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Abstract. Charged particle swarm optimization (CPSO) is well suited to the
dynamic search problem since inter-particle repulsion maintains population
diversity and good tracking can be achieved with a simple algorithm. This
work extends the application of CPSO to the dynamic problem by considering
a bi-modal parabolic environment of high spatial and temporal severity. Two
types of charged swarms and an adapted neutral swarm are compared for a
number of different dynamic environments which include extreme ‘needle-in-
the-haystack’ cases.  The results suggest that charged swarms perform best in
the extreme cases, but neutral swarms are better optimizers in milder envi-
ronments.

1   Introduction

Particle Swarm Optimization (PSO) is a population based optimization technique
inspired by models of swarm and flock behavior [1]. Although PSO has much in
common with evolutionary algorithms, it differs from other approaches by the inclu-
sion of a solution (or particle) velocity. New potentially good solutions are generated
by adding the velocity to the particle position. Particles are connected both temporally
and spatially to other particles in the population (swarm) by two accelerations. These
accelerations are spring-like: each particle is attracted to its previous best position, and
to the global best position attained by the swarm, where ‘best’ is quantified by the
value of a state function at that position. These swarms have proven to be very suc-
cessful in finding global optima in various static contexts such as the optimization of
certain benchmark functions [2].

The real world is rarely static, however, and many systems will require frequent re-
optimization due to a dynamic environment. If the environment changes slowly in
comparison to the computational time needed for optimization (i.e. to within a given
error tolerance), then it may be hoped that the system can successfully re-optimize. In
general, though, the environment may change on any time-scale (temporal severity),
and the optimum position may change by any amount (spatial severity). In particular,
the optimum solution may change discontinuously, and by a large amount, even if the
dynamics are continuous [3]. Any optimization algorithm must therefore be able to
both detect and respond to change.
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Recently, evolutionary techniques have been applied to the dynamic problem [4, 5,
6]. The application of PSO techniques is a new area and results for environments of
low spatial severity are encouraging [7, 8]. CPSO, which is an extension of PSO,  has
also been applied to more demanding environments, and found to outperform the
conventional PSO [9, 10]. However,  PSO can be improved or adapted by incorporat-
ing change detecting mechanisms [11]. In this paper we compare adaptive PSO with
CPSO for various dynamic environments, some of which are severe both spatially and
temporally. In order to do this, we use a model which enables simple testing for the
three types of dynamism defined by Eberhart, Shi and Hu [7, 11].

2   Background

The problem of optimization within a general and unknown dynamic environment can
be approached by a classification of the nature of the environment and a quantification
of the difficulty of the problem. Eberhart, Shi and Hu [7, 11] have defined three types
of dynamic environment. In type I environments, the optimum position xopt, defined
with respect to a state function f, is subject to change. In type II environments, the
value of f at xopt varies and, in type III environments, both xopt and f (xopt) may change.
These changes may occur at any time, or they may occur at regular periods, corre-
sponding, for example, to a periodic sensing of the environment. Type I problems
have been quantified with a severity parameter s, which measures the jump in opti-
mum location.

Previous work on PSO in dynamic environments has focused on periodic type I en-
vironments of small spatial severity. In these mild environments, the optimum position
changes by an amount sI, where I is the unit vector in the n-dimensional search space
of the problem. Here, ‘small’ is defined by comparison with the dynamic range of the
internal variables x. Comparisons of CPSO and PSO have also been made for severe
type I environments, where s is of the order of the dynamic range [9]. In this work, it
was observed that the conventional PSO algorithm has difficulty adjusting in spatially
severe environments due to over specialization. However, the PSO can be adapted by
incorporating a change detection and response algorithm [11].

A different extension of PSO, which solves the problem of change detection and re-
sponse, has been suggested by Blackwell and Bentley [10]. In this extension (CPSO),
some or all of the particles have, in analogy with electrostatics, a ‘charge’. A third
collision-avoiding acceleration is added to the particle dynamics, by incorporating
electrostatic repulsion between charged particles. This repulsion maintains population
diversity, enabling the swarm to automatically detect and respond to change, yet does
not diminish greatly the quality of solution. In particular, it works well in certain spa-
tially severe environments [9].

