
1

COMPUTER
SCIENCE &ENGINEERING

Compiling Code Accelerators
for FPGAs

Walid Najjar
Computer Science & Engineering
University of California Riverside

W. Najjar UCR
2

Outline

Introduction
 From glue logic to accelerators

FPGA Accelerator Platforms

ROCCC
 The Front-end

 The Back-end

Applications

Compilers for FPGA

COMPUTER
SCIENCE &ENGINEERING

Introduction
From glue logic to accelerators

Walid Najjar
Computer Science & Engineering
University of California Riverside

2

W. Najjar UCR
4

Outline

FPGA Primer

Historical Evolution

FPGA: A New HPC Platform?

Analysis of the Speedup

Conclusion

W. Najjar UCR
5

An FPGA Primer

A logic cell, LUT: look-up table

A programmable switch Xilinx Virtex 4 LX200:
 > 200,000 logic cells
In 89,000 slices
96 DSP cores
500 MHz rated
0.7 MB on-chip BRAM

1-bit
SRAM

Basic building block

Program
memory

W. Najjar UCR
6

Field Programmable Gate Array

PowerPC

Multi-Gigabit
transceivers

Block
RAM

Flip-flopLUT

Multiplexer

Multiplier

Logic

Clocking

3

W. Najjar UCR
7

Programming FPGAs

Functional
Specification

HDL

Synthesis

Place & Route

Download &
Verify in Circuit

ALU

Z

A B

Specify the behavior of a machine

W. Najjar UCR
8

Programming FPGAs

Functional
Specification

HDL

Synthesis

Place & Route

Download &
Verify in Circuit

ALU

Z

A B

-- import std_logic from the IEEE library
library IEEE;
use IEEE.std_logic_1164.all;
-- this is the entity
entity 2input_with_control is
 port (
 A : in std_logic;
 B : in std_logic;
 Z : out std_logic;
 Control: in std_logic);
end entity 2input_with_control;
-- here comes the architecture
architecture ALU of 2input_with_control is
-- Internal signals and components defined here
begin
 case Control is

when ‘1’ => Z <= A - B;
when others => Z <= A + B;

end architecture ALU;Hardware description language:
VHDL, Verilog, SystemC

W. Najjar UCR
9

Programming FPGAs

Functional
Specification

HDL

Synthesis

Place & Route

Download &
Verify in Circuit

(cell yyy (cellType generic)
 (view schematic_ (viewType netlist)
 (interface
 (port CLEAR (direction INPUT))
 (port CLOCK (direction INPUT)) ...)
 (contents
 (instance I_36_1 (viewRef view1 (cellRef dff_4)))
 (instance (rename I_36_3 "I$3") (viewRef view1
 (cellRef addsub_4)))
 ...
 (net CLEAR
 (joined
 (portRef CLEAR)
 (portRef aset (instanceRef I_36_1))
 (portRef aset (instanceRef I_36_3))))

ALU

Z

A B

Synthesis tool: HDL to netlist format

(op (input list) (output list))

4

W. Najjar UCR
10

Programming FPGAs

Functional
Specification

HDL

Synthesis

Place & Route

Download &
Verify in Circuit

Which op on which logic cell in which slice?
Which switch should be open?
Which should be closed?

While (Minimize area and clock cycle time!)

NP-hard -- Simulated annealing,
 large jobs take hours and days.

ALU

Z

A B

Place and route tool
generates
the bits that go here:

1-bit
SRAM

W. Najjar UCR
11

Low-level Abstraction

Functional
Specification

HDL

Synthesis

Place & Route

Download &
Verify in Circuit

Clock-cycle level accuracy
Tedious
Error-prone
Acquisition of the skill
 Digital design background
 Syntax

Low-level design
Low productivity

W. Najjar UCR
12

Outline

FPGA Primer

Historical Evolution

FPGA: A New HPC Platform?

Analysis of the Speedup

Conclusion

5

W. Najjar UCR
13

A historical perspective

The ages of FPGA evolution‡

 1984 -- 1991 Age of Invention
 1992 -- 1999 Age of Expansion
 2000 -- 2007 Age of Accumulation
 2008 -- 2015 Age of Specialization

‡ Adapted from
Steve Trimberger, Xilinx, Keynote address at FPL 2007,
Amsterdam, August 2007.

W. Najjar UCR
14

Age of Invention

Technology
 FPGAs used and designed as glue logic chips
 Tight technology constraints

Applications
 FPGAs much smaller than most applications

problem size
 Efficiency on chip is key

Tools
 Design automation is secondary

W. Najjar UCR
15

Age of Expansion

Process technology
 Cheap transistors and wires
 Larger devices

Applications
 FPGA size approaches problem size on both

computing and communication applications
Tools
 Ease of design becomes important

6

W. Najjar UCR
16

Age of Accumulation

Technology
 FPGAs rapidly climb the process curves
 Become the cutting edge devices

Applications
 Variety of applications drive introduction of

 CPUs, memory, DSP, special arithmetic, high-
performance I/O

 Complete system on chip (first SoCs?)
Tools
 Design tools must address system level issues

W. Najjar UCR
17

Next age?

Specialized acceleration
 Customized acceleration circuit tailored to a

specific code
 Reconfigurable, static and dynamic
 Steamed data to/from FPGA

Applications
 Image, signal and video processing
 Security (encryption), intrusion detection
 Data mining
 Numerical applications

W. Najjar UCR
18

Outline

FPGA Primer

Historical Evolution

FPGA: A New HPC Platform?

Analysis of the Speedup

Conclusion

7

W. Najjar UCR
19

FPGA: A New HPC Platform?

David Strensky, FPGAs Floating-Point Performance -- a pencil and
paper evaluation, in HPCwire.com

Comparing a dual core Opteron to FPGA on fp performance:

•Opteron: 2.5 GHz, 1 add and 1 mult per cycle. 2.5 x 2 x 2 = 10 Gflops

•FPGAs Xilinx V4 and V5 with DSP cores

10,368576/28819251,840550LX330
6,912384/19212834,560550LX220

Virtex 4

Virtex 5
6,048366/09689,088500LX200

5,185288/09667,584500LX160

Total
Kbits

BRAM
18bit/36bit

DSP48
(slices)

Logic
(slices)

Speed
(MHz)

W. Najjar UCR
20

10,368576/28819251,840550LX330
6,912384/19212834,560550LX220

Virtex 4

Virtex 5
6,048366/09689,088500LX200

5,185288/09667,584500LX160

Total
Kbits

BRAM
18bit/36bit

DSP48
(slices)

Logic
(slices)

Speed
(MHz)

FPGA Resources

 Balanced allocation of dp fp adders, multipliers
and registers

 Use both DSP and logic for multipliers,run at
lower speed

 Logic for I/O interfaces

W. Najjar UCR
21

Balanced Designs

2815.9Gflops

237185Speed
(MHz)

166DSP
5943Add/Mult

LX330LX200

55.323.95Add
Mult
MAc

19.912.05
28.015.910
V-5V-4Opt

dp Gflop/s

Same number of mults as adds
(matrix multiplication).
Double precision

Watts

~352595
V-5V-4Opt

Higher percentage of peak
on FPGA (streaming)
0.25 to 0.3 of the power!

8

W. Najjar UCR
22

Outline

FPGA Primer

Historical Evolution

FPGA: A New HPC Platform?

Analysis of the Speedup

Conclusion

W. Najjar UCR
23

Analysis of the speedup

Consider a loop
 N is the number of iterations
 I is the number of CPU instructions

per iteration
 O is the number of arithmetic or

logic operations per iteration
 S = I - O is the number of support

instructions per iteration
 Index arithmetic
 Loop count
 Control operations
 Load and store

Loop is mapped on FPGA unrolled P
times

 k is number of stages in loop body
pipeline on FPGA. Assume N/P >> k

!

CPUcycles = I " N "CPI

!

FPGAcycles =
N

P
+ k

!

Speedup =
CPUcycles

FPGAcycles

W. Najjar UCR
24!

Speedup =
CPUcycle

FPGAcycle
=
I " N "CPI

N

P

=

I "CPI " P = Inefficiency "O"CPI " P

Analysis of the speedup -2

Let Efficiency = O/I
 E.g MFLOPS/MIPS ratio
 Inefficiency = I/O
 = 1 + S/O

9

W. Najjar UCR
25

Inefficiency factor

27.62VLIW

26.38Pentium

46.78MIPS
Max filter

15.02VLIW

7.518Pentium

12.58MIPSWavelet
transform

7.022VLIW

6.198Pentium

8.648MIPSPrewitt edge
detection

Inefficiency
factor

Ratio of iteration
Level parallelism

CPUBenchmarks

From Guo et al. in 2004 Symp. On FPGA, February 2004

W. Najjar UCR
26

Support instructions

Memory operations/pixel

8
72

8 – 56
96 – 112
8 - 56

64 - 124

Ratio
range

1110.125Store
9990.125LoadMax filter
1770.125Store

8.7514120.125LoadWavelet
1710.125Store
81380.125LoadPrewitt

VLIWPentiu
m

MIPSFPGA

Ratio of mem ops on CPU to mem ops on FPGA: 8 to 124

W. Najjar UCR
27

Why such a speedup?

In one word: inefficiency of the von Neumann model
 Centralized storage: in register file or memory
 Overlapped control and data operations
 Limited parallelism
 Fixed datapath size (32 bits)

FPGA advantages
 Customized datapath: separate data and control flow
 Distributed storage: data stored where it is needed
 VERY LARGE parallelism: operation and iteration levels

10

W. Najjar UCR
28

Outline

FPGA Primer

Historical Evolution

FPGA: A New HPC Platform?

