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An FPGA Primer

A logic cell, LUT: look-up table

A programmable switch Xilinx Virtex 4 LX200:
 > 200,000 logic cells
In 89,000 slices
96 DSP cores
500 MHz rated
0.7 MB on-chip BRAM

1-bit
SRAM

Basic building block

Program 
memory
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Field Programmable Gate Array

PowerPC

Multi-Gigabit
transceivers

Block
RAM

Flip-flopLUT

Multiplexer

Multiplier

Logic

Clocking



3

W. Najjar UCR
7

Programming FPGAs

Functional
Specification

HDL

Synthesis

Place & Route

Download &
Verify in Circuit

ALU

Z

A B

Specify the behavior of a machine
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Programming FPGAs

Functional
Specification

HDL

Synthesis

Place & Route

Download &
Verify in Circuit

ALU

Z

A B

-- import std_logic from the IEEE library
library IEEE;
use IEEE.std_logic_1164.all;
-- this is the entity
entity 2input_with_control is   
  port (
    A : in std_logic;
    B : in std_logic;
    Z : out std_logic;
    Control: in std_logic);
end entity 2input_with_control;
-- here comes the architecture
architecture ALU of 2input_with_control is
-- Internal signals and components defined here
begin  
     case Control is 

when ‘1’ => Z <= A - B;
when others => Z <= A + B;

end architecture ALU;Hardware description language: 
VHDL, Verilog, SystemC

W. Najjar UCR
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Programming FPGAs

Functional
Specification

HDL

Synthesis

Place & Route

Download &
Verify in Circuit

(cell yyy (cellType generic)      
  (view schematic_ (viewType netlist)        
    (interface          
      (port CLEAR (direction INPUT))
      (port CLOCK (direction INPUT)) ... )        
    (contents           
      (instance I_36_1 (viewRef view1 (cellRef dff_4)))           
      (instance (rename I_36_3 "I$3") (viewRef view1 
                      (cellRef addsub_4)))
      ...
      (net CLEAR
        (joined               
          (portRef CLEAR)                 
          (portRef aset (instanceRef I_36_1))                 
          (portRef aset (instanceRef I_36_3))))    

ALU

Z

A B

Synthesis tool: HDL to netlist format

(op (input list) (output list))
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Programming FPGAs

Functional
Specification

HDL

Synthesis

Place & Route

Download &
Verify in Circuit

Which op on which logic cell in which slice?
Which switch should be open?
Which should be closed?

While (Minimize area and clock cycle time!)

NP-hard -- Simulated annealing, 
      large jobs take hours and days.

ALU

Z

A B

Place and route tool
generates
the bits that go here:

1-bit
SRAM
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Low-level Abstraction

Functional
Specification

HDL

Synthesis

Place & Route

Download &
Verify in Circuit

Clock-cycle level accuracy
Tedious
Error-prone
Acquisition of the skill
 Digital design background
 Syntax

Low-level design
Low productivity

W. Najjar UCR
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A historical perspective

The ages of FPGA evolution‡

 1984 -- 1991 Age of Invention
 1992 -- 1999 Age of Expansion
 2000 -- 2007 Age of Accumulation
 2008 -- 2015 Age of Specialization

‡ Adapted from 
Steve Trimberger, Xilinx, Keynote address at FPL 2007, 
Amsterdam, August 2007.
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Age of Invention

Technology
 FPGAs used and designed as glue logic chips
 Tight technology constraints

Applications
 FPGAs much smaller than most applications

problem size
 Efficiency on chip is key

Tools
 Design automation is secondary

W. Najjar UCR
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Age of Expansion

Process technology
 Cheap transistors and wires
 Larger devices

Applications
 FPGA size approaches problem size on both

computing and communication applications
Tools
 Ease of design becomes important
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Age of Accumulation

Technology
 FPGAs rapidly climb the process curves
 Become the cutting edge devices

Applications
 Variety of applications drive introduction of

 CPUs, memory, DSP, special arithmetic, high-
performance I/O

 Complete system on chip (first SoCs?)
Tools
 Design tools must address system level issues

W. Najjar UCR
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Next age?

Specialized acceleration
 Customized acceleration circuit tailored to a

specific code
 Reconfigurable, static and dynamic
 Steamed data to/from FPGA

Applications
 Image, signal and video processing
 Security (encryption), intrusion detection
 Data mining
 Numerical applications

W. Najjar UCR
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FPGA: A New HPC Platform?

David Strensky, FPGAs Floating-Point Performance -- a pencil and
paper evaluation, in HPCwire.com

Comparing a dual core Opteron to FPGA on fp performance:

•Opteron: 2.5 GHz, 1 add and 1 mult per cycle. 2.5 x 2 x 2 = 10 Gflops

•FPGAs Xilinx V4 and V5 with DSP cores

10,368576/28819251,840550LX330
6,912384/19212834,560550LX220

Virtex 4

Virtex 5
6,048366/09689,088500LX200

5,185288/09667,584500LX160

Total
Kbits

BRAM
18bit/36bit

DSP48
(slices)

Logic
(slices)

Speed
(MHz)
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10,368576/28819251,840550LX330
6,912384/19212834,560550LX220

Virtex 4

Virtex 5
6,048366/09689,088500LX200

5,185288/09667,584500LX160

Total
Kbits

BRAM
18bit/36bit

DSP48
(slices)

Logic
(slices)

Speed
(MHz)

FPGA Resources

 Balanced allocation of dp fp adders, multipliers
and registers

 Use both DSP and logic for multipliers,run at
lower speed

 Logic for I/O interfaces

W. Najjar UCR
21

Balanced Designs

2815.9Gflops

237185Speed
(MHz)

166DSP
5943Add/Mult

LX330LX200

55.323.95Add
Mult
MAc

19.912.05
28.015.910
V-5V-4Opt

dp Gflop/s

Same number of mults as adds
(matrix multiplication).
Double precision

Watts

~352595
V-5V-4Opt

Higher percentage of peak
on FPGA (streaming)
0.25 to 0.3 of the power!
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Analysis of the speedup

Consider a loop
 N is the number of iterations
 I is the number of CPU instructions

per iteration
 O is the number of arithmetic or

logic operations per iteration
 S = I - O is the number of support

instructions per iteration
 Index arithmetic
 Loop count
 Control operations
 Load and store

Loop is mapped on FPGA unrolled P
times

 k is number of stages in loop body
pipeline on FPGA. Assume N/P >> k

! 

CPUcycles = I " N "CPI

! 

FPGAcycles =
N

P
+ k

! 

Speedup =
CPUcycles

FPGAcycles

W. Najjar UCR
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Speedup =
CPUcycle

FPGAcycle
=
I " N "CPI

N

P

=

I "CPI " P = Inefficiency "O"CPI " P

Analysis of the speedup -2

Let Efficiency = O/I
 E.g MFLOPS/MIPS ratio
 Inefficiency = I/O
 = 1 + S/O
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Inefficiency factor

27.62VLIW

26.38Pentium

46.78MIPS
Max filter

15.02VLIW

7.518Pentium

12.58MIPSWavelet
transform

7.022VLIW

6.198Pentium

8.648MIPSPrewitt edge
detection

Inefficiency
factor

Ratio of iteration
Level parallelism

CPUBenchmarks

From Guo et al. in 2004 Symp. On FPGA, February 2004

W. Najjar UCR
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Support instructions

Memory operations/pixel

8
72

8 – 56
96 – 112
8 - 56

64 - 124

Ratio
range

1110.125Store
9990.125LoadMax filter
1770.125Store

8.7514120.125LoadWavelet
1710.125Store
81380.125LoadPrewitt

VLIWPentiu
m

MIPSFPGA

Ratio of mem ops on CPU to mem ops on FPGA: 8 to 124

W. Najjar UCR
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Why such a speedup?

In one word: inefficiency of the von Neumann model
 Centralized storage: in register file or memory
 Overlapped control and data operations
 Limited parallelism
 Fixed datapath size (32 bits)

FPGA advantages
 Customized datapath: separate data and control flow
 Distributed storage: data stored where it is needed
 VERY LARGE parallelism: operation and iteration levels
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Summary of Advantages

Very large degree of on chip parallelism
 100s of concurrent iterations
 Assuming enough memory or I/O bandwidth to

supply data
Very large on-chip storage
 Reduces the pressure on memory bandwidth
 Fewer support instructions

More efficient computations
 Variable bit-width datapath
 Table lookup for small operations

 (known at compile time)

COMPUTER
SCIENCE &ENGINEERING

FPGA Accelerator Platforms

Walid Najjar
Computer Science & Engineering
University of California Riverside
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RC Platform Models

CPU

FPGA

Memory interface

CPU

CPU

Memory interface

FPGA

S
RA

M
Fast Network

CPU Memory FPGA

S
RA

M CPU Memory FPGA

S
RA

M

2
1

3
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Model 1

Embedded hard or soft CPU(s)
 Xilinx: PPC400, MicroBlaze or PicoBlaze
 Altera: NIOS or NIOS II

On chip bus
 Interface to external memory via FPGA

Advantage: cost, size and power
Embedded systems

W. Najjar UCR
33

Model 2

FPGA module in a CPU socket
 DRC RU100 (Xilinx Virtex 4, Opteron socket)
 Xtremedata XD1000 (Altera Stratix, Opteron

socket)
 Intel QuickAssist (Xilinx and Altera, Xeon socket)

Share memory interface with CPU(s)
 FSB (Intel) Hypertransport (AMD)