Three types of particle swarm can be defined: neutral, atomic and fully-charged.
The neutral swarm has no charged particles and is identical with the conventional
PSO. Typically, in PSO, there is a progressive collapse of the swarm towards the best
position, with each particle moving with diminishing amplitude around the best posi-
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tion. This ensures good exploitation, but diversity is lost.  However, in a swarm of
‘charged’ particles, there is an additional collision avoiding acceleration. Animations
for this swarm reveal that the swarm maintains an extended shape, with the swarm
centre close to the optimum location [9, 10]. This is due to the repulsion which works
against complete collapse. The diversity of this swarm is high, and response to envi-
ronment change is quick. In an ‘atomic’ swarm, 50% of the particles are charged and
50% are neutral. Animations show that the charged particles orbit a collapsing nucleus
of neutral particles, in a picture reminiscent of an atom. This type of swarm therefore
balances exploration with exploitation. Blackwell and Bentley have compared neutral,
fully charged and atomic swarms for a type-I time-dependent dynamic problem of
high spatial severity [9]. No change detection mechanism is built into the algorithm.
The atomic swarm performed best, with an average best values of f some six orders of
magnitude less than the worst performer (the neutral swarm).

One problem with adaptive PSO [11], is the arbitrary nature of the algorithm (there
are two detection methods and eight responses) which means that specification to a
general dynamic environment is difficult. Swarms with charge do not need any adap-
tive mechanisms since they automatically maintain diversity. The purpose of this
paper is to test charged swarms against a variety of environments, to see if they are
indeed generally applicable without modification.

In the following experiments we extend the results obtained above by considering
time-independent problems that are both spatially and temporally severe.  A model of
a general dynamic environment is introduced in the next section. Then, in section 4,
we define the CPSO algorithm. The paper continues with sections on experimental
design, results and analysis. The results are collecting together in a concluding section.

3   The General Dynamic Search Problem

The dynamic search problem is to find xopt for a state function f(x, u(t)) so that f(xopt,

t)�� fopt is the instantaneous global minimum of f. The state variables are denoted x and
the influence of the environment is through a (small) number of control variables u
which may vary in time. No assumptions are made about the continuity of u(t), but
note that even smooth changes in u can lead to discontinuous change in xopt.  (In prac-
tice a sufficient requirement may be to find a good enough approximation to xopt i.e. to
optimize f to within some tolerance �f in timescales �t. In this case, precise tracking of
xopt may not be necessary.)

This paper proposes a simple model of a dynamic function with moving local
minima,

f = min {f1 (x, u1 ), f2(x, u2),…, fm (x, um)} (1)

where the control variables ua = {xa, ha

2} are defined so that fa has a single minimum at
xa, with an optimum value ha

2 � 0 at fa(xa). If the functions fa themselves have individ-
ual dynamics, f can be used to model a general dynamic environment.
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A convenient choice for fa, which allows comparison with other work on dynamic
search with swarms [4, 7, 8, 9, 11], is the parabolic or sphere function in n dimensions,

fa =
2

1

)( ai

n

i
i xx −∑

=

+ ha

2
(2)

which differs from De Jong’s f1 function [12] by the inclusion of a height offset ha and
a position offset xia. This model satisfies Branke’s conditions for a benchmark problem
(simple, easy to describe and analyze, and tunable) and is in many respects similar to
his “moving peaks” benchmark problem, except that the widths of each optimum are
not adjustable, and in this case we seek a minimization (“moving valleys”) [6]. This
simple function is easy to optimize with conventional methods in the static mono-
modal case. However the problem becomes more acute as the number m of moving
minima increases.

Our choice of f also suggests a simple interpretation. Suppose that all ha are zero.
Then fa is the Euclidean ‘squared distance’ between vectors x and xa. Each local opti-
mum position xa can be regarded as a ‘target’. Then, f is the squared distance of the
nearest ‘target’ from the set {xa} to x. Suppose now that the vectors x are actually
projections of vectors y in Rn+1, so that y = (x, 0) and targets ya have components (xa,
ha) in this higher dimensional space. In other words, ha are height offsets in the n+1th
dimension. From this perspective, f is still the squared distance to the nearest target,
except that the system is restricted to Rn. For example, suppose that x is the 2-
dimensional position vector of a ship, and {xa} are a set of targets scattered on the sea
bed at depths {ha}. Then the square root of f at any time is the distance to the closest

target and the depth of the shallowest object is )( optf x . The task for the ship’s navi-

gator is to position the ship at xopt, directly over the shallowest target, given that all the
targets are in independent motion along an uneven sea bed.