Analysis of the Speedup

Conclusion

W. Najjar UCR
29

Summary of Advantages

Very large degree of on chip parallelism
 100s of concurrent iterations
 Assuming enough memory or I/O bandwidth to

supply data
Very large on-chip storage
 Reduces the pressure on memory bandwidth
 Fewer support instructions

More efficient computations
 Variable bit-width datapath
 Table lookup for small operations

 (known at compile time)

COMPUTER
SCIENCE &ENGINEERING

FPGA Accelerator Platforms

Walid Najjar
Computer Science & Engineering
University of California Riverside

11

W. Najjar UCR
31

RC Platform Models

CPU

FPGA

Memory interface

CPU

CPU

Memory interface

FPGA

S
RA

M
Fast Network

CPU Memory FPGA

S
RA

M CPU Memory FPGA

S
RA

M

2
1

3

W. Najjar UCR
32

Model 1

Embedded hard or soft CPU(s)
 Xilinx: PPC400, MicroBlaze or PicoBlaze
 Altera: NIOS or NIOS II

On chip bus
 Interface to external memory via FPGA

Advantage: cost, size and power
Embedded systems

W. Najjar UCR
33

Model 2

FPGA module in a CPU socket
 DRC RU100 (Xilinx Virtex 4, Opteron socket)
 Xtremedata XD1000 (Altera Stratix, Opteron

socket)
 Intel QuickAssist (Xilinx and Altera, Xeon socket)

Share memory interface with CPU(s)
 FSB (Intel) Hypertransport (AMD)

Applications
 Desktops, servers
 Small scale HPC

12

W. Najjar UCR
34

Model 3

Medium to high-end HPC systems
 Very fast network
 Large number of FPGAs
 Very large memory

Examples
 Cray XD1 (defunct)
 SGI Altix 4700 with RASC blade
 SRC (new SRC 7)
 Cray XT3 with DRC modules (future)

W. Najjar UCR
35

Accelerator Platforms

SGI Altix 4700
 Shared memory machine, fast interconnect: 12.8 GB/sec
 Itanium 2, 1.6 GHz
 RASC RC100 Blade: 2 Virtex 4 LX200
 Memory size independent of number of CPUs

Xtremedata XD1000
 Altera Stratix II drop-in for AMD Opteron
 Integrated interface to Hypertransport

 16 bits @ 800 M transfers/sec
 Memory interface

 128 bits DDR-333up to 4 x 4 GB ECC
 Flash memory

• For FPGA configuration or data

W. Najjar UCR
36

SGI® RASC™ RC100 Blade

TIO

TIO

NL4

NL4

Loader

NL4

PCI

SSP

SSP

Selmap

Selmap

V4LX200

V4LX200

SRAM

SRAM

SRAM

SRAM

SRAM

SRAM SRAM

SRAM

SSAM

SRAM

13

W. Najjar UCR
37

SGI® RASC™ RC100 Blade

W. Najjar UCR
38

RASC Interfaces

Three mechanism
 Address shared memory: One page
 Direct I/O to local SRAM: Double buffered
 Streaming

W. Najjar UCR
39

Throughput Analysis on RASC

1.8 GB/s sustained
no separate clock domain
for interface

14

W. Najjar UCR
40

XD 1000 FPGA Co-processor

Drop-in an Opteron 940 socket
 Altera Stratix II FPGA
 HyperTransport

 Multiple interfaces
 16 bits @ 800 M transfers/sec

 SRAM 4 MB ZBT
Memory interface
 128 bits DDR-333up to 4 x 4 GB ECC
 Flash memory

 For FPGA configuration or data

W. Najjar UCR
41

Xtremedata XD1000

W. Najjar UCR
42

15

W. Najjar UCR
43

XD 1000

W. Najjar UCR
44

XD 1000 (drop-in)

W. Najjar UCR
45

Standalone Platforms

A board with many FPGAs
BEE2 and BEE3
 Berkeley Emulation Engine, developed at BWRC
 BEE3 is the platform for RAMP

 Objective: emulation/simulation of multicore architecture
design

Many other manufacturers, examples:
 Nallatech http://www.nallatech.com/
 Dini http://www.dinigroup.com/

16

W. Najjar UCR
46

BEE2

W. Najjar UCR
47

BEE3 Highlights

4 Xilinx Virtex 5
 V5 is a major improvement (65nm)

 6-input LUT (64 bit DP RAM)
 Better Block RAMs
 Improved interconnect
 Better signal integrity

8 Infiniband/CX4 channels
4 x8 PCI Express low profile slots

W. Najjar UCR
48

BEE3 Main Board

User 1

5VLXT

User 2

5VLXT

User 3

5VLXT

User 4

5VLXT

DDR 2 DIMM 0

DDR 2 DIMM 1

DDR 2 DIMM 0

DDR 2 DIMM 1

108

108

108

108

133 133

DDR 2 DIMM2

DDR 2 DIMM3

133133

DDR 2 DIMM2

DDR 2 DIMM3

40x2

DDR 2 DIMM 0

DDR 2 DIMM 1

DDR 2 DIMM 0

DDR 2 DIMM 1

133 133

DDR 2 DIMM 2

DDR 2 DIMM 3

133133

DDR 2 DIMM 2

DDR 2 DIMM 3

QSH-DP-

040
40x2

40x2
QSH-DP-

040

QSH-DP-

040

 PCI -E

8X

CX4

CX4

CX4

CX4

CX4

CX4

 PCI -E

8X

 PCI -E

8X

40x2
QSH-DP-

040

CX4

CX4

 PCI -E

8X

17

W. Najjar UCR
49

BEE3 Main Board (v3)

Q
S

H
-D

P
-0

4
0

Q
S

H
-D

P
- 0

4
0

Q
S

H
-D

P
-
0
4
0

Q
S

H
-D

P
-
0
4
0

2
4
 p

i n
 A

T
X

 P
W

R

Fujitsu 2x2
CX 4

Fujitsu 2x2
CX4

P
C

I-E
x
p
re

s
s
 8

x

6
4

-p
in

 0
. 1

" H
e

a
d

e
r C

o
n

n
e

cto
r

1
2

V

P
W

R

P
C

I- E
x
p
re

s
s
 8

x

P
C

I-E
x
p
re

s
s
 8

x

P
C

I- E
x
p
re

s
s
 8

x

4
 G

B
 D

D
R

2
- 6

6
7
 D

R
A

M

4
 G

B
 D

D
R

2
-6

6
7
 D

R
A

M

4
 G

B
 D

D
R

2
-6

6
7
 D

R
A

M

4
 G

B
 D

D
R

2
-6

6
7
 D

R
A

M

5VLXT

FF1136

4
 G

B
 D

D
R

2
-6

6
7
 D

R
A

M

4
 G

B
 D

D
R

2
- 6

6
7
 D

R
A

M

4
 G

B
 D

D
R

2
-6

6
7
 D

R
A

M

4
 G

B
 D

D
R

2
-6

6
7
 D

R
A

M

5VLXT

FF1136

4
 G

B
 D

D
R

2
-6

6
7
 D

R
A

M
4
 G

B
 D

D
R

2
-6

6
7
 D

R
A

M

4
 G

B
 D

D
R

2
- 6

6
7
 D

R
A

M

4
 G

B
 D

D
R

2
-6

6
7

 D
R

A
M

5VLXT
FF1136

4
 G

B
 D

D
R

2
-6

6
7
 D

R
A

M
4

 G
B

 D
D

R
2
-6

6
7
 D

R
A

M

4
 G

B
 D

D
R

2
- 6

6
7
 D

R
A

M
4
 G

B
 D

D
R

2
-6

6
7
 D

R
A

M

5VLXT
FF1136

1
.0
V

1
.0
V

1
. 8
V

1
. 0
V

1
.0
V

1
.8
V

2.5V

RJ45 RJ45

COMPUTER
SCIENCE &ENGINEERING

The ROCCC Project

Walid Najjar
Computer Science & Engineering
University of California Riverside

W. Najjar UCR
51

ROCCC

Riverside Optimizing Compiler for
Configurable Computing

Code acceleration
 By mapping of circuits to FPGA
 Achieve same speed as hand-written VHDL codes

Improved productivity
 Allows design and algorithm space exploration

Keeps the user fully in control
 We automate only what is very well understood

18

W. Najjar UCR
52

ROCCC Overview

High level
transformations

Low level
transformations

Code
generationHi-CIRRFJava

C/C++

Lo-CIRRF

SystemC

VHDL

Binary

FPGA

CPU

GPU

DSP

Custom
unit

Procedure, loop
and array
optimizations

Instruction scheduling
Pipelining and storage
optimizations

CIRRF
Compiler Intermediate

Representation for
Reconfigurable Fabrics

Limitations on the code:
•No recursion
•No pointers

W. Najjar UCR
53

Focus

Extensive compile time optimizations
 Maximize parallelism, speed and throughput
 Minimize area and memory accesses

Optimizations
 Loop level: fine grained parallelism
 Storage level: compiler configured storage for

data reuse
 Circuit level: expression simplification, pipelining

W. Najjar UCR
54

Input memory
(on or off chip)

Output memory
(on or off chip)

Mem Fetch
Unit

Mem Store
Unit

Input Buffer

Output Buffer

Multiple loop bodies
Unrolled and pipelined

A Decoupled Execution Model

 Decoupled memory
access from datapath

 Parallel loop iterations
 Pipelined datapath
 Smart buffer (input) does

data reuse
 Memory fetch and store

units, data path
configured by compiler

 Off chip accesses
platform specific

19

W. Najjar UCR
55

So far, working compiler with …

Extensive compiler
optimizations and
transformations
Analysis and hardware support
for data reuse
Efficient code generation and
pipelining
Import of existing IP cores
Support for dynamic partial
reconfiguration

W. Najjar UCR
56

So far, working compiler with …

Extensive compiler
optimizations and
transformations
Analysis and hardware support
for data reuse
Efficient code generation and
pipelining
Import of existing IP cores
Support for dynamic partial
reconfiguration

Loop, array & procedure
transformations.
Maximize clock speed &
parallelism, within
resources.
Under user control.

W. Najjar UCR
57

High Level Transformations

• Scalar replacement
• Array RAW/WAW
 elimination
• Array renaming
• Constant array value
 propagation
• Feedback reference
 elimination

• Code hoisting
• Code sinking
• Constant propagation
• Algebraic identities
 simplification
• Constant folding
• Copy propagation
• Dead code elimination
• Unreachable code
elimination
• Scalar renaming
• Reduction parallelization
• Division/multiplication by
 constant approximation
• If conversion

• Normalization
• Invariant code motion
• Peeling
• Unrolling
• Fusion
• Tiling (blocking)
• Strip mining
• Interchange
• Un-switching
• Skewing
• Induction variable
 substitution
• Forward substitution

ArrayProcedureLoop

20

W. Najjar UCR
58

Smart buffer technique
reduces off chip memory
accesses by > 98%

Z. Guo et al. Input Data Reuse In
Compiling Window Operations
Onto Reconfigurable Hardware, in
LCTES 2004.

So far, working compiler with …

Extensive compiler
optimizations and
transformations
Analysis and hardware support
for data reuse
Efficient code generation and
pipelining
Import of existing IP cores
Support for dynamic partial
reconfiguration

W. Najjar UCR
59

Clock speed comparable to
hand written HDL codes

Z. Guo et al. Optimized
Generation of Data-Path from C
Codes in DATE 2005.

So far, working compiler with …

Extensive compiler
optimizations and
transformations
Analysis and hardware support
for data reuse
Efficient code generation and
pipelining
Import of existing IP cores
Support for dynamic partial
reconfiguration

W. Najjar UCR
60

So far, working compiler with …

Extensive compiler
optimizations and
transformations
Analysis and hardware support
for data reuse
Efficient code generation and
pipelining
Import of existing IP cores
Support for dynamic partial
reconfiguration

Huge wealth of existing
IP cores.