Applications
 Desktops, servers
 Small scale HPC
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Model 3

Medium to high-end HPC systems
 Very fast network
 Large number of FPGAs
 Very large memory

Examples
 Cray XD1 (defunct)
 SGI Altix 4700 with RASC blade
 SRC (new SRC 7)
 Cray XT3 with DRC modules (future)

W. Najjar UCR
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Accelerator Platforms

SGI Altix 4700
 Shared memory machine, fast interconnect: 12.8 GB/sec
 Itanium 2, 1.6 GHz
 RASC RC100 Blade: 2 Virtex 4 LX200
 Memory size independent of number of CPUs

Xtremedata XD1000
 Altera Stratix II drop-in for AMD Opteron
 Integrated interface to Hypertransport

 16 bits @ 800 M transfers/sec
 Memory interface

 128 bits DDR-333up to 4 x 4 GB ECC
 Flash memory

• For FPGA configuration or data

W. Najjar UCR
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SGI® RASC™ RC100 Blade

TIO

TIO

NL4

NL4

Loader

NL4

PCI

SSP

SSP

Selmap

Selmap

V4LX200

V4LX200

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM SRAM

SRAM

SSAM

SRAM
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SGI® RASC™ RC100 Blade

W. Najjar UCR
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RASC Interfaces

Three mechanism
 Address shared memory: One page
 Direct I/O to local SRAM: Double buffered
 Streaming

W. Najjar UCR
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Throughput Analysis on RASC

1.8 GB/s sustained 
no separate clock domain 
for interface
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XD 1000 FPGA Co-processor

Drop-in an Opteron 940 socket
 Altera Stratix II FPGA
 HyperTransport

 Multiple interfaces
 16 bits @ 800 M transfers/sec

 SRAM 4 MB ZBT
Memory interface
 128 bits DDR-333up to 4 x 4 GB ECC
 Flash memory

 For FPGA configuration or data

W. Najjar UCR
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Xtremedata XD1000

W. Najjar UCR
42
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XD 1000

W. Najjar UCR
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XD 1000 (drop-in)

W. Najjar UCR
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Standalone Platforms

A board with many FPGAs
BEE2 and BEE3
 Berkeley Emulation Engine, developed at BWRC
 BEE3 is the platform for RAMP

 Objective: emulation/simulation of multicore architecture
design

Many other manufacturers, examples:
 Nallatech http://www.nallatech.com/
 Dini http://www.dinigroup.com/
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BEE2

W. Najjar UCR
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BEE3 Highlights

4 Xilinx Virtex 5
 V5 is a major improvement (65nm)

 6-input LUT (64 bit DP RAM)
 Better Block RAMs
 Improved interconnect
 Better signal integrity

8 Infiniband/CX4 channels
4 x8 PCI Express low profile slots

W. Najjar UCR
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BEE3 Main Board

User 1

5VLXT

User 2

5VLXT

User 3

5VLXT

User 4

5VLXT

DDR 2 DIMM 0

DDR 2 DIMM 1

DDR 2 DIMM 0

DDR 2 DIMM 1

108

108

108

108

133 133

DDR 2 DIMM2

DDR 2 DIMM3

133133

DDR 2 DIMM2

DDR 2 DIMM3

40x2

DDR 2 DIMM 0

DDR 2 DIMM 1

DDR 2 DIMM 0

DDR 2 DIMM 1

133 133

DDR 2 DIMM 2

DDR 2 DIMM 3

133133

DDR 2 DIMM 2

DDR 2 DIMM 3

QSH-DP-

040
40x2

40x2
QSH-DP-

040

QSH-DP-

040

 PCI -E

8X

CX4

CX4

CX4

CX4

CX4

CX4

 PCI -E

8X

 PCI -E

8X

40x2
QSH-DP-

040

CX4

CX4

 PCI -E

8X
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BEE3 Main Board (v3)
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ROCCC

Riverside Optimizing Compiler for
Configurable Computing

Code acceleration
 By mapping of circuits to FPGA
 Achieve same speed as hand-written VHDL codes

Improved productivity
 Allows design and algorithm space exploration

Keeps the user fully in control
 We automate only what is very well understood
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ROCCC Overview

High level 
transformations

Low level 
transformations

Code 
generationHi-CIRRFJava

C/C++

Lo-CIRRF

SystemC

VHDL

Binary

FPGA

CPU

GPU

DSP

Custom
unit

Procedure, loop 
and array 
optimizations

Instruction scheduling
Pipelining and storage
optimizations

CIRRF
Compiler Intermediate 

Representation for 
Reconfigurable Fabrics

Limitations on the code:
•No recursion
•No pointers

W. Najjar UCR
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Focus

Extensive compile time optimizations
 Maximize parallelism, speed and throughput
 Minimize area and memory accesses

Optimizations
 Loop level: fine grained parallelism
 Storage level: compiler configured storage for

data reuse
 Circuit level: expression simplification, pipelining

W. Najjar UCR
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Input memory
(on or off chip)

Output memory
(on or off chip)

Mem Fetch 
Unit

Mem Store 
Unit

Input Buffer

Output Buffer

Multiple loop bodies
Unrolled and pipelined

A Decoupled Execution Model

 Decoupled memory
access from datapath

 Parallel loop iterations
 Pipelined datapath
 Smart buffer (input) does

data reuse
 Memory fetch and store

units, data path
configured by compiler

 Off chip accesses
platform specific
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So far, working compiler with …

Extensive compiler
optimizations and
transformations
Analysis and hardware support
for data reuse
Efficient code generation and
pipelining
Import of existing IP cores
Support for dynamic partial
reconfiguration

W. Najjar UCR
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So far, working compiler with …

Extensive compiler
optimizations and
transformations
Analysis and hardware support
for data reuse
Efficient code generation and
pipelining
Import of existing IP cores
Support for dynamic partial
reconfiguration

Loop, array & procedure
transformations.
Maximize clock speed &
parallelism, within
resources.
Under user control.

W. Najjar UCR
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High Level Transformations

• Scalar replacement
• Array RAW/WAW
   elimination
• Array renaming
• Constant array value
   propagation
• Feedback reference
   elimination

• Code hoisting
• Code sinking
• Constant propagation
• Algebraic identities
  simplification
• Constant folding
• Copy propagation
• Dead code elimination
• Unreachable code
elimination
• Scalar renaming
• Reduction parallelization
• Division/multiplication by
   constant approximation
• If conversion

• Normalization
• Invariant code motion
• Peeling
• Unrolling
• Fusion
• Tiling (blocking)
• Strip mining
• Interchange
• Un-switching
• Skewing
• Induction variable
   substitution
• Forward substitution

ArrayProcedureLoop
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Smart buffer technique
reduces off chip memory
accesses by > 98%

Z. Guo et al. Input Data Reuse In
Compiling Window Operations
Onto Reconfigurable Hardware, in
LCTES 2004.

So far, working compiler with …

Extensive compiler
optimizations and
transformations
Analysis and hardware support
for data reuse
Efficient code generation and
pipelining
Import of existing IP cores
Support for dynamic partial
reconfiguration

W. Najjar UCR
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Clock speed comparable to
hand written HDL codes

Z. Guo et al. Optimized
Generation of Data-Path from C
Codes in DATE 2005.

So far, working compiler with …

Extensive compiler
optimizations and
transformations
Analysis and hardware support
for data reuse
Efficient code generation and
pipelining
Import of existing IP cores
Support for dynamic partial
reconfiguration

W. Najjar UCR
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So far, working compiler with …

Extensive compiler
optimizations and
transformations
Analysis and hardware support
for data reuse
Efficient code generation and
pipelining
Import of existing IP cores
Support for dynamic partial
reconfiguration

Huge wealth of existing
IP cores.

Wrapper makes core look
like a function call in C
code.

Z. Guo et al. Automation of IP
Core Interface Generation for
Reconfigurable Computing, in FPL
2006.
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So far, working compiler with …

Extensive compiler
optimizations and
transformations
Analysis and hardware support
for data reuse
Efficient code generation and
pipelining
Import of existing IP cores
Support for dynamic partial
reconfiguration

DPR allows reconfiguration of a
subset of the FPGA,
dynamically, under software
control.
Reduces configuration overhead.

