
1 ESWeek 2007 Salzburg, AustriaRodric Rabbah, IBM

Beyond Gaming:
Programming the PS3 Cell Architecture for

Cost-Effective Parallel Processing

Rodric Rabbah
IBM Watson Center

2Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Get a PS3, Add Linux

● The PS3 can boot user installed Operating Systems
Dual boot: GameOS and Other OS

● Installing Linux on the PS3 is well documented
Yellow Dog Linux
Fedora Core Linux
Other Linux distributions reportedly work as well
For recipes: http://cag.csail.mit.edu/ps3/recipes.shtml

● User level access to the PS3 processor: Cell
Cell SDK from IBM alphaWorks adds compilers, examples, etc.

3Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

PS3 Cell Processor

● Cell Broadband Engine Architecture
Heterogeneous multicore architecture with 9 cores
1 general purpose core: Power Processor Element (PPE)
8 accelerator cores: Synergistic Processor Elements (SPEs)

● On the PS3 only 6 SPEs are accessible, and 256MB RAM
No access to graphics card

● Cell is unique: one of the first easily accessible (distributed-
memory) multicore architectures

Distributed-memory, each core has its own local memory
– SPE can only directly access data in its local store
Compared to multicores that shares a cache and can directly
access any data in the address space

4Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Obligatory Multicore Slide

● Monolithic processor design complexity no longer scalable due
to power and wire delay limitations

● New design pattern: distribute resources, more cores on a chip

5Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Multicores, how do you program them?

● Painfully!
But you’ll change that…

● Multicores require orchestration of concurrent computation
across many cores to deliver high performance

Cores run in parallel
Programming becomes exercise in partitioning, mapping (layout),
routing (communication) and scheduling

Partitioning Layout Routing
and Scheduling

6Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Parallelism Applicable Everywhere

7Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Aerospace & DefenseAerospace & Defense
Signal & Image ProcessingSignal & Image Processing
Security, SurveillanceSecurity, Surveillance
Simulation & Training, Simulation & Training, ……

Petroleum IndustryPetroleum Industry
Seismic computingSeismic computing
Reservoir Modeling, Reservoir Modeling, ……

Communications EquipmentCommunications Equipment
LAN/MAN RoutersLAN/MAN Routers
AccessAccess
Converged NetworksConverged Networks
Security, Security, ……

Medical ImagingMedical Imaging
CT ScanCT Scan
Ultrasound, Ultrasound, ……

Consumer / Digital MediaConsumer / Digital Media
Digital Content CreationDigital Content Creation
Media PlatformMedia Platform
Video Surveillance, Video Surveillance, ……

Public Sector / GovPublic Sector / Gov’’t & Higher t & Higher EducEduc..
Signal & Image ProcessingSignal & Image Processing
Computational Chemistry, Computational Chemistry, ……

FinanceFinance
Trade modelingTrade modeling

IndustrialIndustrial
Semiconductor / LCDSemiconductor / LCD
Video ConferenceVideo Conference

Cell Application Domains

8Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Take Away Messages

● Experience with Cell has demonstrated that good
programming models are not optional for multicores

● PS3s offer convenient access to Cell processors and provide
a practical platform for research and innovation

Many hard problems to solve that are applicable in a more
general context

● Using PS3s in an educational setting can provide students
with hands on experience that can acclimate them to the
parallel programming challenges in a fun and exciting context

9Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

On Teaching Multicore Programming
Using PS3s and Cell

● Multicore programming primer short course at MIT, Jan. 2007
Covered parallel programming challenges
(18 lectures)
Offered students hands on parallel programming experience
(5 recitations, one take-home lab)
Culminated in student projects designed and implemented for PS3
– Students formed teams and determined their own projects
– Some project source code is available online

● All course material available online
http://cag.csail.mit.edu/ps3

10Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Sample Student Project: Backgammon

● AI Backgammon player
● 1M board evaluations in ~3 seconds (6 SPEs)
● Data parallel implementation, linear speedup