Wrapper makes core look
like a function call in C
code.

Z. Guo et al. Automation of IP
Core Interface Generation for
Reconfigurable Computing, in FPL
2006.

21

W. Najjar UCR
61

So far, working compiler with …

Extensive compiler
optimizations and
transformations
Analysis and hardware support
for data reuse
Efficient code generation and
pipelining
Import of existing IP cores
Support for dynamic partial
reconfiguration

DPR allows reconfiguration of a
subset of the FPGA,
dynamically, under software
control.
Reduces configuration overhead.

A. Mitra et al. Dynamic Co-Processor
Architecture for Software Acceleration on
CSoCs, in ICCD 2006.

W. Najjar UCR
62

Indices of A[]

coefficients

#define N 516
void begin_hw();
void end_hw();
int main()
{
 int i;
 const int T[5] = {3,5,7};
 int A[N], B[N];
begin_hw();
L1: for (i=0; i<=(N-3); i=i+1)
 {
 B[i] = T[0]*A[i] +

T[1]*A[i+1] + T[2]*A[i+2];
 }
end_hw(); }

Example: 3-tap FIR

COMPUTER
SCIENCE &ENGINEERING

ROCCC High-level Transformations

Walid Najjar
Computer Science & Engineering
University of California Riverside

22

W. Najjar UCR
64

Introduction

The candidate codes to be mapped to HW are the
most frequently executed loops
Candidate loop bodies should conform to the
following specifications:
 No function calls that cannot be inlined
 No pointers that cannot be de-aliased
 No break, continue, switch/case, jump, goto statements
 Simple for loop headers as in:

 for(i = some_lower_boundl; i< some_upper_bound; i=i+step)
 Unroll counts should perfectly divide the loop trip count

W. Najjar UCR
65

Input memory
(on or off chip)

Output memory
(on or off chip)

Mem Fetch
Unit

Mem Store
Unit

Input Buffer

Output Buffer

Multiple loop bodies
Unrolled and pipelined

A Decoupled Execution Model

 Decoupled memory
access from datapath

 Parallel loop iterations
 Pipelined datapath
 Smart buffer (input) does

data reuse
 Memory fetch and store

units, data path
configured by compiler

 Off chip accesses
platform specific

W. Najjar UCR
66

SUIF and MachSUIF

SUIF an open compiler
infrastructure.
High level IR

Array index expressions, loop
structures appear as they are in the
original program

Appropriate for:
Global/loop level optimizations
Memory analysis

Machine SUIF is a
backend for SUIF form
Harvard.
Low level IR
SSA representation
Control and data flow graph
analysis libraries are present

x86
VHDL

ROCCC back-end

SUIF2

C

GCC front-end

C

Alpha

MachSUIF

GCC/SUIF back-end

23

W. Najjar UCR
67

ROCCC’s Restrictions

Does not compile arbitrary C code
 No pointers
 No explicit control statements

 i.e. break, continue, return, exit, etc.
 No function calls except ROCCC recognized macros

 e.g. ROCCC_min, ROCCC_max, ROCCC_create_lookup_table)
 ROCCC tries to inline all function calls except the macros

recognized by ROCCC
 Simple loop headers

 loop lower bound, upper bound and step counts are compile
time knows constants

 Unroll counts should perfectly divide the loop trip count
 All array index expressions are in form loop_counter+/-

step_count

W. Najjar UCR
68

User Interface

Designating the candidate loop nest
begin_hw() end_hw() : dummy calls
Loop labels:

to identify the loop for transformations to be applied to that
particular loop

Specifying the transformations
ROCCC does not employ an automatic parallelizer
User stays in control, specify transformations for each loop

The circuit size
Choice of hardware-efficient algorithm for the mapped software
 Performance/throughput of the generated circuit

.pass file: A text file that lists the transformations that are to be
applied to the candidate loop nest through loop labels

W. Najjar UCR
69

User Interface: .pass file

 Allows the user decide on the loop level
transformations & the parameters to these
transformations
 fully unroll <loop_label>|<max_iteration_count>
 partially unroll <loop_label> <unroll_factor>
 generate tile <loop_label1> <loop_label2> <tile_size1>
<tile_size2>
 generate systolic array <loop_label1> <loop_label2>
<systolic_array_size>

24

W. Najjar UCR
70

User Interface: FIR

begin_hw();
L1: for(i=0; i<=511; i=i+1)
 B[i] = T[0]*A[i] + T[1]*A[i+1] + T[2]*A[i+2] +

 T[3]*A[i+3] + T[4]*A[i+4];
end_hw();

L1: partially unroll 15

.pass file

W. Najjar UCR
71

User Interface: DWT

begin_hw();
L1: for(i=0; i<1024; i++)
L2: for(j=0; j<1024; j++){
 sum=0;
L3: for(n=0; n<5; n++)
L4: for(m=0; m<3; m++)
 sum = sum + (image[i+n][j+m]*filter[n])/8;
 output[i][j] = sum;
 }
end_hw();

fully unroll L3
fully unroll L4
generate tile L1 L2 4 4

.pass file

W. Najjar UCR
72

Compiler Optimizations

Objectives
Maximize: parallelism and speed (clock rate)
Minimize: area and unnecessary memory accesses
Optimizations
Pre/Post-Optimization Passes
Array Access Transformations
Global Transformations
Loop Level Transformations
Application Specific Transformations

25

W. Najjar UCR
73

Compiler Transformations

Pre-Optimization Passes
Switch Case to If Statements
Do While to While Statement
Inlining Pass
Control Flow Analysis
Data Flow Analysis
Use/Def & Def/Use Chain
Builder
Lookup Table Expansion
DFA Expansion

Array Access
Transformations
Constant Propagation of
“const” qualified Arrays
RAW/WAW Elimination
Scalar Replacement
Feedback Array Access
Elimination
Array Renaming
Systolic Array Generation

W. Najjar UCR
74

Compiler Transformations

Global Transformations
Constant Propagation, Folding
and Elimination of Algebraic
Identities
Code Hoisting &Sinking
Copy & Reverse Copy
Propagation
Common Subexpression
Elimination
Dead & Unreachable Code
Elimination
Division & Multiplication By
Constants Approximation
If Conversion
Reduction Parallelization
Scalar Renaming

Loop Level
Transformations
Partial & Full Loop Unrolling
Loop Fusing
Loop Interchanging
Loop Invariant Code Motion
Loop Peeling
Loop Normalization
Loop Tiling / Strip Mining
Loop Unswitching

W. Najjar UCR
75

Phase Order of Transformations

1) Preprocessing Passes
2) Global & Loop Level Transformations
 To simplify and bring the array index expressions to a standard

format

3) Array Transformations
4) Global Transformations
5) Output (Hi-CIRRF) Generation

26

W. Najjar UCR
76

GCC Preprocessing Passes

gcc_preprocess
 Adjusts the gcc generated SUIF code to conform to the

SUIF’s internally expected format
 Translates gcc AST to SUIF AST

dismantle_call_expressions
 Exists for backward compatibility reasons
 If not called, the gcc generated SUIF code would not work

w/ the SUIF optimizations generated pre-gcc front end

W. Najjar UCR
77

Preprocessing Passes

preprocessing_hw_sw_boundary_mark
 Marks the code section in between the begin_hw() and

end_hw() calls in the source code to be sent to HW

preprocessing_roccc_inline
 Inlines all function calls in C leaving only the calls to

ROCCC defined macros

preprocessing_dowhile_to_while_transform
 Converts do while() statements to equivalent if while()

statement sequence

preprocessing_LUT_decs
 Processes the user defined create_lut(<const int array>)

to later generate an LUT definition in HI-CIRRF

W. Najjar UCR
78

Control Flow Analysis

control_flow_solve
 Builds control flow graph over the SUIF IR using

annotations
 Should be called prior to any global optimization passes
 Preceding passes

• None

control_build_loop_info
 Light weight version of control_flow_solve
 Should be called prior to any loop optimization pass
 Preceding passes

• None

27

W. Najjar UCR
79

Data Flow Analysis

dataflow_solve
 Builds the dataflow graph for later transformations
 Should be called prior to any global optimization passes
 Preceding pass

• control_flow_solve

ud_du_chain_builder
 Builds the use/def-def/use chains for further

optimizations
 Should be called prior to any global optimization passes
 Preceding pass

• dataflow_solve

W. Najjar UCR
80

Global Transformations

global_constant_propagate
 Propagates constants over the SUIF IR
 Preceding pass

• ud_du_chain_builder

global_constant_fold
 Folds the constants w/ in SUIF expressions
 Eliminates algebraic identities
 Should be used alternating w/ the

global_constant_propagate
 Preceding pass

• ud_du_chain_builder

W. Najjar UCR
81

Global Transformations - 2

global_copy_propagate
 Helps eliminate a=b statements from the SUIF IR
 Preceding pass

• ud_du_chain_builder
 Follow w/ pass

• global_dead_code_eliminate

global_dead_code_eliminate
 Eliminates computation that is executed but does not

help compute any return value
 Preceding pass

• ud_du_chain_builder

28

W. Najjar UCR
82

Global Transformations - 3

global_unrchable_code_eliminate
 Removes code that are never executed such as code following

returns, loops w/ 0 iteration count or the unexecuted branch of
ifs whose condition is a known constant.

