
data sets. We show that AntClust performs well and can extract mean-
ingful knowledge from real Web sessions.

1 Introduction

Numbers of computer scientists have proposed novel and successful approaches
for solving problems by reproducing biological behaviors. For instance, genetic
algorithms have been used in many research fields, such as clustering problems
[1],[2] and optimization [3]. Other examples can be found in the modeling of col-
lective behaviors of ants as in the well-known algorithmic approach Ant Colony
Optimization (ACO)([4]) in which pheromone trails are used. Similarly, ant-
based clustering algorithms have been proposed ([5], [6], [7]). In these studies,
researchers have modeled real ants abilities to sort their brood. Artificial ants
may carry one or more objects and may drop them according to given probabili-
ties. These agents do not communicate directly with each other’s, but they may
influence themselves through the configuration of objects on the floor. Thus, af-
ter a while, these artificial ants are able to construct groups of similar objects,
a problem which is known as data clustering. We focus in this paper on an-
other important collective behavior of the real ants, namely the construction of
a colonial odor and its use to determine the ant nest membership.

Introduced in [8], the AntClust algorithm reproduces the main principles
of this recognition system. It is able to find automatically a good partition
over artificial and real data sets. Furthermore, it does not need the number of
expected clusters to converge. It can also be easily adapted to any type of data
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(from numerical vectors to character strings and multimedia), since a distance
measure can be defined between the vectors of attributes that describe each
object of the data set.

In this paper, we propose a new version of AntClust that does not need to be
parameterized to produce the final partition. The paper is organized as follows:
the section 2 gives a detailed description of the AntClust algorithm. The section
3 presents the experiments that have been conducted to set the parameters
of AntClust regardless of the data sets. The section 4 compares the results of
AntClust to those of the K-Means method (initialized with the expected number
of clusters) and those of AntClass, an ant-based clustering algorithm. In the
section 5, we present some of the clustering algorithms already used in the Web
mining context and our very first results when we apply AntClust to real Web
sessions. The last section concludes and discusses future evolutions of AntClust.

2 The AntClust Algorithm

The goal of AntClust is to solve the unsupervised clustering problem. It finds a
partition, as close as possible to the natural partition of the data set, without any
assumption concerning the definition of the objects or the number of expected
clusters. The originality of AntClust is to model the chemical recognition system
of ants to solve this problem. Real ants solve a similar problem in their every day
life, when the individuals that wear the same cuticular odor gather in the same
nest. AntClust associates an object of the data set to the genome of an artificial
ant. Then, it simulates meetings between artificial ants to exchange their odor.
We present hereafter the main principles of the chemical recognition system of
ants. Then, we describe the representation and the coding of the parameters of
an artificial ant and also the behavioral rules that allow the method to converge.

2.1 Principles of the Chemical Recognition System of Ants

AntClust is inspired from the chemical recognition system of ants. In this
biological system, each ant possesses its own odor called label that is spread
over its cuticle (its “skin”). The label is partially determined by the genome
of the ant and by the substances extracted from its environment (mainly the
nest materials and the food). When they meet other individuals, ants compare
the perceived label to their template that they learned during their youth. This
template is then updated during all their life by the mean of trophallaxies,
allo-grooming and social contacts. The continuous chemical exchanges between
the nestmates lead to the establishment of a colonial odor that is shared and
recognized by every nestmates, according to the “Gestalt theory” [9,10].
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2.2 The Artificial Ants Model

An artificial ant can be considered as a set of parameters that evolve according
to behavioral rules. These rules reproduce the main principles of the recognition
system and apply when two ants meet.

For one ant i, we define the parameters and properties listed hereafter.
The label Labeli indicates the belonging nest of the ant and is simply coded

by a number. At the beginning of the algorithm, the ant does not belong to
a nest, so Labeli = 0. The label evolves until the ant finds the nest that best
corresponds to its genome.

The genome Genomei corresponds to an object of the data set. It is not
modified during the algorithm. When they meet, ants compare their genome to
evaluate their similarity.