Since no assumptions have been made about the dynamics of the environment, the
above model describes the situation where the change can occur at any time. In the
periodic problem, we suppose that the control variables change simultaneously at
times ti and are held fixed at ui for the corresponding intervals   [ ti, ti+1]:

ii
i

i ttt uu ))()(()( 1+Θ−Θ= ∑ (3)

where �(t) is the unit step function.
The PSO and CPSO experiments of [9] and [11] are time-dependent type I experi-

ments with a single minimum at x1 and with h1 = 0. The generalization to more diffi-
cult type I environments is achieved by introducing more local minima at positions xa,
but fixing the height offsets ha. Type II environments are easily modeled by fixing the
positions of the targets, but allowing ha to change at the end of each period. Finally, a
type III environment is produced by periodically changing both xa and ha.

Severity is a term that has been introduced to characterize problems where the op-
timum position changes by a fixed amount s at a given number of iterations [4, 7]. In
[7, 11] the optimum position changes by small increments along a line. However,
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Blackwell and Bentley have considered more severe dynamic systems whereby the
optimum position can jump randomly within a target cube T which is of dimension
equal to twice the dynamic range vmax [9]. Here severity is extended to include dynamic
systems where the target jumps may be for periods of very short duration.

4   PSO and CPSO Algorithms

Table 1 shows the particle update algorithm. The PSO parameters g1, g2 and w govern
convergence. The electrostatic acceleration ai, parameterized by pcore, p and Qi, is
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The PSO and CPSO search algorithm is summarized below in Table 2. To begin, a
swarm of M particles, where each particle has n-dimensional position and velocity
vectors {xi, vi,}, is randomized in the box T = Dn =[-vmax, vmax]

n where D is the ‘dynamic
range’ and vmax is the clamping velocity. A set of period durations {ti} is chosen; these
are either fixed to a common duration, or chosen from a uniform random distribution.
A single iteration is a single pass through the loop in Table 2.

Denoting the best value position and value found by the swarm as xgb and fgb, change
detection is simply invoked by comparing f(xgb) with fgb. If these are not equal, the
inference is that f has changed since fgb was last evaluated. The response is to re-
randomize a fraction of the swarm in T, and to re-set fgb to f(xgb). The detection and
response algorithm is only applied to neutral swarms.

The best position attained by a particle, xpb,i, is updated by comparing  f(xi) with
f(xpb,i): if  f(xi) < f(xpb,i), then xpb,i � xi. Any new xpb,i is then tested against xgb, and a
replacement is made, so that at each particle update f(xgb) = min{f(xpb,i )}. This speci-
fies update best(i).

Table 1. The particle update algorithm

update particle(i)
vi � wvi + g1(xpb,i – xi) + g2(xgb-xi) + ai

if  �vi��� vmax  

          vi � (vmax / �vi����vi

    xi � xi + vi
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Table 2. Search algorithm for charged and neutral particle swarm optimization

(C)PSO search

initialize swarm { xi, vi} and periods{tj}

loop:

     if  t = tj

           update function

     if (neutral swarm)

          detect and respond to change

     for i = 1 to M

          update best (i)

          update particle(i)

     endfor

     t�t+1

until stopping criterion is met

5   Experiment Design

Twelve experiments of varying severity were conceived, for convenience arranged in
three groups. The parameters and specifications for these experiments are summarized
in Tables 3 and 4. In each experiment, the dynamic function has two local minima at
xa, a = 1, 2; the global minimum is at x2. The value of f at x1 is fixed at 100 in all ex-
periments. The duration of the function update periods, denoted �, is either fixed at
100 iterations, or is a random integer between 1 and 100. (For simplicity, random
variables drawn from uniform distribution with limits a, b will be denoted x ~ [a, b]
(continuous distribution) and x ~ [a…b] (discrete distribution).

In the first group (A) of experiments, numbers 1 – 4, x2 is moved randomly in T
(‘spatially severe’)  or is moved randomly in a smaller box 0.1T. The optimum value,
f(x2), is fixed at 0. These are all type I experiments, since the optimum location moves,
but the optimum value is fixed. Experiments 3 and 4 repeat the conditions of 1 and 2
except that x2 moves at random intervals ~ [1…100] (temporally severe).

Experiments 5 – 8 (Group B) are type II environments. In this case, x1 and x2 are
fixed at ±r, along the body diagonal of T, where r = (vmax/3) (1, 1, 1). However, f (x2)
varies, with h2 ~ [0, 1], or h2 ~ [0, 100]. Experiments 7 and 8 repeat the conditions of 5
and 6 but for high temporal severity.

In the last group (C) of experiments (9 – 12), both x1 and x2 jump randomly in T. In
the type III case, experiments 11 and 12, f (x2) varies. For comparison, experiments 9
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and 10 duplicate the conditions of 11 and 12, but with fixed f (x2). Experiments 10 and
12 are temporally severe versions of 9 and 11.