 Preceding pass
• None

global_div_by_const_eliminate
 Eliminates divisions by constant values w/ a sequence of adds

shifts
 Preceding pass

• None

global_mult_by_const_eliminate
 Eliminates multiplications by constant values w/ a sequence of

adds shifts
 Preceding pass

• None

W. Najjar UCR
83

Global Transformations - 4

global_reduction_parallelize
 Preceding pass

• ud_du_chain_builder

global_scalar_rename
 Preceding pass

• ud_du_chain_builder

global_code_hoist
 Preceding pass

• ud_du_chain_builder

global_code_sink
 Preceding pass

• ud_du_chain_builder

W. Najjar UCR
84

Example: Constant propagation

This pass replaces variable uses with
constants, wherever the particular
variable use actually holds a constant at
the replacement point.

c = 5

… = … c … … = … 5 …

If no
other
definition
of c along
all paths

29

W. Najjar UCR
85

Example: Constant Folding

This pass replaces constant binary and
identity expressions with the result values of
those expressions

A[0]*0
A[i]*1
A[i+0]

5* 4

0
A[i]
A[i]

20

Following
constant propagation

W. Najjar UCR
86

Example: Copy Propagation

Replaces variable use (a) with variable use
(b), wherever a is carrying the copy of b on
all incoming paths

a = b a = b a = b

 … = … a …

If no other
definition of a
on all incoming paths … = … b …

W. Najjar UCR
87

Example: Dead Code Elimination

If a variable (a) is never used from the time it
is last defined until either the program ends
or until a is redefined, the unused definition
is removed.

c = … ; a = a+5;
a = a+5; b = c+7;

 return c; a = b+2;

30

W. Najjar UCR
88

Example: Invariant Code Motion

Moves any computation that computes the
same value at every iteration outside of the
loop.

for i=1 to N do

 A[i] = A[i] + b*8;

temp = b*8;

for i=1 to N do

 A[i] = A[i] + temp;

W. Najjar UCR
89

Array Transformations

array_constant_propagate
 Preceding pass

• None
array_rename

 Preceding pass
• dataDep_preprocess

array_raw_eliminate
 Preceding pass

• None
array_scalar_eliminate

 Preceding pass
• array_raw_eliminate

array_feedback_eliminate
 Parameters: 1-enabled 0-not enabled
 Preceding pass

• dataDep_preprocess

W. Najjar UCR
90

Array Access Transformations

Constant Propagation of
“const” Qualified Arrays

RAW/WAW Elimination

Array Renaming

Feedback Array
 Elimination

31

W. Najjar UCR
91

Example: Scalar Replacement

Isolates memory read/write operations so
that they do not overlap with useful
computation inside the loop body

for i=1 to N do
 A[i] = A[i] + A[i+3]
endfor

for i=1 to N do
 temp0 = A[i]
 temp1 = A[i+3]

 temp2 = temp0 + temp1

 A[i] = temp2
endfor

W. Najjar UCR
92

Loop Transformations (1)

loop_unswitch
 Parameters: ?
 Preceding pass

• control_build_loop_info

loop_peel
 Parameters: ?
 Preceding pass

• control_build_loop_info

Loop unroll
 Parameters: loop_label unroll_factor
 Preceding pass

• control_build_loop_info

W. Najjar UCR
93

Loop Transformations (2)

loop_fuse
 Parameters: none
 Preceding pass

• control_build_loop_info

loop_strip_mine
 Parameters: ?
 Preceding pass

• control_build_loop_info

loop_tile
 Parameters: loop1_label loop2_label1_tile_size

label2_tile_size
 Preceding pass

• control_build_loop_info

32

W. Najjar UCR
94

Loop Transformations (3)

loop_invariant_code_move
 Parameters: none
 Preceding pass

• control_build_loop_info

loop_unroll_constant_bounds
 Parameters: loop_label max_iteration_count
 Explanation: either of the parameters is specified. If the

max_iteration_count is specified, then the loop_label is “none”
(w/o the quotations)

 Preceding pass
• None

loop_interchange
 Parameters: loop1_label loop2_label
 Preceding pass

• control_build_loop_info

W. Najjar UCR
95

Example: Loop indep cond removal

This pass removes if statements from within a for loop
wherever the test of the conditional is independent of
the loop

for i=1 to N do
 for j=2 to N do
 if T[i] > 0 then
 A[i,j] = A[i, j-1]*T[i] + B[i]
 else
 A[i,j] = 0.0
 endif
 endfor
endfor

for i=1 to N do
 if T[i] > 0 then
 for j=2 to N do
 A[i,j] = A[i, j-1]*T[i] + B[i]
 endfor
 else
 for j=2 to N do
 A[i,j] = 0.0
 enfor
 endif
endfor

W. Najjar UCR
96

Example: Index set splitting

Uses of Index Set Splitting is the same as that of Loop
Peeling

for i=1 to 100 do

 A[i] = B[i] + C[i]

 if i > 10 then

 D[i] = A[i] + A[i-10]

 endif

endfor

for i=1 to 10 do

 A[i] = B[i] + C[i]

endfor

for i=11 to 100 do

 A[i] = B[i] + C[i]

 D[i] = A[i] + A[i-10]

endfor

33

W. Najjar UCR
97

Example: Loop unswitching

 Removes if statements from within a for loop wherever
the test of the conditional is independent of the loop

for i=1 to N do
 for j=2 to N do
 if T[i] > 0 then
 A[i,j] = A[i, j-1]*T[i] + B[i]
 else
 A[i,j] = 0.0

for i=1 to N do
 if T[i] > 0 then
 for j=2 to N do
 A[i,j] = A[i, j-1]*T[i] + B[i]
 else
 for j=2 to N do
 A[i,j] = 0.0

W. Najjar UCR
98

Example: Loop peeling

 This pass removes first(last) couple iterations
of a for loop into a separate code

 Loop peeling enables:
 Loop fusion whenever the iteration counts of the candidate loops

do not match
 Removal of conditionals within the loop body that are dependent

on the loop index variable

for i=1 to N do

 A[i] = B[i]

endfor

if N >= 1 then

 A[1] = B[1]

for j=2 to N do

 A[j] = B[j]

endfor

W. Najjar UCR
99

Example: Loop unrolling

 Loop Unrolling is used to increase parallelism
within the loop body, reduces loop overhead per
iteration, and

 Loop Unrolling modifies the loop step, and
appends as many copies of the loop body as
needed to the loop body.

for i=1 to 100 do

 D[i] = A[i] + A[i-10]

endfor

for i=1 to 100 step 2 do

 D[i] = A[i] + A[i-10]

 D[I+1] = A[I+1] + A[i-9]

endfor

34

W. Najjar UCR
10

0

Example: Loop fusion

Loop Fusion helps reduce redundancy by eliminating
loop overhead and redundant computations by
combining the bodies of multiple loops into a single
loop.

for i1=1 to n do

 A[i1] = A[i1] + k

endfor

for i2=1 to n-1 do

 D[i2] = A[i2] * B[i2]

endfor

A[1] = A[1] + k

for i3=1 to n-1 do

 A[i3+1] = A[i3+1] + k

 D[i3] = A[i3] * B[i3]

endfor

Peeling + fusion

W. Najjar UCR
10

1

Loop Strip Mining

This pass forms a two level nested loop out
of a single candidate for loop.
The inner loop of the two level nested loop
processes the data computed by the original
loop in stripes.
This optimization is preferred for vector or
SIMD architectures.

for i=1 to 100 do

 D[i] = A[i] + C[i]

for i=1 to (100 div 4) step 4

 for j=1 to 4

 D[i+j] = A[i+j] + C[i+j]

W. Najjar UCR
10

2

for ii=1 to N step block_size do

 for jj=1 to N step block_size do

 for i= ii to min(ii+block_size-1,N) do

 for j= jj to min(jj+block_size-1,N) do

 D[i,j] = A[i,j] + B[i,j]

endfor

 endfor

 endfor

endfor

Example: Loop tiling/blocking
Loop Tiling processes the data of the original loop in tiles.
This optimization is usually used to improve data locality.

for i=1 to N do

 for j=1 to N do

 D[i,j] = A[i,j] + B[i,j]

 endfor

endfor

block_size

block_size

35

W. Najjar UCR
10

3

Output Generation

Several passes help generate the output and the
sequence of these passes should stay the same as
given in the gen-datapath under the utils directory
The only exception is for systolic array generation.
To enable call:

 array_feedback_eliminate 1
To disable:

 array_feedback_eliminate 0

W. Najjar UCR
10

4

Effects of Transformations

On area
Using a set of small and compact cores
 Limited opportunities, more meaningful results
 Codes

 Moving filter
 Weighing filter
 5-tap FIR
 Bit count
 Discrete wavelet transform

W. Najjar UCR
10

5

Global Transformations

Moving Filter

36

W. Najjar UCR
10

6

Global Transformations

Weighting Filter

W. Najjar UCR
10

7

Global Transformations

BitCount

W. Najjar UCR
10

8

Global Transformations

5-tap FIR

37

W. Najjar UCR
10

9

Global Transformations

DWT

W. Najjar UCR
11

0

5- tap FIR

Loop Transformations - Unrolling

W. Najjar UCR
11

1

15- tap FIR

Loop Transformations - Unrolling

38

W. Najjar UCR
11

2

Moving Filter

Loop Transformations - Unrolling

W. Najjar UCR
11

3

DWT

Loop Transformations - Unrolling

W. Najjar UCR
11

4

Moravec

Loop Transformations - Unrolling

39

W. Najjar UCR
11

5

Lookup Tables Applications

Arrays of run-time constants
Non linear access to arrays
Found in applications such
 Cryptography: Key dependent substitution boxes
 Image processing: Color palettes
 Bioinformatics : Score matrices for proteins
 Scientific computing: Retrieving the sine of a

number from a table instead of computing it each
time

W. Najjar UCR
11

6

Problem

In software such accesses occur in
expressions of the from
 Table[Input_stream[index_expr]]:

ROCCC compiles the above expression by
creating a hardware LUT for it.
ROCCC only assumes that:
 Table is a const qualified array
 whose values are known at compile time (for now)

W. Najjar UCR
11

7

User code

Identify the array
 ROCCC_create_lookup_table(int id, …)
 Placed prior to the loop body where the actual

array access occurs
Access the array
 ROCCC_lookup_in_table(int id, …)
 Looks up the input stream contents in the table

defined by the ROCCC_create_lookup_table call

40

W. Najjar UCR
11

8

Types of LUTs supported

1D LUT
 Cryptography applications as key dependent substitution boxes
 Trigonometric functions in scientific applications.
 Table [Input_stream [index_expr]]

1D LUT w/ CAM
 Bioinformatics applications where the input stream contents does

not directly address the table itself
 if(input_stream[index_expr] == ‘A’) return Table[1];
 The above expression can be reduced to a single

ROCCC_create_lookup_table call in ROCCC

W. Najjar UCR
11

9

Types of LUTs supported

2D LUT:
 Table [Input_stream1 [index_expr1]] [

Input_stream2 [index_expr2]]
2D LUT w/ CAM
 Found in bioinformatics applications, for instance

the lookup operations to BLOSUM and PAM
matrices fall in this category.

 if(S[index_expr] == ‘A’ && T[index_expr] == ‘T’)
return Table[1][3];

 The above expression again is reduced to a single
ROCCC_create_lookup_table call in ROCCC

W. Najjar UCR
12

0

• LUT contents: varied from 8bits to 32 bits
• Clock cycle time: varied from 5 to 8 ns

1D LUT

41

W. Najjar UCR
12

1

1D LUT w/ CAM

• Incoming stream addressed the CAM with 8 bits
• LUT contents: varied from 8 bits to 32 bits
• Clock cycle time: varied from 5ns to 7ns

W. Najjar UCR
12

2

1D LUT w/ CAM

• Incoming stream addressed the CAM with 16 bits
• LUT contents: varied from 8 bits to 32 bits
•Clock cycle time: varied from 5.5 to 7.5ns