A. Mitra et al. Dynamic Co-Processor
Architecture for Software Acceleration on
CSoCs, in ICCD 2006.

W. Najjar UCR
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Indices of A[]

coefficients

#define N 516
void begin_hw();
void end_hw();
int main()
{
   int i;
   const int T[5] = {3,5,7};
   int A[N], B[N];
begin_hw();
L1: for (i=0; i<=(N-3); i=i+1)
  {
   B[i] = T[0]*A[i] +

T[1]*A[i+1] + T[2]*A[i+2];
    }
end_hw();  }

Example: 3-tap FIR

COMPUTER
SCIENCE &ENGINEERING

ROCCC High-level Transformations

Walid Najjar
Computer Science & Engineering
University of California Riverside
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Introduction

The candidate codes to be mapped to HW are the
most frequently executed loops
Candidate loop bodies should conform to the
following specifications:
 No function calls that cannot be inlined
 No pointers that cannot be de-aliased
 No break, continue, switch/case, jump, goto statements
 Simple for loop headers as in:

 for(i = some_lower_boundl; i< some_upper_bound; i=i+step)
 Unroll counts should perfectly divide the loop trip count

W. Najjar UCR
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Input memory
(on or off chip)

Output memory
(on or off chip)

Mem Fetch 
Unit

Mem Store 
Unit

Input Buffer

Output Buffer

Multiple loop bodies
Unrolled and pipelined

A Decoupled Execution Model

 Decoupled memory
access from datapath

 Parallel loop iterations
 Pipelined datapath
 Smart buffer (input) does

data reuse
 Memory fetch and store

units, data path
configured by compiler

 Off chip accesses
platform specific

W. Najjar UCR
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SUIF and MachSUIF

SUIF an open compiler
infrastructure.
High level IR

Array index expressions, loop
structures appear as they are in the
original program

Appropriate for:
Global/loop level optimizations
Memory analysis

Machine SUIF is a
backend for SUIF form
Harvard.
Low level IR
SSA representation
Control and data flow graph
analysis libraries are present

x86
VHDL

ROCCC back-end

SUIF2

C

GCC front-end

C

Alpha

MachSUIF

GCC/SUIF back-end
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ROCCC’s Restrictions

Does not compile arbitrary C code
 No pointers
 No explicit control statements

 i.e. break, continue, return, exit, etc.
 No function calls except ROCCC recognized macros

 e.g. ROCCC_min, ROCCC_max, ROCCC_create_lookup_table)
 ROCCC tries to inline all function calls except the macros

recognized by ROCCC
 Simple loop headers

 loop lower bound, upper bound and step counts are compile
time knows constants

 Unroll counts should perfectly divide the loop trip count
 All array index expressions are in form loop_counter+/-

step_count
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User Interface

Designating the candidate loop nest
begin_hw() end_hw() : dummy calls
Loop labels:

to identify the loop for transformations to be applied to that
particular loop

Specifying the transformations
ROCCC does not employ an automatic parallelizer
User stays in control, specify transformations for each loop

The circuit size
Choice of hardware-efficient algorithm for the mapped software
 Performance/throughput of the generated circuit

.pass file: A text file that lists the transformations that are to be
applied to the candidate loop nest through loop labels
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User Interface: .pass file

 Allows the user decide on the loop level
transformations & the parameters to these
transformations
 fully unroll <loop_label>|<max_iteration_count>
 partially unroll <loop_label> <unroll_factor>
 generate tile <loop_label1> <loop_label2> <tile_size1>
<tile_size2>
 generate systolic array <loop_label1> <loop_label2>
<systolic_array_size>
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User Interface: FIR

begin_hw();
L1: for(i=0; i<=511; i=i+1)
       B[i] = T[0]*A[i] + T[1]*A[i+1] + T[2]*A[i+2] +

     T[3]*A[i+3] + T[4]*A[i+4];
end_hw();

L1: partially unroll 15

.pass file
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User Interface: DWT

begin_hw();
L1: for(i=0; i<1024; i++)
L2:    for(j=0; j<1024; j++){
          sum=0;
L3:       for(n=0; n<5; n++)
L4:          for(m=0; m<3; m++)
                 sum = sum + (image[i+n][j+m]*filter[n])/8;
          output[i][j] = sum;
       }
end_hw();

fully unroll L3
fully unroll L4
generate tile L1 L2 4 4

.pass file
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Compiler Optimizations

Objectives
Maximize: parallelism and speed (clock rate)
Minimize: area and unnecessary memory accesses
Optimizations
Pre/Post-Optimization Passes
Array Access Transformations
Global Transformations
Loop Level Transformations
Application Specific Transformations
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Compiler Transformations

Pre-Optimization Passes
Switch Case to If Statements
Do While to While Statement
Inlining Pass
Control Flow Analysis
Data Flow Analysis
Use/Def & Def/Use Chain
Builder
Lookup Table Expansion
DFA Expansion

Array Access
Transformations
Constant Propagation of
“const” qualified Arrays
RAW/WAW Elimination
Scalar Replacement
Feedback Array Access
Elimination
Array Renaming
Systolic Array Generation
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Compiler Transformations

Global Transformations
Constant Propagation, Folding
and Elimination of Algebraic
Identities
Code Hoisting &Sinking
Copy & Reverse Copy
Propagation
Common Subexpression
Elimination
Dead & Unreachable Code
Elimination
Division & Multiplication By
Constants Approximation
If Conversion
Reduction Parallelization
Scalar Renaming

Loop Level
Transformations
Partial & Full Loop Unrolling
Loop Fusing
Loop Interchanging
Loop Invariant Code Motion
Loop Peeling
Loop Normalization
Loop Tiling / Strip Mining
Loop Unswitching
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Phase Order of Transformations

1) Preprocessing Passes
2) Global & Loop Level Transformations
 To simplify and bring the array index expressions to a standard

format

3) Array Transformations
4) Global Transformations
5) Output (Hi-CIRRF) Generation
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GCC Preprocessing Passes

gcc_preprocess
 Adjusts the gcc generated SUIF code to conform to the

SUIF’s internally expected format
 Translates gcc AST to SUIF AST

dismantle_call_expressions
 Exists for backward compatibility reasons
 If not called, the gcc generated SUIF code would not work

w/ the SUIF optimizations generated pre-gcc front end
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Preprocessing Passes

preprocessing_hw_sw_boundary_mark
 Marks the code section in between the begin_hw() and

end_hw() calls in the source code to be sent to HW

preprocessing_roccc_inline
 Inlines all function calls in C leaving only the calls to

ROCCC defined macros

preprocessing_dowhile_to_while_transform
 Converts do while() statements to equivalent if while()

statement sequence

preprocessing_LUT_decs
 Processes the user defined create_lut(<const int array>)

to later generate an LUT definition in HI-CIRRF
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Control Flow Analysis

control_flow_solve
 Builds control flow graph over the SUIF IR using

annotations
 Should be called prior to any global optimization passes
 Preceding passes

• None

control_build_loop_info
 Light weight version of control_flow_solve
 Should be called prior to any loop optimization pass
 Preceding passes

• None
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Data Flow Analysis

dataflow_solve
 Builds the dataflow graph for later transformations
 Should be called prior to any global optimization passes
 Preceding pass

• control_flow_solve

ud_du_chain_builder
 Builds the use/def-def/use chains for further

optimizations
 Should be called prior to any global optimization passes
 Preceding pass

• dataflow_solve
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Global Transformations

global_constant_propagate
 Propagates constants over the SUIF IR
 Preceding pass

• ud_du_chain_builder

global_constant_fold
 Folds the constants w/ in SUIF expressions
 Eliminates algebraic identities
 Should be used alternating w/ the

global_constant_propagate
 Preceding pass

• ud_du_chain_builder
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Global Transformations - 2

global_copy_propagate
 Helps eliminate a=b statements from the SUIF IR
 Preceding pass

• ud_du_chain_builder
 Follow w/ pass

• global_dead_code_eliminate

global_dead_code_eliminate
 Eliminates computation that is executed but does not

help compute any return value
 Preceding pass

• ud_du_chain_builder
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Global Transformations - 3

global_unrchable_code_eliminate
 Removes code that are never executed such as code following

returns, loops w/ 0 iteration count or the unexecuted branch of
ifs whose condition is a known constant.

 Preceding pass
• None

global_div_by_const_eliminate
 Eliminates divisions by constant values w/ a sequence of adds

shifts
 Preceding pass

• None

global_mult_by_const_eliminate
 Eliminates multiplications by constant values w/ a sequence of

adds shifts
 Preceding pass

• None
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Global Transformations - 4

global_reduction_parallelize
 Preceding pass

• ud_du_chain_builder

global_scalar_rename
 Preceding pass

• ud_du_chain_builder

global_code_hoist
 Preceding pass

• ud_du_chain_builder

global_code_sink
 Preceding pass

• ud_du_chain_builder
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Example: Constant propagation

This pass replaces variable uses with
constants, wherever the particular
variable use actually holds a constant at
the replacement point.

c = 5

… = … c … … = … 5 …

If no 
other 
definition
of c along 
all paths
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Example: Constant Folding

This pass replaces constant binary and
identity expressions with the result values of
those expressions

A[0]*0
A[i]*1
A[i+0]

5* 4

0
A[i]
A[i]

20

Following
constant propagation
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Example: Copy Propagation

Replaces variable use (a) with variable use
(b), wherever a is carrying the copy of b on
all incoming paths

a = b a = b a = b

 … = … a …

If no other 
definition of a
on all incoming paths  … = … b …
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Example: Dead Code Elimination

If a variable (a) is never used from the time it
is last defined until either the program ends
or until a is redefined, the unused definition
is removed.

c =  … ; a = a+5;
a = a+5; b = c+7;

     return c; a = b+2;
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Example: Invariant Code Motion

Moves any computation that computes the
same value at every iteration outside of the
loop.

for i=1 to N do

     A[i] = A[i] + b*8;

temp = b*8;

for i=1 to N do

     A[i] = A[i] + temp;
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Array Transformations

array_constant_propagate
 Preceding pass

• None
array_rename

 Preceding pass
• dataDep_preprocess

array_raw_eliminate
 Preceding pass

• None
array_scalar_eliminate

 Preceding pass
• array_raw_eliminate

array_feedback_eliminate
 Parameters: 1-enabled 0-not enabled
 Preceding pass

• dataDep_preprocess
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Array Access Transformations

Constant Propagation of
“const” Qualified Arrays

RAW/WAW Elimination

Array Renaming

Feedback Array
 Elimination
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Example: Scalar Replacement