0

1

2

3

4

5

6

7

1 2 3 4 5 6

SPEs

Sp
ee

du
p

Eddie Scholtz and Mike Fitzgerald
http://cag.csail.mit.edu/ps3/backgammon.shtml

11Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Sample Student Project: Battery Simulation

● 2D electrochemical model of lead acid battery cell
Solves linear system using two solvers
Banded LU solver and dense LU solver

James Geraci, Sudarshan Raghunathan, and John Chu
http://cag.csail.mit.edu/ps3/battery-model.shtml

12Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Sample Student Project: Ray Tracer

Blue-Steel team (6 students)
http://cag.csail.mit.edu/ps3/blue-steel.shtml

● Full ray tracer running on each SPE
● Data parallel implementation

13Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Tutorial Agenda

● Brief overview of Cell performance characteristics

● Programming Cell
Cell components
Application walk through
Inter-core parallelism: structuring computation and communication
Orchestration: synchronization mechanisms
SIMD for single thread performance: it still matters

● Opportunities for research and innovation, and education
Programming Language
Parallelizing Compiler
Abstract Streaming Layer

14Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Acknowledgements

IBM, especially
● Dr. Bruce D’Amora
● Dr. Michael Perrone

StreamIt group at MIT, especially
● Phil Sung (MEng)
● David Zhang (MEng)

15Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Cell
Systems and Technology Group

16Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Cell History

● IBM, SCEI/Sony, Toshiba Alliance formed in 2000
● Design Center opened in March 2001 (based in Austin, Texas)
● Single Cell BE operational Spring 2004
● 2-way SMP operational Summer 2004
● February 7, 2005: First technical disclosures
● October 6, 2005: Mercury Announces Cell Blade
● November 9, 2005: Open Source SDK & Simulator Published
● November 14, 2005: Mercury Announces Turismo Cell Offering
● February 8, 2006 IBM Announced Cell Blade

Systems and Technology Group

17Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Cell Chip

18Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Freescale
MPC8641D

1.5 GHz

Theoretical Peak Operations

0

50

100

150

200

250

B
ill

io
n

O
ps

 /
se

c

FP (SP) FP (DP) Int (16 bit) Int (32 bit)

AMD
Athlon™ 64 X2

2.4 GHz

PowerPC®

970MP
2.5 GHz

Cell Broadband
EngineTM

3.2 GHz

Intel
Pentium D®

3.2 GHz

19Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Rendering Scenes by Ray Tracing

● Shoot rays into scene through pixels in image plane and
follow their paths

Rays bounce around as they strike objects
Rays generate new rays
Result is color and opacity for that pixel
Abundant parallelism (process rays in parallel)

transmission ray

primary ray

normal

reflection

20Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SPEs vs GPU

● Cell 4-5x better performance
7 SPEs used for rendering
1 SPE reserved for image
compression

● Renewed interest in ray tracing
Real-time ambient occlusion
Now practical for real time
Visualization of huge digital models

● Seamless Scale Out
More cores More performance

Courtesy of Barry Minor, IBM

21Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

IBM Interactive Ray Tracer (iRT) Demo

http://www.alphaworks.ibm.com/tech/irt

22Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Key Performance Characteristics

● Cell performance ~10x better than GPP for media and other
applications that can take advantage of its SIMD capability

PPE performance is comparable to a traditional GPP performance
SPE performance mostly the same as, or better than, a GPP with SIMD
Performance scales with number of SPEs

● Cell sufficiently versatile to cover a wide application
Floating point operations
Integer operations
Data streaming / throughput support
Real-time support

● Cell architecture is exposed to software (compilers and applications)
Performance gains from tuning can be significant
Tools are provided to assist in performance debugging and tuning

23Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Tutorial Agenda

● Brief overview of Cell performance characteristics

● Programming Cell
Cell components
Application walk through
Inter-core parallelism: structuring computation and communication
Orchestration: synchronization mechanisms
SIMD for single thread performance: it still matters