The template Templatei or Ti is an acceptance threshold that is coded by a
real value between 0 and 1. It is learned during an initialization period, similar
to the ontogenesis period of the real ants, in which each artificial ant i meets
other ants, and each time evaluates the similarity between their genomes. The
resulting acceptance threshold Ti is a function of the maximal Max(Sim(i, ·))
and mean Sim(i, ·) similarities observed during this period. Ti is dynamic and
is updated after each meeting realized by the ant i, as the similarities observed
may have changed. The following equation shows how this threshold is learned
and then updated:

Ti ← Sim(i, ·) + Max(Sim(i, ·))
2

(1)

Once artificial ants have learned their template, they use it during their meetings
to decide if they should accept the encountered ants. We define the acceptance
mechanism between two ants i and j as a symmetric relation A(i, j) in which
the genomes similarity is compared to both templates as follows:

A(i, j)⇔ (Sim(i, j) > Ti) ∧ (Sim(i, j) > Tj) (2)

We state that there is “positive meeting” when there is acceptance between ants.
The estimator Mi indicates the proportion of meetings with nestmates. This

estimator is set to 0 at the beginning of the algorithm. It is increased each time
the ant i meets another ant with the same label (a nestmate) and decreased in
the opposite case. Mi enables each ant to estimate the size of its nest.

The estimator M+
i reflects the proportion of positive meetings with nestmates

of the ant i. In fact, this estimator measures how well accepted is the ant i in
its own nest. It is roughly similar to Mi but add the “acceptance notion”. It is
increased when ant i meets and accepts a nestmate and decreased when there is
no acceptance with the encountered nestmate.

The age Ai is set to 0 and is increased each time the ant i meets another
ant. It is used to update the maximal and mean similarities values and thus the
value of the acceptance threshold of the ant Templatei.

At each iteration, AntClust randomly selects two ants, simulates meetings
between them and applies a set of behavioral rules that enable the proper con-
vergence of the method.
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The 1st rule applies when two ants whith no nest meet and accept each other.
In this case, a new nest is created. This rule initiates the gathering of similar
ants in the very first clusters. These clusters “seeds” are then used to generate
the final clusters according to the other rules.

The 2nd rule applies when an ant with no nest meets and accepts an ant that
already belongs to a nest. In this case, the ant that is alone joins the other in
its nest. This rule enlarges the existing clusters by adding similar ants.

The 3rd rule increments the estimators M and M+ in case of acceptance
between two ants that belong to the same nest. Each ant, as it meets a nestmate
and tolerates it, imagines that its nest is bigger and, as there is acceptance, feels
more integrated in its nest.

The 4th rule applies when two nestmates meet and do not accept each other.
In this case, the worst integrated ant is ejected from the nest. That rule permits
to remove non-optimally clustered ants to change their nest and try to find a
more appropriate one.

The 5th rule applies when two ants that belong to a distinct nest meet and
accept each other. This rule is very important because it allows the gathering of
similar clusters, the small one being progressively absorbed by the big one.

The AntClust algorithm can be summarized as follows:

Algorithm 1: AntClust main algorithm
AntClust()

(1) Initialization of the ants:
(2) ∀ ants i ∈ [1, N ]
(3) Genomei ← ith object of the data set
(4) Labeli ← 0
(5) Templatei is learned during NApp iterations
(6) Mi ← 0, M+

i ← 0, Ai ← 0
(7) NbIter ← 75 ∗N
(8) Simulate NbIter meetings between two randomly chosen ants
(9) Delete the nests that are not interesting with a probability Pdel

(10) Re-assign each ant that has no more nest to the nest of the most
similar ant.