Isolates memory read/write operations so
that they do not overlap with useful
computation inside the loop body

for i=1 to N do
     A[i] = A[i] + A[i+3]
endfor

for i=1 to N do
     temp0 = A[i]
     temp1 = A[i+3]

     temp2 = temp0 + temp1

     A[i] = temp2
endfor
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Loop Transformations (1)

loop_unswitch
 Parameters: ?
 Preceding pass

• control_build_loop_info

loop_peel
 Parameters: ?
 Preceding pass

• control_build_loop_info

Loop unroll
 Parameters: loop_label unroll_factor
 Preceding pass

• control_build_loop_info
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Loop Transformations (2)

loop_fuse
 Parameters: none
 Preceding pass

• control_build_loop_info

loop_strip_mine
 Parameters: ?
 Preceding pass

• control_build_loop_info

loop_tile
 Parameters: loop1_label loop2_label1_tile_size

label2_tile_size
 Preceding pass

• control_build_loop_info
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Loop Transformations (3)

loop_invariant_code_move
 Parameters: none
 Preceding pass

• control_build_loop_info

loop_unroll_constant_bounds
 Parameters: loop_label max_iteration_count
 Explanation: either of the parameters is specified. If the

max_iteration_count is specified, then the loop_label is “none”
(w/o the quotations)

 Preceding pass
• None

loop_interchange
 Parameters: loop1_label loop2_label
 Preceding pass

• control_build_loop_info
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Example: Loop indep cond removal

This pass removes if statements from within a for loop
wherever the test of the conditional is independent of
the loop

for i=1 to N do
    for j=2 to N do
        if T[i] > 0 then
            A[i,j] = A[i, j-1]*T[i] + B[i]
        else
            A[i,j] = 0.0
        endif
    endfor
endfor

for i=1 to N do
    if T[i] > 0 then
        for j=2 to N do
            A[i,j] = A[i, j-1]*T[i] + B[i]
        endfor
    else
        for j=2 to N do
            A[i,j] = 0.0
        enfor
    endif
endfor
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Example: Index set splitting

Uses of Index Set Splitting is the same as that of Loop
Peeling

for i=1 to 100 do

    A[i] = B[i] + C[i]

    if i > 10 then

        D[i] = A[i] + A[i-10]

    endif

endfor

for i=1 to 10 do

    A[i] = B[i] + C[i]

endfor

for i=11 to 100 do

    A[i] = B[i] + C[i]

    D[i] = A[i] + A[i-10]

endfor
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Example: Loop unswitching

 Removes if statements from within a for loop wherever
the test of the conditional is independent of the loop

for i=1 to N do
    for j=2 to N do
        if T[i] > 0 then
            A[i,j] = A[i, j-1]*T[i] + B[i]
        else
            A[i,j] = 0.0

for i=1 to N do
    if T[i] > 0 then
        for j=2 to N do
            A[i,j] = A[i, j-1]*T[i] + B[i]
    else
        for j=2 to N do
            A[i,j] = 0.0
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Example: Loop peeling

 This pass removes first(last) couple iterations
of a for loop into a separate code

 Loop peeling enables:
 Loop fusion whenever the iteration counts of the candidate loops

do not match
 Removal of conditionals within the loop body that are dependent

on the loop index variable

for i=1 to N do

    A[i] = B[i]

endfor

if N >= 1 then

    A[1] = B[1]

for j=2 to N do

     A[j] = B[j]

endfor
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Example: Loop unrolling

 Loop Unrolling is used to increase parallelism
within the loop body, reduces loop overhead per
iteration, and

 Loop Unrolling modifies the loop step, and
appends as many copies of the loop body as
needed to the loop body.

for i=1 to 100 do

     D[i] = A[i] + A[i-10]

endfor

for i=1 to 100 step 2 do

     D[i] = A[i] + A[i-10]

     D[I+1] = A[I+1] + A[i-9]

endfor
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Example: Loop fusion

Loop Fusion helps reduce redundancy by eliminating
loop overhead and redundant computations by
combining the bodies of multiple loops into a single
loop.

for i1=1 to n do

     A[i1] = A[i1] + k

endfor

for i2=1 to n-1 do

     D[i2] = A[i2] * B[i2]

endfor

A[1] = A[1] + k

for i3=1 to n-1 do

     A[i3+1] = A[i3+1] + k

     D[i3] = A[i3] * B[i3]

endfor

Peeling + fusion
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Loop Strip Mining

This pass forms a two level nested loop out
of a single candidate for loop.
The inner loop of the two level nested loop
processes the data computed by the original
loop in stripes.
This optimization is preferred for vector or
SIMD architectures.

for i=1 to 100 do

     D[i] = A[i] + C[i]

for i=1 to (100 div 4) step 4

     for j=1 to 4

          D[i+j] = A[i+j] + C[i+j]
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for ii=1 to N step block_size do

     for jj=1 to N step block_size do

          for i= ii to min(ii+block_size-1,N) do

               for j= jj to min(jj+block_size-1,N) do

                    D[i,j] = A[i,j] + B[i,j]

endfor

          endfor

     endfor

endfor

Example: Loop tiling/blocking
Loop Tiling processes the data of the original loop in tiles.
This optimization is usually used to improve data locality.

for i=1 to N do

     for j=1 to N do

         D[i,j] = A[i,j] + B[i,j]

     endfor

endfor

block_size

block_size
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Output Generation

Several passes help generate the output and the
sequence of these passes should stay the same as
given in the gen-datapath under the utils directory
The only exception is for systolic array generation.
To enable call:

 array_feedback_eliminate 1
To disable:

 array_feedback_eliminate 0
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Effects of Transformations

On area
Using a set of small and compact cores
 Limited opportunities, more meaningful results
 Codes

 Moving filter
 Weighing filter
 5-tap FIR
 Bit count
 Discrete wavelet transform
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Global Transformations

Moving Filter
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Global Transformations

Weighting Filter
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Global Transformations

BitCount
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Global Transformations

5-tap FIR
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Global Transformations

DWT
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5- tap FIR

Loop Transformations - Unrolling
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15- tap FIR

Loop Transformations - Unrolling
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Moving Filter

Loop Transformations - Unrolling
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DWT

Loop Transformations - Unrolling
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Moravec

Loop Transformations - Unrolling
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Lookup Tables Applications

Arrays of run-time constants
Non linear access to arrays
Found in applications such
 Cryptography: Key dependent substitution boxes
 Image processing: Color palettes
 Bioinformatics : Score matrices for proteins
 Scientific computing: Retrieving the sine of a

number from a table instead of computing it each
time
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Problem

In software such accesses occur in
expressions of the from
 Table[ Input_stream[ index_expr ] ]:

ROCCC compiles the above expression by
creating a hardware LUT for it.
ROCCC only assumes that:
 Table is a const qualified array
 whose values are known at compile time (for now)
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User code

Identify the array
 ROCCC_create_lookup_table(int id, …)
 Placed prior to the loop body where the actual

array access occurs
Access the array
 ROCCC_lookup_in_table(int id, …)
 Looks up the input stream contents in the table

defined by the ROCCC_create_lookup_table call
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Types of LUTs supported

1D LUT
 Cryptography applications as key dependent substitution boxes
 Trigonometric functions in scientific applications.
 Table [ Input_stream [ index_expr ] ]

1D LUT w/ CAM
 Bioinformatics applications where the input stream contents does

not directly address the table itself
 if(input_stream[index_expr] == ‘A’) return Table[1];
 The above expression can be reduced to a single

ROCCC_create_lookup_table call in ROCCC
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Types of LUTs supported

2D LUT:
 Table [ Input_stream1 [ index_expr1 ] ] [

Input_stream2 [ index_expr2 ] ]
2D LUT w/ CAM
 Found in bioinformatics applications, for instance

the lookup operations to BLOSUM and PAM
matrices fall in this category.

 if(S[index_expr] == ‘A’ && T[index_expr] == ‘T’)
return Table[1][3];

 The above expression again is reduced to a single
ROCCC_create_lookup_table call in ROCCC
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• LUT contents: varied from 8bits to 32 bits
• Clock cycle time: varied from 5 to 8 ns

1D LUT
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1D LUT w/ CAM

• Incoming stream addressed the CAM with 8 bits
• LUT contents: varied from 8 bits to 32 bits
• Clock cycle time: varied from 5ns to 7ns
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1D LUT w/ CAM

• Incoming stream addressed the CAM with 16 bits
• LUT contents: varied from 8 bits to 32 bits
•Clock cycle time: varied from 5.5 to 7.5ns
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1D LUT w/ CAM

• Incoming stream addressed the CAM with 32 bits
• LUT contents: varied from 8 bits to 32 bits
• Clock cycle time: varied from 5.2 to 8.2 ns
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Lo-CIRRF Viewer

Example: 3-tap FIR
unrolled once (two
concurrent iterations)

Indices of A[]

coefficients

int main()
{
  int i;
  int A[32];
  int B[32];
  for (i=0; i<28; i=i+1)
    {
      B[i] = 3*A[i] +
5*A[i+1] + 7*A[i+2];
    }
}
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Starting Point

for (i=0; i<62; ++i) {
   for(j=0; j<62; ++j) {
       sum = (a[i][j] + a[i][j+1]) + (a[i+1][j]

+ a[i+1][j+1]);
       if(sum > 170)
               b[i][j] = 255;

       else {
               if(sum < 85)
                    b[i][j]  = 0;
               else
                    b[i][j]  = 127;
               }
   }   }

for (i=0; i<62; ++i) {
  for(j=0; j<62; ++j) {
    smartbuffer2(a, i, j, x1, 0, 0,
            x2, 0, 1, x3, 1, 0, x4, 1, 1);
    sum = (x1 + x2) + (x3 + x4);
    if(sum > 170)
         tmp = 255;
    else {
         if(sum < 85)
                tmp = 0;
        else
                tmp = 127;
           }
    fifo2(b, i, j, tmp, 0, 0);
   }   }
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SSA Control Flow Graph