● Opportunities for research and innovation, and education
Programming Language
Parallelizing Compiler
Abstract Streaming Layer

24Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Cell Broadband Engine Architecture

MIC BIC

Dual XDR™

I/O I/O

EIB (up to 96B/cycle)

16B/cycle

16B/cycle(2x)16B/cycle

L2

L1
PPU

32B/cycle

16B/cycle

64-bit Power Architecture w/VMX

PPE

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

16B/cycle

SPE0 SPE1 SPE2 SPE3 SPE4 SPE5 SPE6 SPE7

AUC

MFC MFC MFC MFC MFC MFC MFC MFC

AUC AUC AUC AUC AUC AUC AUC

25Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Power Processor Element

● PPE handles operating system and control tasks
● 64-bit Power Architecture with VMX
● In-order, 2-way hardware simultaneous multi-threading (SMT)
● 32KB L1 cache (I & D) and 512KB L2

26Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Synergistic Processor Element

● Specialized high performance core
● Three main components

SPU: processor
LS: local store memory
MFC: memory flow control manages data in and out of SPE

27Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SPU Processing Core

● In-order processor: no speculation or branch prediction

● Greatest compute power is single precision floating point
Single precision floating point is not full IEEE compliant, similar to
graphics HW
Double precision floating point is full IEEE compliant

● 128 unified registers used for all data types

● Can only access (load & store) data in the SPE local store

28Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Local Store (LS)

● 256KB of memory per SPE
● Code and data share LS
● SPU can load 16B per cycle from LS

● Data from main memory is explicitly copied to and from the
local store since SPU cannot access any other memory
locations directly

29Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Data In and Out of the SPE Local Store

● SPU needs data
1. SPU initiates MFC request for data

MFC

memory

data

SPU

local
store

SPE

30Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Data In and Out of the SPE Local Store

● SPU needs data
1. SPU initiates MFC request for data
2. MFC requests data from memory

SPE

MFC

memory

data

SPU

local
store

31Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Data In and Out of the SPE Local Store

● SPU needs data
1. SPU initiates MFC request for data
2. MFC requests data from memory
3. Data is copied to local store MFC local

store

memory

SPU

SPE

datadata

32Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Data In and Out of the SPE Local Store

● SPU needs data
1. SPU initiates MFC request for data
2. MFC requests data from memory
3. Data is copied to local store
4. SPU can access data from local store

MFC

memory

data

SPU

local
store data

SPE

33Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Data In and Out of the SPE Local Store

● SPU needs data
1. SPU initiates MFC request for data
2. MFC requests data from memory
3. Data is copied to local store
4. SPU can access data from local store
● SPU operates on data then copies

data from local store back to memory
in a similar process

MFC

memory

data

SPU

local
store data

SPE

34Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

MFC DMAs and SPEs

● 1 Memory Flow Controller (MFC) per SPE
● High bandwidth – 16B/cycle

● Each MFC can service up to 24 outstanding DMA
commands

16 transfers initiated by SPU
8 additional transfers initiated by PPU
PPU initiates transfers by accessing MFC through MMIO
registers

● DMA transfers initiated using special channel
instructions

35Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

MFC DMAs and SPEs

● DMA transfers data between virtual address space and
local store

SPE uses PPE address translation machinery
Each SPE local store is mapped in virtual address space
– Allows direct local store to local store transfers
– Completely on chip, very fast

● Once DMA commands are issued, MFC processes them
independently

SPU continues executing/accessing local store
Communication-computation concurrency/multibuffering
essential for performance

36Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Element Interconnect Bus

● EIB data ring for internal communication
● Four 16B data rings, supporting multiple transfers

2 clockwise and 2 counter-clockwise
● 96B/cycle peak bandwidth
● Over 100 outstanding requests

37Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

EIB Data Topology

● Physically overlaps all processor elements
● Central arbiter supports up to 3 concurrent transfers per ring

2 stage, dual round robin arbiter
● Each port supports concurrent 16B in and 16B out data path