W. Najjar UCR
12

3

1D LUT w/ CAM

• Incoming stream addressed the CAM with 32 bits
• LUT contents: varied from 8 bits to 32 bits
• Clock cycle time: varied from 5.2 to 8.2 ns

42

COMPUTER
SCIENCE &ENGINEERING

ROCCC - The Back-end

Walid Najjar
Computer Science & Engineering
University of California Riverside

W. Najjar UCR
12

5

Lo-CIRRF Viewer

Example: 3-tap FIR
unrolled once (two
concurrent iterations)

Indices of A[]

coefficients

int main()
{
 int i;
 int A[32];
 int B[32];
 for (i=0; i<28; i=i+1)
 {
 B[i] = 3*A[i] +
5*A[i+1] + 7*A[i+2];
 }
}

W. Najjar UCR
12

6

Starting Point

for (i=0; i<62; ++i) {
 for(j=0; j<62; ++j) {
 sum = (a[i][j] + a[i][j+1]) + (a[i+1][j]

+ a[i+1][j+1]);
 if(sum > 170)
 b[i][j] = 255;

 else {
 if(sum < 85)
 b[i][j] = 0;
 else
 b[i][j] = 127;
 }
 } }

for (i=0; i<62; ++i) {
 for(j=0; j<62; ++j) {
 smartbuffer2(a, i, j, x1, 0, 0,
 x2, 0, 1, x3, 1, 0, x4, 1, 1);
 sum = (x1 + x2) + (x3 + x4);
 if(sum > 170)
 tmp = 255;
 else {
 if(sum < 85)
 tmp = 0;
 else
 tmp = 127;
 }
 fifo2(b, i, j, tmp, 0, 0);
 } }

43

W. Najjar UCR
12

7

SSA Control Flow Graph

Macros  instr.
Two predecessor nodes
per joint node

1

2

3

4

14

5

76

9

16

8

10

15

0

12

13

1

2

3

4

14

5

76

98

10

15

0

12

13

1

2

3

4

5

76

98

10

0

12

13

11 1
1

1
1

Static Single
Assignment CFG

Buffer nodes
added

Preparing for
If-converse

for (i=0; i<62; ++i) {
 for(j=0; j<62; ++j) {
 smartbuffer2(a, i, j, x1, 0, 0,
 x2, 0, 1, x3, 1, 0, x4, 1, 1);
 sum = (x1 + x2) + (x3 + x4);
 if(sum > 170)
 tmp = 255;
 else {
 if(sum < 85)
 tmp = 0;
 else
 tmp = 127;
 }
 fifo2(b, i, j, tmp, 0, 0);
 } }

W. Najjar UCR
12

8

1

2

3

4

14

5

76

9

16

8

10

15

0

12

13

1
1

x1 x1 x1 x1

>170?

8

7

6

5

4

3

 <85?

0 127

255

2

1

node

duplicate
mux

legend

n5

n9

n6

n7

n8

n10
n16

n6

Building Data Flow Graph

If-conversion
The definition of each
operand is strictly at
one execution level
higher.
One iteration per
execution level
Pipeline stages

W. Najjar UCR
12

9

Special Instructions

int sum = 0;
for (i = 0; i < 32; i++)
{
sum = sum + A[i];}

int sum = 0;
void main_dp(int main_Tmp0, int* main_Tmp1) {
int main_dp_Tmp2;
main_dp_Tmp2 = ROCCC_load_prev(sum) + main_Tmp0;
ROCCC_store2next(sum, main_dp_Tmp2);
*main_Tmp1 = sum;}

New instr
LPR and
SNX in

Lo-
CIRRF

44

W. Najjar UCR
13

0

Comparison - Clock Rate

0.971101104Wavelet*
0.735133181DCT
1.049194185FIR
1.000170170cos
1.317220167square root
1.259272216udiv
1.000238238mul_acc

0.679144212bit_correlat
or

%ClockROCCCXilinxCode

(* hand written VHDL)

Comparable

clock rates

Xilinx ISE 5.1i and IP core 5.1i
Xilinx Virtex-II xc2v2000-5 FPGA

W. Najjar UCR
13

1

Comparison - Area

1.6524151464Wavelet*
1.76724412DCT
1.09293270FIR
1.00150150cos
2.051199585square root
3.44495144udiv
3.285918mul_acc

2.11199bit_correlat
or

%Area(slice)ROCCCXilinx IPCode Average

area

factor: 2.5

W. Najjar UCR
13

2

Scheduling with Predication

flag = 1;
 for (m = 0; m < 10; m = m + 1) {
 if(flag == 1) {
 for(i = 1; i < 251; i = i + 1)
 b[i] = (3 * a[i-1] + 5 * a[i]) +
 (7 * a[i+1] + 9 * a[i+2]) + 11 *

a[i+3];
 }
 else {
 for(j = 1; j < 251; j = j + 1)
 d[j] = (3 * c[j-1] + 5 * c[j]) +
 (7 * c[j+1] + 9 * c[j+2]) + 11 *

c[j+3];
 }
 flag = flag ^ 1;
 }

45

W. Najjar UCR
13

3

Scheduling with Predication

Predicator-guarded execution
 ADD $vr4.s16, $vr3.s16, $vr2.s16, $vr1.u1

Predicator propagation
 PFW $vr2.u1, $vr1.u1; /* Predicator forward */

Branch instructions replaced by boolean
instructions to
 Produce predicators
 Merge predicators

 CFG converted to DFG

W. Najjar UCR
13

4

Scheduling with Predication

node 2
[L0] ior $vr1321 ← $vr1324,$vr1314
[L1] pfw $vr1322 ← $vr1321
[L1 G] sle $vr1326←10,$vr79,$vr1321
node 3
[L0] not $vr1333 ← $vr1326
[L0] and $vr1334 ← $vr1333, $vr1322
[L1] pfw $vr1320 ← $vr1334
[L1 G] sne $vr1325←$vr78, 1, $vr1334
node 10
[L0] ior $vr1311 ← $vr1328, $vr1329
[L3 G] xor $vr230 ← $vr78, 1, $vr1311
[L3 G] add $vr233 ← $vr79, 1, $vr1311
[L3] pfw $vr1312 ← $vr1311
[L2 G] mov $vr78 ← $vr230, $vr1312
[L2 G] mov $vr79 ← $vr233, $vr1312
[L2] pfw $vr1313 ← $vr1312
[L1] pfw $vr1314 ← $vr1313
node 11
[L0] and $vr1327← $vr1326, $vr1322
[L1] ret $vr1327

Data flow
graph

W. Najjar UCR
13

5

Synthesize Results

Aggressively pipelined data-path
Scheduling with predication
High throughput

110053188Alter. FIR

0.559.73181616Nested if-
else

Iter.
per

cycle

clock
(MHz)

of
slices

Mem
bus

bit-size

DP-
size
(bit)

46

W. Najjar UCR
13

6

Input data reuse

W. Najjar UCR
13

7

Input Data Reuse Opportunity

High memory bandwidth pressure
Opportunity to perform input data reuse

One-dimension Two-dimension

* * * * * *
* * * * * *
* * * * * *
* * * * * *
* * * * * *

W. Najjar UCR
13

8

Smart Buffer Overview

Input data
reuse
Multiple
buffers
 Synchroniz

ation
 Buffer flash

smart

buffer

0

address

generator

0

FIFO

buffer

0

address

generator

0

scalar data-path

loop &

memory

access

controller

input memory 1

output memory 0

input memory 0 input memory n

output memory 1 output memory m

smart

buffer

1

address

generator

1

smart

buffer

n

address

generator

n

FIFO

buffer

1

address

generator

1

FIFO

buffer

m

address

generator

m

47

W. Najjar UCR
13

9

Reduction in memory accesses

Up to 98% eliminated
 Data reused in smart buffer for sliding window

applications
 Only data that is re-fetched is the bottom row(s)

of a window
Automated
 Compiler generates smart buffer based on

 Window size in x and y
 Stride of window in x and y
 Number of data values (pixels) per word fetched
 Fetch bandwidth into FPGA

W. Najjar UCR
14

0

One-dimensional Smart Buffer

 for (i=0; i<N; i=i+1) {
 B[i] = C0*A[i] + C1*A[i+1]
+C2*A[i+2]
+C3*A[i+3]+C4*A[i+4] ;
}

Hi-CIRRF macro:
smartbuffer1(A,i, 0, 1, 2, 3, 4);

Loop unrolled four times
Input:A[i] through A[i+7] Mem bus:4 data/busword

W. Najjar UCR
14

1

Two-dimensional Smart Buffer

/* 2 x 2 unrolled */
for(i = 1; i < 62; i = i + 2) {
 for(j = 1; j < 62; j = j + 2) {
 C[i-1][j-1] = (A[i-1][j-1] + A[i-1][j] + A[i-1][j+1] + A[i][j-1] + A[i][j+1] + A[i+1][j-1] + A[i+1][j]
 + A[i+1][j+1]) >> 3 + (A[i][j]>>1) - B[i-1][j-1];
 C[i-1][j] = (A[i-1][j] + A[i-1][j+1] + A[i-1][j+2] + A[i][j] + A[i][j+2] + A[i+1][j] + A[i+1][j+1]
 + A[i+1][j+2]) >> 3 + (A[i][j+1]>>1) - B[i-1][j];
 C[i][j-1] = ...;
 C[i][j] = ...;

} }

48

W. Najjar UCR
14

2

Address Stream Generation

Starting and ending
addresses
The on-chip memory
accesse delay
The window’s size and the
array’s row size
The unrolled window’s
strides in each dimension
The starting address-
difference between two
adjacent outer-loop
iterations.