Macros  instr.
Two predecessor nodes
per joint node
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Static Single
Assignment CFG

Buffer nodes
added

Preparing for
If-converse

for (i=0; i<62; ++i) {
  for(j=0; j<62; ++j) {
    smartbuffer2(a, i, j, x1, 0, 0,
            x2, 0, 1, x3, 1, 0, x4, 1, 1);
    sum = (x1 + x2) + (x3 + x4);
    if(sum > 170)
         tmp = 255;
    else {
         if(sum < 85)
                tmp = 0;
        else
                tmp = 127;
           }
    fifo2(b, i, j, tmp, 0, 0);
   }   }
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Building Data Flow Graph

If-conversion
The definition of each
operand is strictly at
one execution level
higher.
One iteration per
execution level
Pipeline stages
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Special Instructions

int sum = 0;
for ( i = 0; i < 32; i++)
{
sum = sum + A[i];}

int sum = 0;
void main_dp(int main_Tmp0, int* main_Tmp1) {
int main_dp_Tmp2;
main_dp_Tmp2 = ROCCC_load_prev(sum) + main_Tmp0;
ROCCC_store2next(sum, main_dp_Tmp2);
*main_Tmp1 = sum;}

New instr
LPR and
SNX in

Lo-
CIRRF
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Comparison - Clock Rate

0.971101104Wavelet*
0.735133181DCT
1.049194185FIR
1.000170170cos
1.317220167square root
1.259272216udiv
1.000238238mul_acc

0.679144212bit_correlat
or

%ClockROCCCXilinxCode

(* hand written VHDL)

Comparable 

clock rates

Xilinx ISE 5.1i and IP core 5.1i
Xilinx Virtex-II xc2v2000-5 FPGA
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Comparison - Area

1.6524151464Wavelet*
1.76724412DCT
1.09293270FIR
1.00150150cos
2.051199585square root
3.44495144udiv
3.285918mul_acc

2.11199bit_correlat
or

%Area(slice)ROCCCXilinx IPCode Average 

area 

factor: 2.5

W. Najjar UCR
13

2

Scheduling with Predication

flag = 1;
 for (m = 0; m < 10; m = m + 1) {
    if(flag == 1) {
       for(i = 1; i < 251; i = i + 1)
          b[i] = (3 * a[i-1] + 5 * a[i]) +
                 (7 * a[i+1] + 9 * a[i+2]) + 11 *

a[i+3];
          }
      else        {
       for(j = 1; j < 251; j = j + 1)
          d[j] = (3 * c[j-1] + 5 * c[j]) +
               (7 * c[j+1] + 9 * c[j+2]) + 11 *

c[j+3];
         }
    flag = flag ^ 1;
 }
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Scheduling with Predication

Predicator-guarded execution
    ADD   $vr4.s16,   $vr3.s16,   $vr2.s16,   $vr1.u1

Predicator propagation
    PFW  $vr2.u1,   $vr1.u1;     /* Predicator forward */

Branch instructions replaced by boolean
instructions to
 Produce predicators
 Merge predicators

 CFG converted to DFG

W. Najjar UCR
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Scheduling with Predication

node 2
[L0]   ior $vr1321 ←  $vr1324,$vr1314
[L1]    pfw $vr1322 ← $vr1321
[L1 G] sle $vr1326←10,$vr79,$vr1321
node 3
[L0]  not $vr1333 ← $vr1326
[L0]  and $vr1334 ← $vr1333, $vr1322
[L1]  pfw $vr1320 ← $vr1334
[L1 G] sne $vr1325←$vr78, 1, $vr1334
node 10
[L0]     ior $vr1311 ← $vr1328, $vr1329
[L3 G]  xor $vr230 ← $vr78, 1, $vr1311
[L3 G]  add  $vr233 ← $vr79, 1, $vr1311
[L3]     pfw $vr1312 ← $vr1311
[L2 G]  mov  $vr78 ← $vr230, $vr1312
[L2 G]  mov $vr79 ← $vr233, $vr1312
[L2]     pfw  $vr1313 ← $vr1312
[L1]     pfw  $vr1314 ← $vr1313
node 11
[L0]   and $vr1327← $vr1326, $vr1322
[L1]   ret $vr1327

Data flow 
graph

W. Najjar UCR
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Synthesize Results

Aggressively pipelined data-path
Scheduling with predication
High throughput

110053188Alter. FIR

0.559.73181616Nested if-
else

Iter.
per

cycle

clock
(MHz)

# of
slices

Mem
bus

bit-size

DP-
size
(bit)
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Input data reuse

W. Najjar UCR
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Input Data Reuse Opportunity

High memory bandwidth pressure
Opportunity to perform input data reuse

One-dimension Two-dimension

* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *
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Smart Buffer Overview

Input data
reuse
Multiple
buffers
 Synchroniz

ation
 Buffer flash

smart

buffer

0

address

generator

0

FIFO

buffer

0

address

generator

0

scalar data-path

loop &

memory

access

controller

input memory   1

output memory   0

input memory   0 input memory   n

output memory   1 output memory   m

smart

buffer

1

address

generator

1

smart

buffer

n

address

generator

n

FIFO

buffer

1

address

generator

1

FIFO

buffer

m

address

generator

m
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Reduction in memory accesses

Up to 98% eliminated
 Data reused in smart buffer for sliding window

applications
 Only data that is re-fetched is the bottom row(s)

of a window
Automated
 Compiler generates smart buffer based on

 Window size in x and y
 Stride of window in x and y
 Number of data values (pixels) per word fetched
 Fetch bandwidth into FPGA

W. Najjar UCR
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One-dimensional Smart Buffer

 for (i=0; i<N; i=i+1)    {
   B[i] = C0*A[i] + C1*A[i+1]
+C2*A[i+2]
+C3*A[i+3]+C4*A[i+4] ;
}

Hi-CIRRF macro:
smartbuffer1(A,i, 0, 1, 2, 3, 4);

Loop unrolled four times
Input:A[i] through A[i+7] Mem bus:4 data/busword

W. Najjar UCR
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Two-dimensional Smart Buffer

/* 2 x 2  unrolled */
for(i = 1; i < 62; i = i + 2) {
    for(j = 1; j < 62; j = j + 2) {
       C[i-1][j-1] = (A[i-1][j-1] + A[i-1][j] + A[i-1][j+1] + A[i][j-1] + A[i][j+1] + A[i+1][j-1] + A[i+1][j]
                  + A[i+1][j+1]) >> 3 + (A[i][j]>>1) - B[i-1][j-1];
       C[i-1][j]   = (A[i-1][j] + A[i-1][j+1] + A[i-1][j+2]  + A[i][j] + A[i][j+2] + A[i+1][j] + A[i+1][j+1]
                   +  A[i+1][j+2]) >> 3 + (A[i][j+1]>>1) - B[i-1][j];
       C[i][j-1]   = ...;
       C[i][j]      = ...;

}    }
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Address Stream Generation

Starting and ending
addresses
The on-chip memory
accesse delay
The window’s size and the
array’s row size
The unrolled window’s
strides in each dimension
The starting address-
difference between two
adjacent outer-loop
iterations.
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Two-dimensional Smart Buffer

FSM states
 Prologue
 Export
 Idle

W. Najjar UCR
14
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Two-dimensional Smart Buffer

Prologue state 0
Buffer is empty
Waiting for the
first word from
memory

Pro_0

Waiting 
for

Word 0
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Two-dimensional Smart Buffer

Prologue state 1
Got word 0

* *

Pro_1

Word 0
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Two-dimensional Smart Buffer

Prologue state 2
Got word 1

* *

Pro_2

* *
Word 1
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Two-dimensional Smart Buffer

Prologue state 3
Got word 2

* *

Pro_3

* *
* *

Word 2
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Two-dimensional Smart Buffer

Prologue state 4
Got word 3

* *

Pro_4

* *
* *
* *

Word 3
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Two-dimensional Smart Buffer

Prologue state 5
Got word 4

* ** *

Pro_5

* *
* *
* *

Word 4

W. Najjar UCR
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Two-dimensional Smart Buffer

Prologue state 6
Got word 5

* ** *

Pro_6

* ** *
* *
* *
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Two-dimensional Smart Buffer

Prologue state 7
Got word 5

* ** *

Pro_7

* ** *
* ** *
* *

W. Najjar UCR
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Two-dimensional Smart Buffer

Export state 0
Window 0 is
exported to the
data-path
The data-path
does NOT fetch
data from the
buffer

* ** *

Exp_0

* ** *
* ** *
* ** *

Word 7

Window 1

W. Najjar UCR
15

3

Two-dimensional Smart Buffer

Idle state 0
Some data kept

* *

Idle_0

* *
* *
* *
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Two-dimensional Smart Buffer

FSM states
 Prologue
 Export
 Idle

W. Najjar UCR
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Two-dimensional Smart Buffer

Idle state 1
Only new data of
the next iteration
fetched in

* ** *

Idle_1

* *
* *
* *
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Two-dimensional Smart Buffer

Idle state 2
Only new data of
the next iteration
fetched in

* ** *

Idle_2

* ** *
* *
* *
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Two-dimensional Smart Buffer