Ring topology is transparent to element data interface

16B 16B 16B 16B

Data Arb

16B 16B 16B 16B

16B 16B16B 16B16B 16B16B 16B

16B

16B
16B

16B

16B

16B
16B

16B

SPE0 SPE2 SPE4 SPE6

SPE7SPE5SPE3SPE1

MIC

PPE

BIF/IOIF0

IOIF1

38Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Internal Bandwidth Capability

● Each EIB Bus data port supports 25.6GBytes/sec* in each
direction

● The EIB Command Bus streams commands fast enough to
support 102.4 GB/sec for coherent commands, and 204.8
GB/sec for non-coherent commands.

● The EIB data rings can sustain 204.8GB/sec for certain
workloads, with transient rates as high as 307.2GB/sec
between bus units

* Assuming a 3.2GHz core frequency – internal bandwidth scales with core frequency

39Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Example of 8 Concurrent Transactions

MIC SPE0 SPE2 SPE4 SPE6 BIF /
IOIF1

Ramp

7

Controller

Ramp

8

Controller

Ramp

9

Controller

Ramp

10

Controller

Ramp

11

Controller

Controller

Ramp

0

Controller

Ramp

1

Controller

Ramp

2

Controller

Ramp

3

Controller

Ramp

4

Controller

Ramp

5

Controller

Ramp

6

Controller

Ramp

7

Controller

Ramp

8

Controller

Ramp

9

Controller

Ramp

10

Controller

Ramp

11

Data

Arbiter

Ramp

7

Controller

Ramp

8

Controller

Ramp

9

Controller

Ramp

10

Controller

Ramp

11

ControllerController

Ramp

5

Controller

Ramp

4

Controller

Ramp

3

Controller

Ramp

2

Controller

Ramp

1

Controller

Ramp

0

PPE SPE1 SPE3 SPE5 SPE7 IOIF1PPE SPE1 SPE3 SPE5 SPE7 IOIF1

PPE SPE1 SPE3 SPE5 SPE7 IOIF1MIC SPE0 SPE2 SPE4 SPE6 BIF /
IOIF0

Ring1
Ring3

Ring0
Ring2

controls

● Potential benefit from near-
neighbor communication

40 ESWeek 2007 Salzburg, AustriaRodric Rabbah, IBM

Programming Cell

The good and the hard

41Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

What Makes Cell Diff*?

● Multiple programs in one
PPU and SPU programs cooperate to carry out computation

● Local store
Something new to worry about, but potential for high performance

● Short vector parallelism (SIMD)
Intra-core parallelism in addition to parallelism across cores

42Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SPU Programs

● SPU programs are designed and written to work together but
are compiled independently

● Separate compiler and toolchain (ppu-gcc and spu-gcc)

● Produces small ELF image for each program that can be
embedded in PPU program

Contains own data, code sections
On startup, C runtime (CRT) initializes and provides malloc
printf/mmap/other I/O functions are implemented by calling on the
PPU to service the request

43Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

A Simple Cell Program

#include <stdio.h>
#include <libspe.h>

extern spe_program_handle_t hello_spu;

int main() {
speid_t id[8];

// Create 8 SPU threads
for (int i = 0; i < 8; i++) {

id[i] = spe_create_thread(0,
&hello_spu,
NULL,
NULL,
-1,
0);

}

// Wait for all threads to exit
for (int i = 0; i < 8; i++) {

spe_wait(id[i], NULL, 0);
}

return 0;
}

#include <stdio.h>

int
main(unsigned long long speid,

unsigned long long argp,
unsigned long long envp)

{
printf("Hello world! (0x%x)\n", (unsigned int)speid);
return 0;

}

PPU (hello.c)

SPU (hello_spu.c)

44Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SPE Threads

● Not the same as “normal” threads

● SPE does not have protection, only run one thread at a time
PPU can “forcibly” context-switch a SPE by saving context,
copying out old local store/context, copying in new