3 AntClust Parameters Settings

It has been shown in [8] that the quality of the convergence of AntClust mainly
depends on three major parameters, namely the number of iterations fixed to
learn the template NApp, the number of iterations of the meeting step NbIter

and finally, the method that is used to filter the nests. We describe hereafter how
we can fix the value of these parameters regardless of the structure of the data
sets. First, we present our measure of the performance of the algorithm and the
data sets used for evaluation.
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3.1 Performance Measure

To express the performance of the method we define Cs as 1−Ce, where Ce is the
clustering error. We choose an error measure adapted from the measure devel-
oped by Fowlkes and Mallows as used in [11]. The measure evaluates the differ-
ences between two partitions by comparing each pair of objects and by verifying
each time if they are clustered similarly or not. Let Pi be the expected partition
and Pa the output partition of AntClust. The clustering success Cs(Pi, Pa) can
be defined as follows:

Cs(Pi, Pa) = 1− 2
N(N − 1)

×
∑

(m,n)∈[1,,N ]2,m<n

εmn (3)

where:

εmn =






0 if (Pi(m) = Pi(n) ∧ Pa(m) = Pa(n))∨
(Pi(m) �= Pi(n) ∧ Pa(m) �= Pa(n))
1 otherwise

(4)

with N the number of objects in the original data set. Pi(ob) (resp. Pa(ob)) is
the cluster number of the object ob in the partition Pi (resp. Pa).

We use artificial data sets named Art1,2,3,4,5,6 for our evaluations. We gener-
ate them according to gaussian or uniform laws with distinct difficulties (irrele-
vant attributes, clusters overlap).

3.2 How Many Meetings?

For the time being, the user has to specify the number of iterations during which
artificial ants meet, if she wants to adapt the algorithm to the size of the data
set that is explored. AntClust has a default value that is set to 50000 iterations.
Nevertheless, in the Web mining context, it is usual to work with larger data
sets. In this case, AntClust cannot guarantee a proper convergence since some
ants are assigned to a nest without having realized any meeting. Our idea is
to consider that the number of iterations may be linearly linked to the number
of ants (i.e. the number of objects in the data set). In the method, at each
iteration, 2 ants are randomly and uniformly selected in the population. Let α
denote the minimal number of iterations each ant has to perform to ensure the
convergence of the algorithm. The following equation shows how we associate
the total number of iterations NbIter to the number of ants N :

NbIter =
1
2
∗ α ∗N (5)

We evaluate the performance of the method for several values of α between
10 and 500 meetings per ant. The goal is to verify that α can be initialized
regardless of the size of the data set. The figure 1 shows the results in term of
mean clustering success. We have conducted 10 tests for each value of α and
each artificial data set.
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Fig. 1. Mean clustering success over 10 runs for each value of α ∈ [10, 500].

According to this figure, we can see that the values of the mean clustering
success converge quite quickly regardless of the data set. Although the data sets
size ranges from 200 to 1100 objects, the convergence seems to operate for the
same value of α in every case. Thus, we may consider that there is a minimal
number of meetings that each ant should realize to ensure the proper convergence
of the method. We consider that we can set experimentally the value of α to 150.

As a consequence, the meetings step of AntClust can be solved in linear time
with the number of objects in the data set.

3.3 How Many Iterations to Learn the Template?

We now focus on the number of iterations needed to learn the template. We
think that the template learning process cannot be longer, in term of number
of iterations, than the meetings step studied before. Let β be the number of
meetings needed to learn the template per ant. As for the number of iterations
of the meeting step, we test several values of β expressed as a percentage of the
value of α ranging from 0% to 100%. The figure 2 presents the results that we
obtained for each artificial data sets in term of mean clustering success according
to the value of β.

As with the previous experiment, the results of mean clustering success con-
verges even if the limit is not as clearly expressed in the plotted graph. It is
important to notice that β is not necessarily positively linked to the perfor-
mance. For example, the mean clustering success of Art6 remains stable as β
increases, whereas the performances of Art4 decrease. This can be explained by
the fact that the number of clusters is taken into account to compute Cs and
that as β increases the error in the estimated number of clusters also increases



AntClust: Ant Clustering and Web Usage Mining 31

Mean clustering success percentage versus number of 
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Fig. 2. Mean clustering success over 10 runs for each β ∈ [1, 100]% of α.

for Art4. In fact, by increasing β, artificial ants become too sensitive and find
too much clusters. As a conclusion, we set β as 0.5∗α, that is to say, NApp ← 75.