Idle state 3
Only new data of
the next iteration
fetched in

* ** *

Idle_3

* ** *
* ** *

* *

W. Najjar UCR
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Two-dimensional Smart Buffer

Export state 1
The first column
of this window is
the third column
in the buffer

* ** *

Exp_1

* ** *
* ** *
* ** *

Window 1
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Two-dimensional Smart Buffer

Some data kept
Start over for
next iteration * *

Idle_4

* *
* *
* *
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Other Smart Buffer Features

Multiple input
array support
 Multi-mode and

Single-mode
 Synchronization
 Buffer flashing

Input/output
balance
 Extra idle cycles

added

smart

buffer

0

address

generator

0

FIFO

buffer

0

address

generator

0

scalar data-path

loop &

memory

access

controller

input memory   1

output memory   0

input memory   0 input memory   n

output memory   1 output memory   m

smart

buffer

1

address

generator

1

smart

buffer

n

address

generator

n

FIFO

buffer

1

address

generator

1

FIFO

buffer

m

address

generator

m
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Smart Buffer Performance

constant

FIR

variable

FIR

complex

FIR

2D_lowpass

filter

motion

detection

Area (slices) 156 159 132 325 327

# of regs 5 5 6 16 16

# of states 14 14 8 18 18

Bus size (bits) 8 8 16 16 16

Area (slices) 159 150

# of regs 5 4

# of states 14 4

Bus size (bits) 8 16

Area (slices) 11 11 12 73 73

# of regs 1 1 2 2 2

# of states 1 1 2 2 2

Bus size (bits) 8 8 8 16 16

Area (slices) 43 5 mltpl 99 144 164

Bit size 8 8 8 8 8

210 329 243 542 714

94 68 85 69 42

262 1019 260 5980 5986

0.96 0.25 0.48 0.16 0.16Throughput (iteration/cycle)

Execution time (cycles)

Clock rate (MHz)

Input 

buffer 

A

Input

 buffer 

B

Output 

buffer 

C

Data-path

Overall area (slices)
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Automation  Of IP Core Interface
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Motivation and Challenge

 IP cores present a tremendous wealth
 Speed and area-efficient
 Thoroughly tested and verified

 Compilers for FPGAs have to leverage IP
cores
 IP cores come in the forms of

•  HDLs
•  Lower-level descriptions

 Vary drastically
•  Control specifications
•  Timing specifications

W. Najjar UCR
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An FFT16 IP Example

A Xilinx IP core
Timing-specific

pins
• ce, start, done

Configuration pins
• fwd_inv,

scale_mode
Status pin

• ovflo

 FFT16 core

scale_mode
di_r
di_i

fwd_inv
start
ce ovflo

done
mode_ce

xk_r
xk_i

W. Najjar UCR
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An FFT16 IP Example

The wrappers
• Input & output

wrapper
  No timing-specific

pins from/to outside
Configuration and

status pins
transparent

Unified interface
•  One token + data

ports

out_imag_15

out_wrapper

 FFT16 core
in_imag_15

in_wrapper

out_imag_0in_imag_0
out_tokenin_token

scale_modescale_mode
di_rdi_r
di_idi_i

fwd_inv fwd_inv
start start

ce ce ovflo ovflo
done done

mode_ce

xk_rxk_r
xk_ixk_i

scale_mode
fwd_inv

ovflo
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High-level Abstraction

  Timed C
 Macros-defined timing

  High-level
 No cycle-level

implementation needed
  A bridge between

timing diagrams and
HDLs

*START = 1;
*CE = 1;
  wait_cycles_for(1);
*START = 0;
 wait_cycles_for(1);
  *DI_R = real_reg_0;
  *DI_I = imag_reg_0;
......

  wait_cycles_for(1);
  *DI_R = real_reg_15;
  *DI_I = imag_reg_15;
   wait_cycles_for(69);
    *CE = 0;

W. Najjar UCR
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Wrapper Description

 

void in_fft16   (int in_token,  /*the core’s input predicator*/ 

   int real_0, ... , int real_15,  /*16 real-component inputs*/ 

   int imag_0, ... , int imag_15,/*16 imaginary-component inputs*/ 

   int* CE, int* SCALE_MODE, /*pointers are output*/ 

   int* START, int* FWD_INV, int* DI_R, int* DI_I) 

 { 

      int real_reg_0, ..., real_reg_15; /*internal registers to*/ 

      int imag_reg_0, ..., imag_reg_15; /*store the input data*/ 
 

      *SCALE_MODE = 1; 

      *FWD_INV = 1; 
     

      if(in_token == 1)      { 

            wait_cycles_for(1); 

            real_reg_0 = real_0; 

            ...... 

            real_reg_15 = real_15; 
  

            imag_reg_0 = imag_0; 

           ...... 

            imag_reg_15 = imag_15; 
  

            *START = 1; /*assert start signal in this cycles*/ 

            *CE = 1; /*assert ce signal in this cycles*/ 
  

            wait_cycles_for(1); 

            *START = 0; /*de-assert start signal in this cycles*/ 
 

             wait_cycles_for(1); 

             *DI_R = real_reg_0; 

             *DI_I = imag_reg_0; 

 ...... 
  

             wait_cycles_for(1); 

             *DI_R = real_reg_15; 

             *DI_I = imag_reg_15; 
  

              wait_cycles_for(69);  

              *CE = 0; /*de-assert ce signal 69 cycles later*/ 

       }   } 

store the 16 pairs of 

input data into 

internal registers in 

this cycle 

export the 16 pairs 

of data into the core 

serially in 16 

consecutive cycles 

 
Figure 1 - Timed high-level abstraction of FFT16's input 

wrapper in C. Comments explain the code. 

 

void in_fft16   (int in_token,  /*the core’s input predicator*/ 

   int real_0, ... , int real_15,  /*16 real-component inputs*/ 

   int imag_0, ... , int imag_15,/*16 imaginary-component inputs*/ 

   int* CE, int* SCALE_MODE, /*pointers are output*/ 

   int* START, int* FWD_INV, int* DI_R, int* DI_I) 

 { 

      int real_reg_0, ..., real_reg_15; /*internal registers to*/ 

      int imag_reg_0, ..., imag_reg_15; /*store the input data*/ 
 

      *SCALE_MODE = 1; 

      *FWD_INV = 1; 
     

      if(in_token == 1)      { 

            wait_cycles_for(1); 

            real_reg_0 = real_0; 

            ...... 

            real_reg_15 = real_15; 
  

            imag_reg_0 = imag_0; 

           ...... 

            imag_reg_15 = imag_15; 
  

            *START = 1; /*assert start signal in this cycles*/ 

            *CE = 1; /*assert ce signal in this cycles*/ 
  

            wait_cycles_for(1); 

            *START = 0; /*de-assert start signal in this cycles*/ 
 

             wait_cycles_for(1); 

             *DI_R = real_reg_0; 

             *DI_I = imag_reg_0; 

 ...... 
  

             wait_cycles_for(1); 

             *DI_R = real_reg_15; 

             *DI_I = imag_reg_15; 
  

              wait_cycles_for(69);  

              *CE = 0; /*de-assert ce signal 69 cycles later*/ 

       }   } 

store the 16 pairs of 

input data into 

internal registers in 

this cycle 

export the 16 pairs 

of data into the core 

serially in 16 

consecutive cycles 

 
Figure 1 - Timed high-level abstraction of FFT16's input 

wrapper in C. Comments explain the code. 
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Wrapper Generation

 Macros in C to instructions
Wrapper pragma guides the compiler
Macros → WCF n    (wait cycles for)
CFG → SSA-CFG
WCF n → WCF 1 (passing predicator to next pipeline stage)
CFG to predicated DFG
Instructions guarded by predicator
 except PFW (predicator forward)

All instructions between two WCF 1 executed in the same cycle
 Consist with high-level timing macros

WCF 1 → PFW
 Timing converted to sequential operations
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Lo-CIRRF IR

[L87] pfw  $vr471.u1 <- $vr560.u1
[L87, P] mov   $vr167.u16 <- $vr84.u16,
$vr560.u1

……
[L87, P] mov   $vr198.u16 <- $vr53.u16,
$vr560.u1

[L87, P]  str  0($vr50.p1) <- 1, $vr560.u1
[L87, P]  str   0($vr52.p1) <- 1,  $vr560.u1
[L86]      pfw $vr472.u1 <- $vr471.u1  
[L86,P] str 0($vr50.p1)<-0, $vr471.u1

forwarding valid
input token

register
inputs

assert START

assert CE

predicator passing

de-assert START

W. Najjar UCR
17

0

Wrapped IP Core In the Data-path

instr.  0pipeline stage i: instr.  ni predicator i

instr.  0pipeline stage j: instr.  nj predicator j
input data

original core
in token

out token

output data

instr.  0pipeline stage k: instr.  nk predicator k

wrapped IP core

W. Najjar UCR
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Experimental Results

202002323total cycles
96.445.068.7123clock (MHz)

832183817663area (slice)
Total
circuit

1111addtl. cycle
1113520.3area (%)

92904262Area (slice)
Output
wrapper

1111addtl. cycle
64246.70.3area (%)
53532552Area (slice)

Input
wrapper

RS-encodeFFT16DCT8Cordic
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Dynamic Partial Reconfiguration

Wrapped cores
 Are well defined and bounded entities
 Multiple cores can share a same wrapper
 Ideal set-up for dynamic partial reconfiguration

Dynamic Partial Reconfiguration
 Core selection under software control
 With compiler support
 Implemented with JTAG and SelectMAP

W. Najjar UCR
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DPR Results

14.3698426512FFT8 partial
7.3354216378DCT8 partial

452318141513699Static
configuration

Prog. time
SelectMAP
(ms)

Prog. time
JTAG
(ms)

Bit stream
size
(Kbits)

No.
slices

Design

COMPUTER
SCIENCE &ENGINEERING

Applications

Walid Najjar
Computer Science & Engineering
University of California Riverside
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Examples

Molecular dynamics
 NAMD code

Bioinformatics
 Using Smith-Waterman, a dynamic programming

 Similar: dynamic time warping, motif discovery

Networking (Virtex II Pro)
 Intrusion detection using Bloom Filter

 Probabilistic exact string matching

PCRE Matching
 Perl Compatible Regular Expressions

W. Najjar UCR
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Molecular Dynamics

Objective
 Determine the shape of a molecule by computing the forces

exerted on each atom by all other atoms, in the molecule
and its environment.