● Early SDKs did not support context switching SPEs
SPE threads are run on physical SPEs in FIFO order
If more threads than SPEs, additional threads will wait for running
threads to exit before starting
Don’t create more threads than physical SPEs
Improvements to this model in newer SDKs

45Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Mapping Computation to SPEs

f1

f2

f3

● Example: single-threaded program performs computation in
three stages on data: f3 (f2 (f1 (…))

● Several possible parallel mappings to SPEs

Data in memory

46Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Types of Parallelism

Data-Level Parallelism (DLP)

Ti
m

e

Ti
m

e

Thread-Level Parallelism (TLP)

Ti
m

e

Instruction-Level Parallelism (ILP)

Pipeline Parallelism

Ti
m

e

47Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Mapping Computation to SPEs

SPE

f1

f2

f3

SPE

f1

f2

f3

SPE

f1

f2

f3

Data in memory

● Coarse-Grained Data Parallelism
Each SPE contains all computation stages
Split up data and send to different SPEs

48Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Example Data Parallelization on Cell

● Calculate distance from each point in a[...] to each point in
b[...] and store result in c[...][...]

● How to divide the work between 2 SPEs?

for (i = 0; i < NUM_POINTS; i++) {
for (j = 0; j < NUM_POINTS; j++) {

c[i][j] = distance(a[i], b[j]);

x

y

b

a

49Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Example Data Parallelization on Cell

a[i]

b[j]

c[i][j]

SPE 0

j

i

Memory
SPE 1

each SPE runs the same thread (code)

50Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Mapping Computation to SPEs

SPE

f1

SPE

f2

SPE

f3

● Coarse-Grained Pipeline Parallelism
Map computation stages to different SPEs
Use DMA to transfer intermediate results from SPE to SPE in
pipeline fashion

Data in memory

51Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Mapping Computation to SPEs

● Mixed or other approaches are possible, depends on problem
Pipeline parallelism when stateful computation is bottleneck
Or when locality is important
Data parallelism across most of the cores for simplicity

SPE

f1

f2

f3

SPE

f1

f2

f3

SPE

f1

f2

f3

SPE

f1

SPE

f2

SPE

f3

52 ESWeek 2007 Salzburg, AustriaRodric Rabbah, IBM

Increasing Performance
with Parallelism

What’s all the fuss about?

53Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Cell-ifying a Program

● Simple 3D gravitational body simulator
● n objects, each with mass, initial position, initial velocity

● Simulate motion using Euler integration

float mass[NUM_BODIES];
VEC3D pos[NUM_BODIES];
VEC3D vel[NUM_BODIES];

54Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Single-threaded Version

● For each step in simulation
Calculate acceleration of
all objects
– For each pair of objects,

calculate the force
between them and update
accelerations accordingly

Update positions and
velocities

● Slow: n = 3072 1500ms

VEC3D acc[NUM_BODIES] = 0;

for (i = 0; i < NUM_BODIES - 1; i++) {
for (j = i + 1; j < NUM_BODIES; j++) {

// Displacement vector
VEC3D d = pos[j] – pos[i];
// Force
t = 1 / sqr(length(d));
// Components of force along displacement
d = t * (d / length(d));

acc[i] += d * mass[j];
acc[j] += -d * mass[i];

}
}

VEC3D acc[NUM_BODIES] = 0;

for (i = 0; i < NUM_BODIES; i++) {
pos[i] += vel[i] * TIMESTEP;
vel[i] += acc[i] * TIMESTEP;

}

55Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

● Divide objects into 6 sections (n = 3072 = 6 * 512)

● Each SPE is responsible for calculating the motion of one
section of objects

SPE still needs to know mass, position of all objects to compute
accelerations
SPE only needs to know and update velocity of the objects it is
responsible for