W. Najjar UCR
14

3

Two-dimensional Smart Buffer

FSM states
 Prologue
 Export
 Idle

W. Najjar UCR
14

4

Two-dimensional Smart Buffer

Prologue state 0
Buffer is empty
Waiting for the
first word from
memory

Pro_0

Waiting
for

Word 0

49

W. Najjar UCR
14

5

Two-dimensional Smart Buffer

Prologue state 1
Got word 0

* *

Pro_1

Word 0

W. Najjar UCR
14

6

Two-dimensional Smart Buffer

Prologue state 2
Got word 1

* *

Pro_2

* *
Word 1

W. Najjar UCR
14

7

Two-dimensional Smart Buffer

Prologue state 3
Got word 2

* *

Pro_3

* *
* *

Word 2

50

W. Najjar UCR
14

8

Two-dimensional Smart Buffer

Prologue state 4
Got word 3

* *

Pro_4

* *
* *
* *

Word 3

W. Najjar UCR
14

9

Two-dimensional Smart Buffer

Prologue state 5
Got word 4

* ** *

Pro_5

* *
* *
* *

Word 4

W. Najjar UCR
15

0

Two-dimensional Smart Buffer

Prologue state 6
Got word 5

* ** *

Pro_6

* ** *
* *
* *

51

W. Najjar UCR
15

1

Two-dimensional Smart Buffer

Prologue state 7
Got word 5

* ** *

Pro_7

* ** *
* ** *
* *

W. Najjar UCR
15

2

Two-dimensional Smart Buffer

Export state 0
Window 0 is
exported to the
data-path
The data-path
does NOT fetch
data from the
buffer

* ** *

Exp_0

* ** *
* ** *
* ** *

Word 7

Window 1

W. Najjar UCR
15

3

Two-dimensional Smart Buffer

Idle state 0
Some data kept

* *

Idle_0

* *
* *
* *

52

W. Najjar UCR
15

4

Two-dimensional Smart Buffer

FSM states
 Prologue
 Export
 Idle

W. Najjar UCR
15

5

Two-dimensional Smart Buffer

Idle state 1
Only new data of
the next iteration
fetched in

* ** *

Idle_1

* *
* *
* *

W. Najjar UCR
15

6

Two-dimensional Smart Buffer

Idle state 2
Only new data of
the next iteration
fetched in

* ** *

Idle_2

* ** *
* *
* *

53

W. Najjar UCR
15

7

Two-dimensional Smart Buffer

Idle state 3
Only new data of
the next iteration
fetched in

* ** *

Idle_3

* ** *
* ** *

* *

W. Najjar UCR
15

8

Two-dimensional Smart Buffer

Export state 1
The first column
of this window is
the third column
in the buffer

* ** *

Exp_1

* ** *
* ** *
* ** *

Window 1

W. Najjar UCR
15

9

Two-dimensional Smart Buffer

Some data kept
Start over for
next iteration * *

Idle_4

* *
* *
* *

54

W. Najjar UCR
16

0

Other Smart Buffer Features

Multiple input
array support
 Multi-mode and

Single-mode
 Synchronization
 Buffer flashing

Input/output
balance
 Extra idle cycles

added

smart

buffer

0

address

generator

0

FIFO

buffer

0

address

generator

0

scalar data-path

loop &

memory

access

controller

input memory 1

output memory 0

input memory 0 input memory n

output memory 1 output memory m

smart

buffer

1

address

generator

1

smart

buffer

n

address

generator

n

FIFO

buffer

1

address

generator

1

FIFO

buffer

m

address

generator

m

W. Najjar UCR
16

1

Smart Buffer Performance

constant

FIR

variable

FIR

complex

FIR

2D_lowpass

filter

motion

detection

Area (slices) 156 159 132 325 327

of regs 5 5 6 16 16

of states 14 14 8 18 18

Bus size (bits) 8 8 16 16 16

Area (slices) 159 150

of regs 5 4

of states 14 4

Bus size (bits) 8 16

Area (slices) 11 11 12 73 73

of regs 1 1 2 2 2

of states 1 1 2 2 2

Bus size (bits) 8 8 8 16 16

Area (slices) 43 5 mltpl 99 144 164

Bit size 8 8 8 8 8

210 329 243 542 714

94 68 85 69 42

262 1019 260 5980 5986

0.96 0.25 0.48 0.16 0.16Throughput (iteration/cycle)

Execution time (cycles)

Clock rate (MHz)

Input

buffer

A

Input

 buffer

B

Output

buffer

C

Data-path

Overall area (slices)

W. Najjar UCR
16

2

Automation Of IP Core Interface

55

W. Najjar UCR
16

3

Motivation and Challenge

 IP cores present a tremendous wealth
 Speed and area-efficient
 Thoroughly tested and verified

 Compilers for FPGAs have to leverage IP
cores
 IP cores come in the forms of

• HDLs
• Lower-level descriptions

 Vary drastically
• Control specifications
• Timing specifications

W. Najjar UCR
16

4

An FFT16 IP Example

A Xilinx IP core
Timing-specific

pins
• ce, start, done

Configuration pins
• fwd_inv,

scale_mode
Status pin

• ovflo

 FFT16 core

scale_mode
di_r
di_i

fwd_inv
start
ce ovflo

done
mode_ce

xk_r
xk_i

W. Najjar UCR
16

5

An FFT16 IP Example

The wrappers
• Input & output

wrapper
 No timing-specific

pins from/to outside
Configuration and

status pins
transparent

Unified interface
• One token + data

ports

out_imag_15

out_wrapper

 FFT16 core
in_imag_15

in_wrapper

out_imag_0in_imag_0
out_tokenin_token

scale_modescale_mode
di_rdi_r
di_idi_i

fwd_inv fwd_inv
start start

ce ce ovflo ovflo
done done

mode_ce

xk_rxk_r
xk_ixk_i

scale_mode
fwd_inv

ovflo

56

W. Najjar UCR
16

6

High-level Abstraction

 Timed C
 Macros-defined timing

 High-level
 No cycle-level

implementation needed
 A bridge between

timing diagrams and
HDLs

*START = 1;
*CE = 1;
 wait_cycles_for(1);
*START = 0;
 wait_cycles_for(1);
 *DI_R = real_reg_0;
 *DI_I = imag_reg_0;
......

 wait_cycles_for(1);
 *DI_R = real_reg_15;
 *DI_I = imag_reg_15;
 wait_cycles_for(69);
 *CE = 0;

W. Najjar UCR
16

7

Wrapper Description

void in_fft16 (int in_token, /*the core’s input predicator*/

 int real_0, ... , int real_15, /*16 real-component inputs*/

 int imag_0, ... , int imag_15,/*16 imaginary-component inputs*/

 int* CE, int* SCALE_MODE, /*pointers are output*/

 int* START, int* FWD_INV, int* DI_R, int* DI_I)

 {

 int real_reg_0, ..., real_reg_15; /*internal registers to*/

 int imag_reg_0, ..., imag_reg_15; /*store the input data*/

 *SCALE_MODE = 1;

 *FWD_INV = 1;

 if(in_token == 1) {

 wait_cycles_for(1);

 real_reg_0 = real_0;

 real_reg_15 = real_15;

 imag_reg_0 = imag_0;

 imag_reg_15 = imag_15;

 *START = 1; /*assert start signal in this cycles*/

 *CE = 1; /*assert ce signal in this cycles*/

 wait_cycles_for(1);

 *START = 0; /*de-assert start signal in this cycles*/

 wait_cycles_for(1);

 *DI_R = real_reg_0;

 *DI_I = imag_reg_0;

 wait_cycles_for(1);

 *DI_R = real_reg_15;

 *DI_I = imag_reg_15;

 wait_cycles_for(69);

 *CE = 0; /*de-assert ce signal 69 cycles later*/

 } }

store the 16 pairs of

input data into

internal registers in

this cycle

export the 16 pairs

of data into the core

serially in 16

consecutive cycles

Figure 1 - Timed high-level abstraction of FFT16's input

wrapper in C. Comments explain the code.

void in_fft16 (int in_token, /*the core’s input predicator*/

 int real_0, ... , int real_15, /*16 real-component inputs*/

 int imag_0, ... , int imag_15,/*16 imaginary-component inputs*/

 int* CE, int* SCALE_MODE, /*pointers are output*/

 int* START, int* FWD_INV, int* DI_R, int* DI_I)

 {

 int real_reg_0, ..., real_reg_15; /*internal registers to*/

 int imag_reg_0, ..., imag_reg_15; /*store the input data*/

 *SCALE_MODE = 1;

 *FWD_INV = 1;

 if(in_token == 1) {

 wait_cycles_for(1);

 real_reg_0 = real_0;

 real_reg_15 = real_15;

 imag_reg_0 = imag_0;

 imag_reg_15 = imag_15;

 *START = 1; /*assert start signal in this cycles*/

 *CE = 1; /*assert ce signal in this cycles*/

 wait_cycles_for(1);

 *START = 0; /*de-assert start signal in this cycles*/

 wait_cycles_for(1);

 *DI_R = real_reg_0;

 *DI_I = imag_reg_0;

 wait_cycles_for(1);

 *DI_R = real_reg_15;

 *DI_I = imag_reg_15;

 wait_cycles_for(69);

 *CE = 0; /*de-assert ce signal 69 cycles later*/

 } }

store the 16 pairs of

input data into

internal registers in

this cycle

export the 16 pairs

of data into the core

serially in 16

consecutive cycles

Figure 1 - Timed high-level abstraction of FFT16's input

wrapper in C. Comments explain the code.

W. Najjar UCR
16

8

Wrapper Generation

 Macros in C to instructions
Wrapper pragma guides the compiler
Macros → WCF n (wait cycles for)
CFG → SSA-CFG
WCF n → WCF 1 (passing predicator to next pipeline stage)
CFG to predicated DFG
Instructions guarded by predicator
 except PFW (predicator forward)

All instructions between two WCF 1 executed in the same cycle
 Consist with high-level timing macros

WCF 1 → PFW
 Timing converted to sequential operations

57

W. Najjar UCR
16

9

Lo-CIRRF IR

[L87] pfw $vr471.u1 <- $vr560.u1
[L87, P] mov $vr167.u16 <- $vr84.u16,
$vr560.u1

……
[L87, P] mov $vr198.u16 <- $vr53.u16,
$vr560.u1

[L87, P] str 0($vr50.p1) <- 1, $vr560.u1
[L87, P] str 0($vr52.p1) <- 1, $vr560.u1
[L86] pfw $vr472.u1 <- $vr471.u1
[L86,P] str 0($vr50.p1)<-0, $vr471.u1

forwarding valid
input token

register
inputs

assert START

assert CE

predicator passing

de-assert START

W. Najjar UCR
17

0

Wrapped IP Core In the Data-path

instr. 0pipeline stage i: instr. ni predicator i

instr. 0pipeline stage j: instr. nj predicator j
input data

original core
in token

out token

output data

instr. 0pipeline stage k: instr. nk predicator k

wrapped IP core

W. Najjar UCR
17

1

Experimental Results

202002323total cycles
96.445.068.7123clock (MHz)

832183817663area (slice)
Total
circuit

1111addtl. cycle
1113520.3area (%)

92904262Area (slice)
Output
wrapper

1111addtl. cycle
64246.70.3area (%)
53532552Area (slice)

Input
wrapper

RS-encodeFFT16DCT8Cordic

58

W. Najjar UCR
17

2

Dynamic Partial Reconfiguration

Wrapped cores
 Are well defined and bounded entities
 Multiple cores can share a same wrapper
 Ideal set-up for dynamic partial reconfiguration

Dynamic Partial Reconfiguration
 Core selection under software control
 With compiler support
 Implemented with JTAG and SelectMAP

W. Najjar UCR
17

3

DPR Results

14.3698426512FFT8 partial
7.3354216378DCT8 partial

452318141513699Static
configuration

Prog. time
SelectMAP
(ms)

Prog. time
JTAG
(ms)

Bit stream
size
(Kbits)

No.
slices

Design

COMPUTER
SCIENCE &ENGINEERING

Applications

Walid Najjar
Computer Science & Engineering
University of California Riverside

59

W. Najjar UCR
17

5

Examples

Molecular dynamics
 NAMD code

Bioinformatics
 Using Smith-Waterman, a dynamic programming

 Similar: dynamic time warping, motif discovery

Networking (Virtex II Pro)
 Intrusion detection using Bloom Filter

 Probabilistic exact string matching

PCRE Matching
 Perl Compatible Regular Expressions

W. Najjar UCR
17

6

Molecular Dynamics

Objective
 Determine the shape of a molecule by computing the forces

exerted on each atom by all other atoms, in the molecule
and its environment.