3.4 The Nest Deletion Method

At the end of AntClust, the nests that are not sufficiently “interesting” are
deleted and the ants are reassigned to the nest of the most similar ant. This
method allows suppressing noise in the final partition. For the time being, the
nest deletion criterion is only based on the number of ants that belong to this nest
and a threshold fixed by the user. The default value of this threshold is equal to a
percentage of the total number of ants (generally 15%). This approach, although
efficient, is limited, because the algorithm could not find more than a fixed
number of clusters of the same size. Our optimization replaces this deterministic
method by a probabilistic one that is more adaptive. We compute for each nest
η a probability Pdel to be deleted. This probability depends mainly on the mean
integration of the ants in the nest η, M+

η , and the number of ants in the nest
Nη as in the previous version. For the nest η, Pdel(η) is given as follows:

Pdel(η)← (1− ν) ∗M+
η + ν ∗ Nη

N
(6)

Several experimentations have been conducted and revealed that the value
of ν = 0.2 provides the best partitions for the set of data we tested. Hence, this
method is more interesting than the previous one, because it allows to better
appreciate the number of clusters thanks to its probabilistic nature.
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4 Experiments and Results

In this section, we compare AntClust to the K-Means method and the AntClass
algorithm to evaluate the performance of our method. First, we will briefly de-
scribe both methods. Second, we introduce the main properties of the data sets
that are used for the comparison. Then, we present our results over artificial and
real data sets.

4.1 K-Means and AntClass

We use two clustering algorithms to evaluate AntClust. First, we choose to apply
a traditional K-Means approach because, it can perform well in a short time.
This method needs an initial K-partition of the data set that is refined gradually.
At each iteration, the objects are assigned to the most similar center of the
clusters. The algorithm stops when the intra class inertia becomes stable. In our
test, we generate randomly the initial partitions with the number of clusters that
is expected in the data set, to get the best results that a K-Means approach can
give.

Second, we compare AntClust to AntClass, an other ant-based clustering
algorithm. This is an hybrid algorithm in which artificial ants create a first
partition of the data set that is used by a K-Means algorithm as initial partition.
This scheme is repeated twice in order to get the final partition. The ant-based
part of AntClass relies on the establishment of a 2 dimensional grid. The objects
and the artificial ants are randomly placed on the grid. At each iteration, ants
move and have a probability to pick-up or to drop an object depending if they
have already one or not. Artificial ants generate heaps of similar objects that
define the partition.

4.2 Data Sets and Experimental Protocol

We evaluate the clustering methods over several data sets that represent distinct
clustering difficulties in the same experimental conditions in order to better
appreciate the performance of each of them. First, we test K-Means, AntClass
and AntClust over the artificial data sets that have been previously introduced
in the section 3.1, namely Art1,2,3,4,5,6.

Second, we test the algorithms over real data sets such as Iris, Pima, Soybean,
Glass and Thyroid. We expect these data sets to be more difficult to be cluster,
since they may be noisier than artificial data sets. We introduce in the table 1
the parameters that characterize the artificial and real data sets used for our
evaluations. The fields for each data set are: the number of objects (N ), their
associated number of attributes (M ), and the number of clusters (K ).

For each data set, we run 50 times each method and compute the mean
clustering success (see section 3.1), the mean number of clusters found and their
respective standard deviations. The next section presents our results.
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Table 1. Main characteristics of the data sets.