● Everything fits in local store
Positions for 3072 objects take up 36 KB

Cell-ification: using SPEs for acceleration

pos

SPE 0 SPE 1 SPE 2 SPE 3 SPE 4 SPE 5

56Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SPU 2

PPU/Memory

● Initialization
PPU tells SPU which section of objects it is responsible for

mass

initial vel

pos mass

vel

pos

// Index [i] stores mass/position of objects SPU i
// is responsible for
float mass[6][SPU_BODIES];
VEC3D pos[6][SPU_BODIES];

// The section of objects this SPU is responsible for
int id;
// Pointer to pos[id]
VEC3D *own_pos;
// Velocity for this SPU's objects
VEC3D own_vel[SPU_BODIES];

// Pass id in envp
id = envp;
own_mass = mass[id];
own_pos = pos[id];

Cell-ification: using SPEs for acceleration

57Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SPU copies in mass of all objects

SPU copies in initial position, velocity of its objects

SPU 2

PPU/Memory

mass

initial vel

pos mass

vel

pos

mfc_get(mass, cb.mass_addr, sizeof(mass), ...);

mfc_get(own_pos, cb.pos_addr + id * sizeof(pos[0]), sizeof(pos[0]), ...);
mfc_get(own_vel, cb.vel_addr + id * sizeof(own_vel), sizeof(own_vel), ...);

Cell-ification: using SPEs for acceleration

58Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

● Simulation step
PPU sends message telling SPU to simulate one step

SPU 2

PPU/Memory

pos

vel

pos

spu_read_in_mbox();

Cell-ification: using SPEs for acceleration

59Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SPU 2

PPU/Memory

pos

vel

pos

if (id != 0) {
mfc_get(pos, cb.pos_addr + id * sizeof(pos[0]), id * sizeof(pos[0]), ...);

};
if (id != 5) {

mfc_get(pos[id + 1], cb.pos_addr + (id + 1) * sizeof(pos[0]),
(5 – id) * sizeof(pos[0]), ...);

}

SPU copies in updated positions of other objects

Cell-ification: using SPEs for acceleration

60Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SPU sends message to PPU indicating it has finished copying
positions
– PPU waits for this message before it can tell other SPUs to write back

positions at end of simulation step

SPU 2

PPU/Memory

pos

vel

pos

spu_write_out_mbox(0);

Cell-ification: using SPEs for acceleration

61Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SPU calculates acceleration and updates position and velocity of
its objects

SPU 2

PPU/Memory

pos

vel

pos

// Process interactions between this SPU's objects
process_own();
// Process interactions with other objects
for (int i = 0; i < 6; i++) {

if (i != id) {
process_other(pos[i], mass[i]);

}
}

Cell-ification: using SPEs for acceleration

62Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SPU waits for message from PPU indicating it can write back
updated positions

SPU 2

PPU/Memory

pos

vel

pos

spu_read_in_mbox();

Cell-ification: using SPEs for acceleration

63Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SPU writes back updated positions to PPU

SPU 2

PPU/Memory

pos

vel

pos

mfc_put(own_pos, cb.pos_addr + id * sizeof(pos[0]), sizeof(pos[0]), ...);

Cell-ification: using SPEs for acceleration

64Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SPU sends message to PPU indicating it is done simulation step

SPU 2

PPU/Memory

pos

vel

pos

spu_write_out_mbox(0);

Cell-ification: using SPEs for acceleration

65Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Coordination with Mailboxes and Signals

● Facility for SPU to exchange small messages with PPU/other SPUs
E.g. memory address, “data ready” message

● From perspective of SPU
1 inbound mailbox (4-entry FIFO) – send messages to this SPU
1 outbound mailbox (1-entry) – send messages from this SPU
1 outbound mailbox (1-entry) – interrupts PPU to send messages from SPU
2 signal notification registers – send messages to this SPU
32 bits

● SPU accesses its own mailboxes/signals by reading/writing to channels
with special instructions

Read from inbound mailbox, signals
Write to outbound mailboxes
Accesses will stall if empty/full

● SPU/PPU accesses another SPU mailboxes/signals through MMIO
registers

66Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Orchestration and Coordination