 N-body problem.
 Forces:

 Electrostatic (Coulomb)
 Van der Waal

Importance
 Computationally intensive

 months and years of compute time for small problems
 Impact: move bio-chemistry to digital simulation
 Ultimate goal: protein folding

W. Najjar UCR
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Molecular Dynamics Goal

Descriptions of both molecules and solutions
Given an initial state, what state will these
particles be in after a given amount of time?
Analog domain – Time
 Discrete computation approximation
 Timesteps should be as small as possible

 Femtoseconds (10-15 second) are common timesteps
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NAMD Computation

Two types of forces
 Van Der Waal and Electrostatic

Two different calculations of forces
 Bonded

 Forces between atoms in the same molecule
 Nonbonded

 Forces between atoms in different molecules

W. Najjar UCR
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Main Computation Loop

for each timestep
{
  for each atom
  {
    for every other atom
    {
      sum electrostatic forces
      sum Van Der Waal forces
    }
  }
}

W. Najjar UCR
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NAMD’s Optimizations

Computations for reasonable timeframes
could take weeks to months
At some distance, the contributions of forces
due to atoms becomes insignificant
 Apply distance cutoffs
 Apply periodic cutoffs

 Only calculate forces every N timesteps
 Results in 60 different variations of the innermost

loop with slight differences to calculations
performed
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NAMD Execution

Intense Computations

Cutoff Radius

W. Najjar UCR
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NAMD Execution

Fewer Computations

New Cutoff Radius
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NAMD Execution

Next Timestep

Intense Computations

Periodic Cutoff
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Approaches to Speeding up NAMD

Our approach
 Pick the most computationally intensive loop and

replace with a hardware implementation
 Hardware is compiled from C code
 Loop selected by profiling the code running on real data

Alternative approach
 Include the distance calculation with the force

calculation
 Union of all 60 loops

 Have one loop calculate all forces every time regardless
of distance

 Overmapped - >250 stages in the pipe

W. Najjar UCR
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Our Approach

Incoming Data (j atoms)

Distance Calculation

If (within cutoff)

  calculate forces
...

Distance Calculation

If (within cutoff)

  calculate forces

Distance Calculation

If (within cutoff)

  calculate forces

I II

Summation

All loops: 82% of execution time
This loop: 80% of the loops 

executed (65% of total time)

W. Najjar UCR
18

6

Characteristics of NAMD

52343533Total
23161716Mult.

29181817Add., Sub.

AllZYXFp. Ops

Clock
MHz

Area (slices)

ROCCC-Compiled to Virtex 4 LX 200

16856262 (63%)Dp. Fp. (X)
14939478 (44%)Sp. Fp. (XYZ)

Required bytes 
per iteration:
•Sp.: 48 bytes
•Dp. 96 bytes

RASC: 6.4 GB/s
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NAMD Results

Double
precision

Single
precision

267.8100 MHz
450.1168 MHz
535.6100 MHz
799.4149 MHz

 Speedup over
Itanium 2 1.6 GHz

FPGA
Implementation

FPGA:
•Enough bandwidth for single
precision
•Double precision: two cycles
for data for each iteration

Itanium:
•Ideal: one full EPIC
instruction/cycle
•Measured: actual
execution time

W. Najjar UCR
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Memory Bandwidth Issues

Memory is the bottleneck
 Single precision requires 48 bytes per cycle
 Double precision vectors requires 96 bytes per

cycle
 SGI-RASC can feed Single precision once per cycle

 We need 5.856 GB/s for single precision
 Double precision needs two cycles to collect data,

before iteration can start
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Examples

Molecular dynamics
 NAMD code
Bioinformatics
 Using Smith-Waterman, a dynamic

programming
 Similar: dynamic time warping, motif discovery

Networking (Virtex II Pro)
 Intrusion detection using Bloom Filter

 Probabilistic exact string matching
PCRE Matching
 Perl Compatible Regular Expressions
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Smith Waterman Algorithm

Dynamic programming string matching algorithm used
widely in genetics related research.
Computes a matching score of two input strings S and T
using a 2D matrix.
Computation of each cell depends on the computed values of
three neighboring cells: north, west and northwest.

         a          if Si == Tj
         a + substitution_cost    if Si !=Tj

d = min
            b + insertion_cost

     c + deletion_cost

a b

dc

Si

Tj
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Smith-Waterman Code

Dynamic Programming
 Used in protein modeling, bio-informatics, data

mining …
 A wave-front algorithm with two input strings

A[i,j] = F(A[i,j-1], A[i-1, j-1], A[i-1, j])

F  = CostMatrix(A[i,0],A[0,j])
Our Approach
 “Chunk” the input strings in fixed sizes k
 Build a k x k template hardware by compiling two

nested loops (k each) and fully unrolling both.
 Host strip mines the two outer loops over this

template.
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S-W View

A[i,j] A[i,j+1]

A[i+1,j]A[i+1,0]

A[0,j+1]

vertical

input vector

horizontal input

vector

M
IN

M
A

X

A[i,j+1]

A[i,j]
A[i+1,j]

M
U

X

CostMatrix
A[0,j+1]
A[i+1,0]

A[i+1,j+1]

A[i+1,j+1]
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S

T

Input Array

Output

Input Array

Smith Waterman Algorithm

W. Najjar UCR
19

4

Smith Waterman Algorithm

S

T
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Smith Waterman Algorithm

S

T
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Smith Waterman Algorithm

S

T
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Smith Waterman Algorithm

S

T
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Smith Waterman Algorithm

S

T
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Smith Waterman Algorithm

S

T
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Smith Waterman Algorithm

S

T
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Smith Waterman Algorithm

S

T



68

W. Najjar UCR
20

2

Smith Waterman Algorithm

S

T

W. Najjar UCR
20

3

Smith Waterman Algorithm
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Smith Waterman Algorithm

S

T
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ROCCC Implementation

begin_hw();

for(i=1; i<N; i=i+1)
   for(j=1; j<N; j=j+1){
       A[i][j] = F(A[i-1][j],
                   A[i][j-1],
                   A[i-1][j-1],

                   T[i-1],
                   S[j-1]);
   }

end_hw();

S

T
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Loop Unrolling

for(i=1; i<N; i=i+k)
   for(j=1; j<N; j=j+1){

       A[i][j] = F(…);

       A[i+1][j] = F(…);

       A[i+2][j] = F(…);
     …
       A[i+k-1][j] = F(…);

   }

S

T
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Scalar Replacement

S

T

for(i=1; i<N; i=i+k)
   for(j=1; j<N; j=j+1){
       a00 = A[i-1][j-1];a00 = A[i-1][j-1];
       a01 = A[i-1][j];       a01 = A[i-1][j];
       a10 = A[i][j-1];       a10 = A[i][j-1];
       a20 = A[i+1][j-1];       a20 = A[i+1][j-1];
       t0 = T[i-1]; s0 = S[j-1];       t0 = T[i-1]; s0 = S[j-1];

…
       a11 = F(a00,a01,a10,t0,s0);
       a21 = F(a10,a11,a20,t1,s0);

…
       ak1 = F(am0,am1,ak0,tm,sm);

       A[i][j] = a11;       A[i][j] = a11;
       A[i+1][j] = a21;       A[i+1][j] = a21;
          ……
       A[i+k-1][j] = ak1;       A[i+k-1][j] = ak1;
   }
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Feedback Store Elimination
for(i=1; i<N; i=i+k)
   for(j=1; j<N; j=j+1){
       a00 = A[i-1][j-1];
       a01 = A[i-1][j];
       a10 = A[i][j-1];       a10 = A[i][j-1];
       a20 = A[i+1][j-1];       a20 = A[i+1][j-1];
       t0 = T[i-1]; s0 = S[j-1];

……
       a11 = F(a00,a01,a10,t0,s0);
       a21 = F(a10,a11,a20,t1,s0);

…
       ak1 = F(am0,am1,ak0,tm,sm);

       A[i][j] = a11;       A[i][j] = a11;
       A[i+1][j] = a21;       A[i+1][j] = a21;
     …
       A[i+k-1][j] = ak1;
   }

S

T
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Feedback Store Elimination
for(i=1; i<N; i=i+k)
   for(j=1; j<N; j=j+1){
       a00 = A[i-1][j-1];
       a01 = A[i-1][j];
       a10 = ;a10 = ;
       a20 = ;       a20 = ;
       t0 = T[i-1]; s0 = S[j-1];