 N-body problem.
 Forces:

 Electrostatic (Coulomb)
 Van der Waal

Importance
 Computationally intensive

 months and years of compute time for small problems
 Impact: move bio-chemistry to digital simulation
 Ultimate goal: protein folding

W. Najjar UCR
17

7

Molecular Dynamics Goal

Descriptions of both molecules and solutions
Given an initial state, what state will these
particles be in after a given amount of time?
Analog domain – Time
 Discrete computation approximation
 Timesteps should be as small as possible

 Femtoseconds (10-15 second) are common timesteps

60

W. Najjar UCR
17

8

NAMD Computation

Two types of forces
 Van Der Waal and Electrostatic

Two different calculations of forces
 Bonded

 Forces between atoms in the same molecule
 Nonbonded

 Forces between atoms in different molecules

W. Najjar UCR
17

9

Main Computation Loop

for each timestep
{
 for each atom
 {
 for every other atom
 {
 sum electrostatic forces
 sum Van Der Waal forces
 }
 }
}

W. Najjar UCR
18

0

NAMD’s Optimizations

Computations for reasonable timeframes
could take weeks to months
At some distance, the contributions of forces
due to atoms becomes insignificant
 Apply distance cutoffs
 Apply periodic cutoffs

 Only calculate forces every N timesteps
 Results in 60 different variations of the innermost

loop with slight differences to calculations
performed

61

W. Najjar UCR
18

1

NAMD Execution

Intense Computations

Cutoff Radius

W. Najjar UCR
18

2

NAMD Execution

Fewer Computations

New Cutoff Radius

W. Najjar UCR
18

3

NAMD Execution

Next Timestep

Intense Computations

Periodic Cutoff

62

W. Najjar UCR
18

4

Approaches to Speeding up NAMD

Our approach
 Pick the most computationally intensive loop and

replace with a hardware implementation
 Hardware is compiled from C code
 Loop selected by profiling the code running on real data

Alternative approach
 Include the distance calculation with the force

calculation
 Union of all 60 loops

 Have one loop calculate all forces every time regardless
of distance

 Overmapped - >250 stages in the pipe

W. Najjar UCR
18

5

Our Approach

Incoming Data (j atoms)

Distance Calculation

If (within cutoff)

 calculate forces
...

Distance Calculation

If (within cutoff)

 calculate forces

Distance Calculation

If (within cutoff)

 calculate forces

I II

Summation

All loops: 82% of execution time
This loop: 80% of the loops

executed (65% of total time)

W. Najjar UCR
18

6

Characteristics of NAMD

52343533Total
23161716Mult.

29181817Add., Sub.

AllZYXFp. Ops

Clock
MHz

Area (slices)

ROCCC-Compiled to Virtex 4 LX 200

16856262 (63%)Dp. Fp. (X)
14939478 (44%)Sp. Fp. (XYZ)

Required bytes
per iteration:
•Sp.: 48 bytes
•Dp. 96 bytes

RASC: 6.4 GB/s

63

W. Najjar UCR
18

7

NAMD Results

Double
precision

Single
precision

267.8100 MHz
450.1168 MHz
535.6100 MHz
799.4149 MHz

 Speedup over
Itanium 2 1.6 GHz

FPGA
Implementation

FPGA:
•Enough bandwidth for single
precision
•Double precision: two cycles
for data for each iteration

Itanium:
•Ideal: one full EPIC
instruction/cycle
•Measured: actual
execution time

W. Najjar UCR
18

8

Memory Bandwidth Issues

Memory is the bottleneck
 Single precision requires 48 bytes per cycle
 Double precision vectors requires 96 bytes per

cycle
 SGI-RASC can feed Single precision once per cycle

 We need 5.856 GB/s for single precision
 Double precision needs two cycles to collect data,

before iteration can start

W. Najjar UCR
18

9

Examples

Molecular dynamics
 NAMD code
Bioinformatics
 Using Smith-Waterman, a dynamic

programming
 Similar: dynamic time warping, motif discovery

Networking (Virtex II Pro)
 Intrusion detection using Bloom Filter

 Probabilistic exact string matching
PCRE Matching
 Perl Compatible Regular Expressions

64

W. Najjar UCR
19

0

Smith Waterman Algorithm

Dynamic programming string matching algorithm used
widely in genetics related research.
Computes a matching score of two input strings S and T
using a 2D matrix.
Computation of each cell depends on the computed values of
three neighboring cells: north, west and northwest.

 a if Si == Tj
 a + substitution_cost if Si !=Tj

d = min
 b + insertion_cost

 c + deletion_cost

a b

dc

Si

Tj

W. Najjar UCR
19

1

Smith-Waterman Code

Dynamic Programming
 Used in protein modeling, bio-informatics, data

mining …
 A wave-front algorithm with two input strings

A[i,j] = F(A[i,j-1], A[i-1, j-1], A[i-1, j])

F = CostMatrix(A[i,0],A[0,j])
Our Approach
 “Chunk” the input strings in fixed sizes k
 Build a k x k template hardware by compiling two

nested loops (k each) and fully unrolling both.
 Host strip mines the two outer loops over this

template.

W. Najjar UCR
19

2

S-W View

A[i,j] A[i,j+1]

A[i+1,j]A[i+1,0]

A[0,j+1]

vertical

input vector

horizontal input

vector

M
IN

M
A

X

A[i,j+1]

A[i,j]
A[i+1,j]

M
U

X

CostMatrix
A[0,j+1]
A[i+1,0]

A[i+1,j+1]

A[i+1,j+1]

65

W. Najjar UCR
19

3

S

T

Input Array

Output

Input Array

Smith Waterman Algorithm

W. Najjar UCR
19

4

Smith Waterman Algorithm

S

T

W. Najjar UCR
19

5

Smith Waterman Algorithm

S

T

66

W. Najjar UCR
19

6

Smith Waterman Algorithm

S

T

W. Najjar UCR
19

7

Smith Waterman Algorithm

S

T

W. Najjar UCR
19

8

Smith Waterman Algorithm

S

T

67

W. Najjar UCR
19

9

Smith Waterman Algorithm

S

T

W. Najjar UCR
20

0

Smith Waterman Algorithm

S

T

W. Najjar UCR
20

1

Smith Waterman Algorithm

S

T

68

W. Najjar UCR
20

2

Smith Waterman Algorithm

S

T

W. Najjar UCR
20

3

Smith Waterman Algorithm

S

T

W. Najjar UCR
20

4

Smith Waterman Algorithm

S

T

69

W. Najjar UCR
20

5

ROCCC Implementation

begin_hw();

for(i=1; i<N; i=i+1)
 for(j=1; j<N; j=j+1){
 A[i][j] = F(A[i-1][j],
 A[i][j-1],
 A[i-1][j-1],

 T[i-1],
 S[j-1]);
 }

end_hw();

S

T

W. Najjar UCR
20

6

Loop Unrolling

for(i=1; i<N; i=i+k)
 for(j=1; j<N; j=j+1){

 A[i][j] = F(…);

 A[i+1][j] = F(…);

 A[i+2][j] = F(…);
 …
 A[i+k-1][j] = F(…);

 }

S

T

W. Najjar UCR
20

7

Scalar Replacement

S

T

for(i=1; i<N; i=i+k)
 for(j=1; j<N; j=j+1){
 a00 = A[i-1][j-1];a00 = A[i-1][j-1];
 a01 = A[i-1][j]; a01 = A[i-1][j];
 a10 = A[i][j-1]; a10 = A[i][j-1];
 a20 = A[i+1][j-1]; a20 = A[i+1][j-1];
 t0 = T[i-1]; s0 = S[j-1]; t0 = T[i-1]; s0 = S[j-1];

…
 a11 = F(a00,a01,a10,t0,s0);
 a21 = F(a10,a11,a20,t1,s0);

…
 ak1 = F(am0,am1,ak0,tm,sm);

 A[i][j] = a11; A[i][j] = a11;
 A[i+1][j] = a21; A[i+1][j] = a21;
 ……
 A[i+k-1][j] = ak1; A[i+k-1][j] = ak1;
 }

70

W. Najjar UCR
20

8

Feedback Store Elimination
for(i=1; i<N; i=i+k)
 for(j=1; j<N; j=j+1){
 a00 = A[i-1][j-1];
 a01 = A[i-1][j];
 a10 = A[i][j-1]; a10 = A[i][j-1];
 a20 = A[i+1][j-1]; a20 = A[i+1][j-1];
 t0 = T[i-1]; s0 = S[j-1];

……
 a11 = F(a00,a01,a10,t0,s0);
 a21 = F(a10,a11,a20,t1,s0);

…
 ak1 = F(am0,am1,ak0,tm,sm);

 A[i][j] = a11; A[i][j] = a11;
 A[i+1][j] = a21; A[i+1][j] = a21;
 …
 A[i+k-1][j] = ak1;
 }

S

T

W. Najjar UCR
20

9

Feedback Store Elimination
for(i=1; i<N; i=i+k)
 for(j=1; j<N; j=j+1){
 a00 = A[i-1][j-1];
 a01 = A[i-1][j];
 a10 = ;a10 = ;
 a20 = ; a20 = ;
 t0 = T[i-1]; s0 = S[j-1];

…
 a11 = F(a00,a01,a10,t0,s0);
 a12 = F(a01,a11,a20,t1,s0);

…
 a1k = F(a0k,amk,ak0,tm,sm);

 = a11; = a11;
 = a12; = a12;
 …
 A[i+k-1][j] = ak1;
 }

S

T

W. Najjar UCR
21

0

Feedback Store Elimination

for(i=1; i<N; i=i+k){
 x11 = A[i][0];x11 = A[i][0];
 x12 = A[i+1][0]; x12 = A[i+1][0];
 ……
 for(j=1; j<N; j=j+1){
 a00 = A[i-1][j-1];
 a01 = A[i-1][j];
 a10 = x11;a10 = x11;
 a20 = x12; a20 = x12;
 t0 = T[i-1]; s0 = S[j-1];