● Lots of signals sent back and force
I’m ready
I’m done
What’s my work?
Where’s my data?
…

● Couple this with architecture issues
Cell alignment constraints

● And a lot can go wrong

67Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Cell Debugging Tools

● GNU gdb source level debugger
Supports PPE and SPE multithreading
Interaction between PPE and SPE threads
Standalone SPE debugging
Or attach to SPE threads

● Existing methodologies for debugging are not well suited for
multicores

68 ESWeek 2007 Salzburg, AustriaRodric Rabbah, IBM

Overlapping Communication and
Computation

69Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Overlapping DMA and Computation

Get Data

● Simple approach:

● Pipelining can achieve communication-computation concurrency
Start DMA for next piece of data while processing current piece

Compute

Get Data

Compute

Synchronization point

SPU is idle

DMA engine is idle

70Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Overlapping DMA and Computation

SPU 2

PPU/Memory

pos

pos

Get Data

Compute

// pos[i] stores positions of objects SPU i is
// responsible for
VEC3D pos[6][SPU_BODIES];

// Start transfer for first section of positions
i = 0;
tag = 0;
mfc_get(pos[i],

cb.pos_addr + i * sizeof(pos[0]),
sizeof(pos[0]),
tag,
...);

tag ^= 1;

// Process interactions between objects this SPU
// is responsible for
process_own();

71Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Overlapping DMA and Computation

SPU 2

PPU/Memory

pos

pos

Get Data

Compute

while (!done) {
// Start transfer for next section of positions
mfc_get(pos[next_i],

cb.pos_addr + next_i * sizeof(pos[0]),
sizeof(pos[0]),
tag,
...);

// Wait for current section of positions to
// finish transferring
tag ^= 1;
mfc_write_tag_mask(1 << tag);
mfc_read_tag_status_all();

// Process interactions
process_other(pos[i], mass[i]);

i = next_i;
}

72Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Overlapping DMA and Computation

SPU 2

PPU/Memory

pos

pos

Get Data

Compute

while (!done) {
// Start transfer for next section of positions
mfc_get(pos[next_i],

cb.pos_addr + next_i * sizeof(pos[0]),
sizeof(pos[0]),
tag,
...);

// Wait for current section of positions to
// finish transferring
tag ^= 1;
mfc_write_tag_mask(1 << tag);
mfc_read_tag_status_all();

// Process interactions
process_other(pos[i], mass[i]);

i = next_i;
}

73Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Overlapping DMA and Computation

SPU 2

PPU/Memory

pos

pos

Get Data

Compute

while (!done) {
// Start transfer for next section of positions
mfc_get(pos[next_i],

cb.pos_addr + next_i * sizeof(pos[0]),
sizeof(pos[0]),
tag,
...);

// Wait for current section of positions to
// finish transferring
tag ^= 1;
mfc_write_tag_mask(1 << tag);
mfc_read_tag_status_all();

// Process interactions
process_other(pos[i], mass[i]);

i = next_i;
}

74Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Overlapping DMA and Computation

SPU 2

PPU/Memory

pos

pos

Get Data

Compute

while (!done) {
// Start transfer for next section of positions
mfc_get(pos[next_i],

cb.pos_addr + next_i * sizeof(pos[0]),
sizeof(pos[0]),
tag,
...);

// Wait for current section of positions to
// finish transferring
tag ^= 1;
mfc_write_tag_mask(1 << tag);
mfc_read_tag_status_all();

// Process interactions
process_other(pos[i], mass[i]);

i = next_i;
}

75Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Overlapping DMA and Computation

SPU 2

PPU/Memory

pos

pos

Get Data

Compute

// Wait for last section of positions to finish
// transferring
tag ^= 1;
mfc_write_tag_mask(1 << tag);
mfc_read_tag_status_all();

// Notify PPU that positions have been read
spu_write_out_mbox(0);

// Process interactions
process_other(pos[i], mass[i]);

76Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Overlapping DMA and Computation