…
       a11 = F(a00,a01,a10,t0,s0);
       a12 = F(a01,a11,a20,t1,s0);

…
       a1k = F(a0k,amk,ak0,tm,sm);

        = a11;        = a11;
        = a12;        = a12;
     …
       A[i+k-1][j] = ak1;
   }

S

T
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Feedback Store Elimination

for(i=1; i<N; i=i+k){
    x11 = A[i][0];x11 = A[i][0];
    x12 = A[i+1][0];    x12 = A[i+1][0];
      ……
       for(j=1; j<N; j=j+1){
       a00 = A[i-1][j-1];
       a01 = A[i-1][j];
       a10 = x11;a10 = x11;
       a20 = x12;       a20 = x12;
       t0 = T[i-1]; s0 = S[j-1];

…
       x11 = a11;       x11 = a11;
       x12 = a12;       x12 = a12;
     …
       A[i+k-1][j] = ak1;
   }
}

S

T
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Loop Invariant Code Motion

S

T

for(i=1; i<N; i=i+k){
    x11 = A[i][0];
    x12 = A[i+1][0];  ……
    t0 = T[i-1];     t0 = T[i-1]; ……
       for(j=1; j<N; j=j+1){
       a00 = A[i-1][j-1];
       a01 = A[i-1][j];
       a10 = x11;
       a20 = x12;
       s0 = S[j-1];…

…
       x11 = a11;
       x12 = a12;
     …
       A[i+k-1][j] = ak1;
   }
}
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Output Generation

S

T

for(i=1; i<N; i=i+k){
    x11 = A[i][0];
    x12 = A[i+1][0];

      ……
        t0 = T[i-1];  ……
       for(j=1; j<N; j=j+1){
       a00 = A[i-1][j-1];
       a01 = A[i-1][j];
       a10 = x11;
       a20 = x12;
       s0 = S[j-1];…

…
       x11 = a11;
       x12 = a12;
     …
       A[i+k-1][j] = ak1;
    }
}

H
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Host Process in HI-CIRRF

S

T

for(j=1; j<N; j=j+1){
    ROCCC_init_inputscalar(x11,x12, …

    t0, …);
    ROCCC_smartbuffer1(A, j,-1, a00,
                             0, a01);
    ROCCC_input_fifo1(S, j, -1, s0);
    a10 = ROCCC_load_prev(x11);
    a20 = ROCCC_load_prev(x12);

    …
    a11 = F(a00,a01,a10,t0,s0);
    a21 = F(a10,a11,a20,t1,s0);

    …
    ak1 = F(am0,am1,ak0,tm,sm);

    ROCCC_store2next(x11, a11);
    ROCCC_store2next(x12, a12);

    …
    ROCCC_output_fifo(B, j, 1, ak1);
}
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Host Process in HI-CIRRF
for(j=1; j<N; j=j+1){
    ROCCC_init_inputscalar(x11,x12, …

    t0, …);
    ROCCC_smartbuffer1(A, j,-1, a00,
                             0, a01);
    ROCCC_input_fifo1(S, j, -1, s0);
    a10 = ROCCC_load_prev(x11);
    a20 = ROCCC_load_prev(x12);
    …
    a11 = F(a00,a01,a10,t0,s0);
    a21 = F(a10,a11,a20,t1,s0);
    …
    ak1 = F(am0,am1,ak0,tm,sm);

    ROCCC_store2next(x11, a11);
    ROCCC_store2next(x12, a12);
    …
    ROCCC_output_fifo(B, j, 1, ak1);
}

Input FIFO S
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Transformations
•Loop unrolling
•Scalar replacement
•Feedback store elimination
• > 70 passes

Output FIFO B 
(i.e.the last row of A)

Smart Buffer 
first row of A Input FIFO S
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Final Setup
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Systolic execution

0,0

Output FIFO B 

Input FIFO S

1,0

0,1

Output FIFO B 

Input FIFO S

2,0

1,1

0,2

Output FIFO B 

Input FIFO S

3,0

2,1

1,2

0,3

Output FIFO B 

Input FIFO S

4,0

3,1

2,2

1,3

0,4

Output FIFO B 

Input FIFO S
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SW Results

ROCCC                       1       512          70.5B        70.5B               No
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Dynamic Time Warping

Data mining application
 Motif discovery
 Uses dynamic programming code
 Multiplication of integer in each cell computation
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512 cells, 61%
12 bit data

256 cells, 73%
24 bit data

9503852.51Speedup
26.610.80.0710.028GCUPS
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Examples

Molecular dynamics
 NAMD code

Bioinformatics
 Using Smith-Waterman, a dynamic programming

 Similar: dynamic time warping, motif discovery

Networking (Virtex II Pro)
 Intrusion detection using Bloom Filter

 Probabilistic exact string matching

PCRE Matching
 Perl Compatible Regular Expressions

W. Najjar UCR
22

2

Bloom filter

Is a data structure used to test set
membership of an element
Bloom filter has an array of N elements – all
of which are set to ‘0’ initially
The members of the set are inserted to the
filter using multiple hash functions.
Each hash function returns a unique value in
the range of 0 to N-1.
During insertion, all locations returned by
the hash function are set to 1.
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Search operation in a bloom filter

During a search operation, multiple hash
functions are applied to an incoming value.
If all the locations returned by the hash function
contain ‘1’, then the element belongs to the set
with a probability P.
For a Bloom filter with m elements, the
probability of a false positive is given by :

Where,
K denotes the number of hash functions
m is the number of bits in the Bloom filter array
n is the number of elements inserted into the Bloom filter
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Bloom filter for virus detection

Ours is the first bloom filter based virus detection code
automatically generated from C.
Each Signature Processing Engine (SPE) contains the generated
bloom filter code and is used to detect signatures
Bloom filter output contains false positives. Hence a RAM is
used for absolute string comparison and to eliminate false
positives.

SPE SPE SPE SPE SPE

FPE FPE FPE FPE FPE

Streaming data window

Legend :      SPE : Signature Processing Engine   FPE: False Positive Eliminator

W. Najjar UCR
22

5

Virus signatures

Signatures are unique bit patterns
that correspond to a virus/malware
We used the virus rules in the
bleeding snort database.
Each rule consists of a rule header
and an option.
Header contains information to be
used in packet classification.
Rule option contains the signatures
to be used in intrusion detection.
Most of the signatures in bleeding-
snort database were under 32 bytes.
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C code

We implemented a
functional protoype
where we compared
signatures of width 1
byte.

Hash functions are
implemented as XOR
operations

The innerloop
processes the each byte
of the incoming 8-byte
value in parallel.

for(i=0;i<8;i++)
  {
    temp = value &0xff;
    result_location1 = temp ^

hash_function1[i];;
    result_location2 = temp ^

hash_function2[i];;
    result_location3 = temp ^

hash_function3[i];;
    result_location4 = temp ^

hash_function4[i];;

   found = bit_array[result_location1] &
               bit_array[result_location2] &
              bit_array[result_location3] &
              bit_array[result_location4] ;
   value = value >> 8;
  }
  return (found);
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Datapath Analysis

Compiler exploits ILP by
grouping instructions into
different execution levels.
Each level corresponds to a
loop iteration and the
instructions are executed
simultaneously.
ROCC automatically places
latches for pipelining

Each latched level corresponds to one pipeline
stage and has a delay of one cycle.

In the 3-stage pipeline each box of XOR
corresponds to one byte of input being XORed
with  a hashing function
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Throughput evaluation

The generated code does not have loop-
carried dependency and the compiler
pipelines the datapath fully.
Clock frequency of the synthesized circuit
was found to be 73MHz.
The BRAM on our target FPGA can process 32
bytes per cycle.
Throughput = bits per cycle * clock
frequency
 32*8 * 73* 100,000 bits/sec
~ 18.6 Gbps
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Examples

Molecular dynamics
 NAMD code

Bioinformatics
 Using Smith-Waterman, a dynamic programming

 Similar: dynamic time warping, motif discovery

Networking (Virtex II Pro)
 Intrusion detection using Bloom Filter

 Probabilistic exact string matching

PCRE Matching
 Perl Compatible Regular Expressions
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Regular

Expression

From Ruleset

PCRE
Compile

PCRE 
Execute

SNORT
Packet Interception

And Detection

Payload

Match ?

Alert 
Rules
Data-
base

Compiled Regular
Expression

SNORT IDS with
PCRE Regexp matching
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rasclib_algorithm_send

SNORT
Packet Interception

And Detection

Payload

Match ?

Alert 

rasclib_algorithm_receive

Load Bitstream
for New
Ruleset

Ruleset

Bit-
streams

New
Rule-
set

Y

N

SNORT IDS with RASC RC100 based
Regexp Matching
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NFA1 NFA 2 NFA3 NFA n

INPUT
Payload
Buffer

Output Match Data

Match

Chained NFA engines
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NFA 0

NFA 13

Byte 0 Byte 1 Byte 2 Byte 15

NFA3

NFA14

NFA 15

NFA 16

NFA 27

NFA 17

NFA 210

NFA 211

NFA 212

NFA 213

NFA 1

NFA 2

NFA 28

NFA 29

NFA 30

NFA 41

…
…

…
…

NFA 31

…
…

Payload Buffer 16 * 65536 Bytes (SRAM on RC100 Blade)

8 8 8

81 1 1 1

Match Data 16 * 14 Bits

BRAM BRAM

Memory Interface Module to SRAM on RC 100 Blade
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Architecture of NFA engines
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4

Throughput evaluation
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Comparison