Art1 Art2 Art3 Art4 Art5 Art6

N 400 1000 1100 200 900 400
M 2 2 2 2 2 8
K 4 2 4 2 9 4

Iris Glass P ima Soybean Thyroid

N 150 214 798 47 215
M 4 9 8 35 5
K 3 7 2 4 3

4.3 Results with Artificial and Real Data Sets

The table 2 shows the results obtained over the artificial and real data sets.
We can see in this table that K-Means gives, in general, the best results in
term of clustering success and obviously in term of number of clusters found
as they are provided to the algorithm. AntClust has the best clustering results
only twice for the data sets Soybean and Thyroid that are little data sets
(with respectively 47 and 215 objects). Nevertheless, AntClust shows its ability
to treat large data sets with Art2 and Art3. AntClass performs better than
AntClust three times, for Art1, Art5 and Iris. For Art1 and Art5, AntClass
better estimates the number of expected clusters, but for Iris, the situation is
reversed. This means that in this case, AntClust creates poorer quality clusters
than those of AntClass. In all the other experiments K-Means and AntClust are
more efficient than AntClass. One thing to point out is that when K-Means fails
(for example in the data sets Glass and Pima), AntClass (which is partially
based on K-Means method) and AntClust also behaves poorly. Nevertheless,
AntClust performs well in general and can be even more efficient than K-Means
for which the number of clusters is provided.

To complete the evaluation of AntClust, we compare its complexity to those
of K-Means and AntClass. Let Cx be the complexity of the algorithm x. AntClust
can be splitted in several steps: the template learning process (θ(N × NApp)),
the creation of the nests (θ(N ×NbIter)) and finally the nests deletion process
and the re-assignment of the ants to a nest. This step runs in quadratic time
since each ant that has no more nest has to find the the most similar ant that
belongs to a nest. The complexity of AntClust is CAntClust = θ(N2) in the worst
case. The K-Means algorithm’s complexity is known to be CKMeans = θ(N) and
AntClass has also a linear complexity CAntClass = θ(N). Experimentally, our
tests revealed that K-Means is the quickest method and that AntClust runs
faster than AntClass.
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Table 2. Mean number of clusters (# clusters) and mean success (Success) and their
standard deviation for each data set and each method computed over 50 runs.

# clusters Success
K-Means AntClass AntClust K-Means AntClass AntClust

Data sets mean [std] mean [std] mean [std] mean [std] mean [std] mean [std]
Art1 3.98 [0.14] 4.22 [1.15] 4.70 [0.95] 0.89 [0.00] 0.85 [0.05] 0.78 [0.03]
Art2 2.00 [0.00] 12.32 [2.01] 2.30 [0.51] 0.96 [0.00] 0.59 [0.01] 0.93 [0.02]
Art3 3.84 [0.37] 14.66 [2.68] 2.72 [0,88] 0.78 [0.02] 0.65 [0.01] 0.85 [0.02]
Art4 2.00 [0.00] 1.68 [0.84] 4.18 [0.83] 1.00 [0.00] 0.71 [0.23] 0.77 [0.05]
Art5 8.10 [0.75] 11.36 [1.94] 6.74 [1.66] 0.91 [0.02] 0.92 [0.01] 0.74 [0.02]
Art6 4.00 [0.00] 3.74 [1.38] 4.06 [0.24] 0.99 [0.04] 0.89 [0.13] 0.95 [0.01]
Iris 2.96 [0.20] 3.52 [1.39] 2.82 [0.75] 0.86 [0.03] 0.81 [0.08] 0.78 [0.01]
Glass 6.88 [0.32] 5.60 [2.01] 5.90 [1.23] 0.68 [0.01] 0.60 [0.06] 0.64 [0.02]
Pima 2.00 [0.00] 6.10 [1.84] 10.66 [2.33] 0.56 [0.00] 0.53 [0.02] 0.54 [0.01]
Soybean 3.96 [0.20] 1.60 [0.49] 4.16 [0.55] 0.91 [0.08] 0.46 [0.17] 0.93 [0.04]
Thyroid 3.00 [0.00] 5.84 [1.33] 4.62 [0.90] 0.82 [0.00] 0.78 [0.09] 0.84 [0.03]

5 AntClust for Web Usage Mining

For the time being, a lot of research efforts have been conducted to cluster
user sessions extracted from Web servers log files. The recurrent problem in this
area is that clustering algorithms must be able to treat large data sets with an
affordable computing time. Actually, a single Web server log file may contain
several hundred thousand requests for Web pages. As a consequence, researchers
try to use algorithms that run fast in their first approaches.