…
 x11 = a11; x11 = a11;
 x12 = a12; x12 = a12;
 …
 A[i+k-1][j] = ak1;
 }
}

S

T

71

W. Najjar UCR
21

1

Loop Invariant Code Motion

S

T

for(i=1; i<N; i=i+k){
 x11 = A[i][0];
 x12 = A[i+1][0]; ……
 t0 = T[i-1]; t0 = T[i-1]; ……
 for(j=1; j<N; j=j+1){
 a00 = A[i-1][j-1];
 a01 = A[i-1][j];
 a10 = x11;
 a20 = x12;
 s0 = S[j-1];…

…
 x11 = a11;
 x12 = a12;
 …
 A[i+k-1][j] = ak1;
 }
}

W. Najjar UCR
21

2

Output Generation

S

T

for(i=1; i<N; i=i+k){
 x11 = A[i][0];
 x12 = A[i+1][0];

 ……
 t0 = T[i-1]; ……
 for(j=1; j<N; j=j+1){
 a00 = A[i-1][j-1];
 a01 = A[i-1][j];
 a10 = x11;
 a20 = x12;
 s0 = S[j-1];…

…
 x11 = a11;
 x12 = a12;
 …
 A[i+k-1][j] = ak1;
 }
}

H
a
rd

w
a
re

 p
ro

ce
ss

W. Najjar UCR
21

3

Host Process in HI-CIRRF

S

T

for(j=1; j<N; j=j+1){
 ROCCC_init_inputscalar(x11,x12, …

 t0, …);
 ROCCC_smartbuffer1(A, j,-1, a00,
 0, a01);
 ROCCC_input_fifo1(S, j, -1, s0);
 a10 = ROCCC_load_prev(x11);
 a20 = ROCCC_load_prev(x12);

 …
 a11 = F(a00,a01,a10,t0,s0);
 a21 = F(a10,a11,a20,t1,s0);

 …
 ak1 = F(am0,am1,ak0,tm,sm);

 ROCCC_store2next(x11, a11);
 ROCCC_store2next(x12, a12);

 …
 ROCCC_output_fifo(B, j, 1, ak1);
}

72

W. Najjar UCR
21

4

Host Process in HI-CIRRF
for(j=1; j<N; j=j+1){
 ROCCC_init_inputscalar(x11,x12, …

 t0, …);
 ROCCC_smartbuffer1(A, j,-1, a00,
 0, a01);
 ROCCC_input_fifo1(S, j, -1, s0);
 a10 = ROCCC_load_prev(x11);
 a20 = ROCCC_load_prev(x12);
 …
 a11 = F(a00,a01,a10,t0,s0);
 a21 = F(a10,a11,a20,t1,s0);
 …
 ak1 = F(am0,am1,ak0,tm,sm);

 ROCCC_store2next(x11, a11);
 ROCCC_store2next(x12, a12);
 …
 ROCCC_output_fifo(B, j, 1, ak1);
}

Input FIFO S

Output FIFO B
(i.e.the last row of A)

Smart Buffer
first row of A

In
p
u
t

ar
ra

y
T

an
d

th
e

fi
rs

t
co

lu
m

n
 o

f
A
 a

s
sc

al
ar

 i
n
p
u
t

W. Najjar UCR
21

5

Transformations
•Loop unrolling
•Scalar replacement
•Feedback store elimination
• > 70 passes

Output FIFO B
(i.e.the last row of A)

Smart Buffer
first row of A Input FIFO S

In
pu

t a
rr

ay
 T

 a
nd

th
e

fir
st

 c
ol

um
n

of
 A

 a
s

sc
al

ar
 in

pu
t

Final Setup

W. Najjar UCR
21

6

Systolic execution

0,0

Output FIFO B

Input FIFO S

1,0

0,1

Output FIFO B

Input FIFO S

2,0

1,1

0,2

Output FIFO B

Input FIFO S

3,0

2,1

1,2

0,3

Output FIFO B

Input FIFO S

4,0

3,1

2,2

1,3

0,4

Output FIFO B

Input FIFO S

73

W. Najjar UCR
21

7

3645
178.64

174
MHz

17%
1024

6.9%2.8%Area (%)
512200Cells

19647801.71Speedup
96.2538.20.0840.049GCUPS

188
MHz

191
MHz

1.6 GHz2.8
GHz

Clock

V4LX200Itanium
2

Xeon

Smith Waterman

SW Performance

W. Najjar UCR
21

8

SW Results

ROCCC 1 512 70.5B 70.5B No

W. Najjar UCR
21

9

Dynamic Time Warping

Data mining application
 Motif discovery
 Uses dynamic programming code
 Multiplication of integer in each cell computation

74

W. Najjar UCR
22

0

512 cells, 61%
12 bit data

256 cells, 73%
24 bit data

9503852.51Speedup
26.610.80.0710.028GCUPS

52 MHz42 MHz1.6 GHz2.8 GHzClock

V4LX200Itanium 2Xeon
Dynamic Time Warping

DTW Results

W. Najjar UCR
22

1

Examples

Molecular dynamics
 NAMD code

Bioinformatics
 Using Smith-Waterman, a dynamic programming

 Similar: dynamic time warping, motif discovery

Networking (Virtex II Pro)
 Intrusion detection using Bloom Filter

 Probabilistic exact string matching

PCRE Matching
 Perl Compatible Regular Expressions

W. Najjar UCR
22

2

Bloom filter

Is a data structure used to test set
membership of an element
Bloom filter has an array of N elements – all
of which are set to ‘0’ initially
The members of the set are inserted to the
filter using multiple hash functions.
Each hash function returns a unique value in
the range of 0 to N-1.
During insertion, all locations returned by
the hash function are set to 1.

75

W. Najjar UCR
22

3

Search operation in a bloom filter

During a search operation, multiple hash
functions are applied to an incoming value.
If all the locations returned by the hash function
contain ‘1’, then the element belongs to the set
with a probability P.
For a Bloom filter with m elements, the
probability of a false positive is given by :

Where,
K denotes the number of hash functions
m is the number of bits in the Bloom filter array
n is the number of elements inserted into the Bloom filter

W. Najjar UCR
22

4

Bloom filter for virus detection

Ours is the first bloom filter based virus detection code
automatically generated from C.
Each Signature Processing Engine (SPE) contains the generated
bloom filter code and is used to detect signatures
Bloom filter output contains false positives. Hence a RAM is
used for absolute string comparison and to eliminate false
positives.

SPE SPE SPE SPE SPE

FPE FPE FPE FPE FPE

Streaming data window

Legend : SPE : Signature Processing Engine FPE: False Positive Eliminator

W. Najjar UCR
22

5

Virus signatures

Signatures are unique bit patterns
that correspond to a virus/malware
We used the virus rules in the
bleeding snort database.
Each rule consists of a rule header
and an option.
Header contains information to be
used in packet classification.
Rule option contains the signatures
to be used in intrusion detection.
Most of the signatures in bleeding-
snort database were under 32 bytes.

76

W. Najjar UCR
22

6

C code

We implemented a
functional protoype
where we compared
signatures of width 1
byte.

Hash functions are
implemented as XOR
operations

The innerloop
processes the each byte
of the incoming 8-byte
value in parallel.

for(i=0;i<8;i++)
 {
 temp = value &0xff;
 result_location1 = temp ^

hash_function1[i];;
 result_location2 = temp ^

hash_function2[i];;
 result_location3 = temp ^

hash_function3[i];;
 result_location4 = temp ^

hash_function4[i];;

 found = bit_array[result_location1] &
 bit_array[result_location2] &
 bit_array[result_location3] &
 bit_array[result_location4] ;
 value = value >> 8;
 }
 return (found);

W. Najjar UCR
22

7

Datapath Analysis

Compiler exploits ILP by
grouping instructions into
different execution levels.
Each level corresponds to a
loop iteration and the
instructions are executed
simultaneously.
ROCC automatically places
latches for pipelining

Each latched level corresponds to one pipeline
stage and has a delay of one cycle.

In the 3-stage pipeline each box of XOR
corresponds to one byte of input being XORed
with a hashing function

W. Najjar UCR
22

8

Throughput evaluation

The generated code does not have loop-
carried dependency and the compiler
pipelines the datapath fully.
Clock frequency of the synthesized circuit
was found to be 73MHz.
The BRAM on our target FPGA can process 32
bytes per cycle.
Throughput = bits per cycle * clock
frequency
 32*8 * 73* 100,000 bits/sec
~ 18.6 Gbps

77

W. Najjar UCR
22

9

Examples

Molecular dynamics
 NAMD code

Bioinformatics
 Using Smith-Waterman, a dynamic programming

 Similar: dynamic time warping, motif discovery

Networking (Virtex II Pro)
 Intrusion detection using Bloom Filter

 Probabilistic exact string matching

PCRE Matching
 Perl Compatible Regular Expressions

W. Najjar UCR
23

0

Regular

Expression

From Ruleset

PCRE
Compile

PCRE
Execute

SNORT
Packet Interception

And Detection

Payload

Match ?

Alert
Rules
Data-
base

Compiled Regular
Expression

SNORT IDS with
PCRE Regexp matching

W. Najjar UCR
23

1

rasclib_algorithm_send

SNORT
Packet Interception

And Detection

Payload

Match ?

Alert

rasclib_algorithm_receive

Load Bitstream
for New
Ruleset

Ruleset

Bit-
streams

New
Rule-
set

Y

N

SNORT IDS with RASC RC100 based
Regexp Matching

78

W. Najjar UCR
23

2

NFA1 NFA 2 NFA3 NFA n

INPUT
Payload
Buffer

Output Match Data

Match

Chained NFA engines

W. Najjar UCR
23

3

NFA 0

NFA 13

Byte 0 Byte 1 Byte 2 Byte 15

NFA3

NFA14

NFA 15

NFA 16

NFA 27

NFA 17

NFA 210

NFA 211

NFA 212

NFA 213

NFA 1

NFA 2

NFA 28

NFA 29

NFA 30

NFA 41

…
…

…
…

NFA 31

…
…

Payload Buffer 16 * 65536 Bytes (SRAM on RC100 Blade)

8 8 8

81 1 1 1

Match Data 16 * 14 Bits

BRAM BRAM

Memory Interface Module to SRAM on RC 100 Blade

P

A

Y

L

O

A

D

P

A

Y

L

O

A

D

P

A

Y

L

O

A

D

P

A

Y

L

O

A

D

Architecture of NFA engines

W. Najjar UCR
23

4

Throughput evaluation

79

W. Najjar UCR
23

5

Comparison