Each experiment, of 500 periods, was performed with neutral, atomic (i.e. half the
swarm is charged) and fully charged swarms (all particles are charged) of 20 particles
(M = 20). In addition, the experiments were repeated with a random search algorithm,
which simply, at each iteration, randomizes the particles within T. A spatial dimension
of   n = 3 was chosen. In each run, whenever random numbers are required for target
positions, height offsets and period durations, the same sequence of pseudo-random
numbers is used, produced by separately seeded generators. The initial swarm configu-
ration is random in T, and the same configuration is used for each run.

Table 3. Spatial, electrostatic and PSO Parameters

Table 4. Experiment Specifications

Group Expt
Targets
{x1, x1}

Local Opt
{f(x1),  f(x2)}

Period �

1 {O,  ~0.1T}
2 {O,  ~T}

100

3 {O,  ~0.1T}
A

4 {O,  ~T}

{100, 0}
~[1, 100]

5 {100,  ~[0, 1]}
6 {100,~[0,100]}

100

7 {100,  ~[0, 1]}
B

8

{O– r, O+r}

{100,~[0,100]}
~[1, 100]

9 100
10

{100, 0]}
~[1,100]

11 100
C

12

{~T,  ~T}
{100,~[0,100]}

~[1,100]

The search (C)PSO algorithm has a number of parameters (Table 3) which have
been chosen to correspond to the values used in previous experiments [5, 9, 11]. These
choices agree with Clerc’s analysis for convergence [13]. The spatial and electrostatic
parameters are once more chosen for comparison with previous work on charged par-
ticle swarms [9]. An analysis that explains the choice of the electrostatic parameters is

Spatial Electrostatic
PSO

vmax n M T pcore p Qi g1, g2 w

32 3 20 [-32,32]3 1 2	3vmax
16 ~[0,1.49] ~[0.5, 1]
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given in [14]. Since we are concerned with very severe environments, the response
strategy chosen here is to randomize the positions of 50% of the swarm [11]. This also
allows for comparisons with the atomic swarm which maintains a diverse population
of 50% of the swarm.

6   Results and Analysis

The chief statistic is the ensemble average best value, <f(x2) - fgb >; this is positive and
bounded by zero. A further statistic, the number of ‘successes’, nsuccesses,, was also col-
lected to aid analysis. Here, the search is deemed a success if xgb is closer, at the end of
each period, to target 2 (which always has the lower value of f) than it is to target 1.
The results for the three swarms and for random search are shown in Figs 1 and 2. The
light grey boxes in Figure 1, experiment 6, indicate an upper bound to the ensemble
average due to the precision of the floating-point representation: for these runs, f(x2) -
fgb  = 0 at the end of each period, but this is an artifact of the finite-precision arithmetic.

Group A. Figure 1 shows that all swarms perform better than random search except
for the neutral swarm in spatially severe environments (2 and 4) and the atomic swarm
in a spatially and temporally severe environment (4). In the least severe environment
(1), the neutral swarm performs very well, confirming previous results. This swarm
has the least diversity and the best exploitation. The order of performance for this
experiment reflects the amount of diversity; neutral (least diversity, best), atomic,
fully charged, and random (most diversity, worst). When environment 1 is made tem-
porally severe (3), all swarms have similar performance and are better than random
search. The implication here is that on average the environment changes too quickly
for the better exploitation properties of the neutral swarm to become noticeable. Ex-
periments 2 and 4 repeat the conditions of 1 and 2, except for higher spatial severity.
Here the order of performance amongst the swarms is in increasing order of diversity
(fully charged best and neutral worst). The reason for the poor performance of the
neutral swarm in environments 2 and 4 can be inferred from the success data. The
success rate of just 5% and ensemble average close to 100 (= f(x1)) suggests that the
neutral swarm often gets stuck in the false minimum at x1. Since fgb does not change at
x1, the adapted swarm cannot register change, does not randomize, and so is unlikely
to move away from x1 until x2 jumps to a nearby location. In fact the neutral swarm is
worse than random search by an order of magnitude. Only the fully charged swarm
out-performs random search appreciably for the spatially severe type I environments
(2 and 4) and this margin diminishes when the environment is temporally severe too.