In [12], Yan et al. use a “First leader clustering algorithm”. The sessions
are expressed as numerical vectors containing for each Web page, the number of
recorded impacts. Although results are very promising and quickly computed,
this method is limited since the final partition depends on the order of the
sessions in the data set.

Heer and Chi introduce in [13] the Wavefront algorithm that improves the
initialization step of the K-Means method. The cluster seeds are randomly gen-
erated according to an estimated center of gravity of the data set. According
to the authors, this method allows a quicker convergence. In their work, the
Web sessions are expressed as multi-modal vectors that take into account the
navigation of the users (the time spent for each page) and model a page as a
combination of structure and content information.

Finally, Estivill-Castro et al. propose in [14] a robust clustering algorithm
that is mainly a K-Means algorithm in which the median estimator is used
instead of the mean estimator. The algorithm is then more resistant to the noise
in the data sets.

There are two major limitations to use “K-Means like” algorithms in the
Web usage mining context. First, the number of clusters K has to be provided
to ensure a good convergence of the method, but it can’t be easily set, unless
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the user is able to guess how people navigate on her Web site, which is exactly
the goal of the clustering process. Second, mean values have to be computed
and limit the coding of the Web sessions to numerical expressions (difficulties
for keywords or multimedia contents coding). Finally, mean values may not have
any meaning in the Web sessions context.

5.1 Web Session Data

The last data set that we explore with AntClust is a Web server log file. We sort
and filter this raw file to get a data set composed of users sessions. A session
captures the activity of a user on a Web site during a specified period of time.
The sessions have been recorded for one month in October 2001, on a web site
of the University of Tours that contains computer sciences courses. The 1064
reconstructed sessions contain 667 unique sessions, that is to say, sessions that
come from an IP number that has been seen only once in the requests log file.
Consequently, our sessions may reflect a lot of distinct behaviors from the users,
and thus may be very noisy. Nevertheless, as there are few hyperlinks between
the online courses, we expect the clusters to be representative of a minimum of
courses in order to be valuable and understandable. Similarly to other works,
we coded the Web sessions as vectors where each component corresponds to the
number of hits recorded for each page.

5.2 Results

When applied on Web sessions, AntClust finds 17 clusters. The 3 largest clusters
contain the half of the sessions. Although the two largest clusters refer to 2 or 3
online computer sciences courses, the others generally reflect interests for only
one course. This probably means that a majority of users went to the Web site
with no specific goal and look at several courses to evaluate the content of the
diploma. The other users were certainly already students and were searching for
lecture notes relative to one topic. This little experiment proves that AntClust is
able to generate a non-noisy partition of Web sessions that can help understand-
ing the interests of the Web users. AntClust spends approximately 1.33 minutes
at 650 MHz to cluster the user sessions, which is an affordable time.

6 Conclusion and Perspectives

AntClust is a new clustering algorithm that models the chemical recognition
system of real ants. It associates one object of the data set to one ant and defines
the expected partition as a set of nests. In this paper, we show how the internal
parameters of the method can be set, regardless of the structure of the data set
to be explored. Furthermore, we develop a non-deterministic approach to delete
the uninteresting nest and to re-affect the ants which nest has been deleted. We
evaluate its performance against K-Means and AntClass with artificial and real
data sets. We show that AntClust can even do better than K-Means for two data
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sets. When applied to Web sessions, AntClust finds meaningful clusters that can
help understanding the interests of the users of the Web site. Our future works
will try to apply AntClust to larger Web data sets to evaluate its robustness. In
these experiments we will compare AntClust to other clustering algorithms in
the Web context. We also plan to develop an incremental version of AntClust
and our first results seem to be promising.
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