Group B. Throughout this group, all swarms are better than random and the number of
successes shows that there no problems with the false minimum. The swarm with the
least diversity and best exploitation (neutral) does best since the optimum location
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Fig. 1. Ensemble average <f(x
2
)-f

gb
> for all experiments

Fig. 2. Number of successes n
successes

 for all experiments
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does not change from period to period. The effect of increasing temporal severity can
be seen by comparing 7 to 5 and 8 to 6. Fully charged and random are almost unaf-
fected by temporal severity in these type II environments, but the performance of the
neutral and atomic swarms worsens. Once more the explanation for this is that these
are the only two algorithms which can significantly improve their best position over
time because only these two contain neutral particles which can converge unimpeded
on the minimum. This advantage is lessened when the average time between jumps is
decreased. The near equality of ensemble averages for random search in 5 and 6, and
again in 7 and 8, is due to the fact that random search is not trying to improve on a
previous value – it just depends on the closest randomly generated points to x2 during
any period. Since x1 and x2 are fixed, this can only depend on the period size and not
on f(x2).
Group C. The ensemble averages for the four experiments in this group (9-12) are
broadly similar but the algorithm with the most successes in each experiment is ran-
dom search. However random search is not able to exploit any good solution, so al-
though the swarms have more failures, they are able to improve on their successes
producing ensemble averages close to random search. In experiments 9 and 10, which
are type I cases, all swarms perform less well than random search. These two experi-
ments differ from environments 2 and 4, which are also spatially severe, by allowing
the false minimum at x1 to jump as well. The result is that the performance of the
neutral swarm improves since it is no longer caught by the false minimum at x1; the
number of successes improves from less than 25 in 2 and 4, to over 350 in 9 and 10.
In experiments 11 and 12 (type III) when fopt changes in each period, the fully charged
swarm marginally out-performs random search. It is worth noting that 12 is a very
extreme environment: either minimum can jump by arbitrary amounts, on any time
scale, and with the minimum value varying over a wide range.  One explanation for
the poor performance of all swarms in 9 and 10 is that there is a higher penalty (<f (x1)
- fopt> = 100) for getting stuck on the false minimum at x1, than the corresponding
penalty in 11 and 12 (<f (x1) - fopt> = 50). The lower success rate for all swarms com-
pared to random search supports this explanation.

7   Conclusions

A dynamic environment can present numerous challenges for optimization. This paper
has presented a simple mathematical model which can represent dynamic environ-
ments of various types and severity. The neutral particle swarm is a promising algo-
rithm for these problems since it performs well in the static case, and can be adapted
to respond to change. However, one draw back is the arbitrary nature of the detection
and response algorithms. Particle swarms with charge need no further adaptation to
cope with the dynamic scenario due to the extended swarm shape. The neutral and two
charged particle swarms have been tested, and compared with random search, with
twelve environments which are classified by type. Some of these environments are
extreme, both in the spatial as well as the temporal domain.
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The results support the intuitive idea that type II environments (those in which the
optimum location is fixed, but the optimum value may vary) present few problems to
evolutionary methods since a population diversity is not important. In fact the algo-
rithm with the lowest diversity performed best. Increasing temporal severity dimin-
ishes the performance of the two swarms with neutral particles, but does not affect the
fully charged swarm.

However, environments where the optimum location can change (types I and III)
are much harder to deal with, especially when the optimum jumps can be to an arbi-
trary point within the search space, and can happen at very short notice. This is the
dynamic equivalent of the needle in a haystack problem. A type I environment has
been identified which poses considerable problems for the adapted PSO algorithm: a
stationary false minimum and a mobile true minimum with large spatial severity.
There is a tendency for the neutral swarm to become trapped by the false minimum. In
this case, the fully charged swarm is the better option.

Finally, the group C environments proved to be very challenging for all swarms.
These environments are distinguished by two spatially severe minima with a large
difference in function value at these minima. In other words, there is a large penalty
for finding the false minimum rather than the true minimum. All swarms struggled to
improve upon random search because of this trap.

Despite this, all swarms have been shown, for dynamic parabolic functions, to offer
results comparable to random search in the worst cases, and considerably better than
random in the more benign situations. As with static search problems, if some prior
knowledge of the dynamics is known, a preferable algorithm can be chosen. Accord-
ing to the classification of Eberhart and Wu [7, 11], and for the examples studied here,
the adapted neutral swarm is the best performer for mild type I and II environments.
However, it can be easily fooled in type I and III environments where a false mini-
mum is also dynamic. In this case, the charged swarms are better choices. As the envi-
ronment becomes more extreme, charge, which is a diversity increasing parameter,
becomes more useful. In short, if nothing is known about an environment, the fully
charged swarm has the best average performance.

It is possible that different adaptations to the neutral swarm can lead to better per-
formance in certain environments, but it remains to be seen if there is a single adapta-
tion which works well over a range of environments. On the other hand, the charged
swarm needs no further modification since the collision avoiding accelerations ensure
exploration the space around a solution.
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