● Pipelining can improve performance by a lot, or not by much
Depends on program: communication to computation ratio
Can avoid optimizing parts that don’t greatly affect performance

Get Data

Compute

Get Data

Compute

77Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Double-buffering

● LS is finite
● Avoid wasting local store space
● Keep 2 buffers

Start data transfer into one
Process data in other
Swap buffers for next transfer

SPU 2

PPU/Memory

pos

pos

78Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Double-buffering

SPU 2

PPU/Memory

pos

pos

79Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Double-buffering

SPU 2

PPU/Memory

pos

pos

80Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Double-buffering

SPU 2

PPU/Memory

pos

pos

81 ESWeek 2007 Salzburg, AustriaRodric Rabbah, IBM

Intra-Core Parallelism

SIMD Programming on Cell

82Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SIMD

● Many compute-bound applications perform the same
computations on a lot of data

Dependence between iterations is rare
Opportunities for data parallelization

for (int i = 0; i < n; i++) {
c[i] = a[i] + b[i]

}

Scalar code

a

b

c

83Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SIMD

● Single Instruction, Multiple Data
● SIMD registers hold short vectors
● Instruction operates on all elements in SIMD register at once

for (int i = 0; i < n; i++) {
c[i] = a[i] + b[i]

}

Scalar code
for (int i = 0; i < n; i += 4) {

c[i:i+3] = a[i:i+3] + b[i:i+3]
}

Vector code

a

b

c

a

b

c

SIMD registerscalar register

84Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SIMD

● Can offer high performance
Single-precision multiply-add instruction: 8 flops per cycle per SPE

● Scalar code works fine but only uses 1 element in vector
● SPU loads/stores on quad-word (qword) granularity only

Can be an issue if the SPU and other processors (via DMA) try to
update different variables in the same qword

● For scalar code, compiler generates additional instructions to
rotate scalar elements to the same slot and update a single
element in a qword

● SIMDizing code is important
Auto SIMDization (compiler optimization)
Intrinsics (manual optimization)

85Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Example: Scalar Operation

B0

*

C0

C[0] = A[0] * B[0]

A0

86Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Example: SIMD Vector Operation

A0

B0

*

C0

for(i = 0; i < N/4; ++i)
C[i] = vector_mul(A[i],B[i]);

A1

B1

*

C1

A2

B2

*

C2

A3

B3

*

C3

A4

B4

*

C4

A5

B5

*

C5

A6

B6

*

C6

A7

B7

*

C7

87Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Hardware Support for Data Parallelism

● Registers are 128-bits
● Can pack vectors of different data types into registers
● Operations consume and produce vector registers

Special assembly instructions
Access via C/C++ language extensions (intrinsics)

88Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Accessing Vector Elements

● typedef union {
int v[4];
vector signed int vec;

} intVec;

● Unpack scalars from vector:
intVec a;
a.vec = …;
… = a.v[2];
… = spu_extract(va, 2);

● Pack scalars into vector:
a.v[0] = …; a.v[1] = …;
a.v[2] = …; a.v[3] = …;
… = a.vec;

Interpret a segment of
memory either as an

array…

or as a vector type…

so that values written in
one format can be read

in the other

v[0]

vec

v[1] v[2] v[3]

89Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Review: 3D Gravitational Simulator

● n objects, each with mass, initial position, initial velocity

● Simulate motion using Euler integration
Calculate the force of each object on every other
Calculate net force on and acceleration of each object
Update position

float mass[NUM_BODIES];
VEC3D pos[NUM_BODIES];
VEC3D vel[NUM_BODIES];

typedef struct _VEC3D {
float x, y, z;

} VEC3D;

VEC3D d;
// Calculate displacement from i to j
d.x = pos[j].x - pos[i].x;
d.y = pos[j].y - pos[i].y;
d.z = pos[j].z - pos[i].z;

90Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Re-engineering for SIMD

● One approach to SIMD: array of structs
Pad each (x, y, z) vector to fill a qword
Components (x, y, z) correspond to first three words of vector float
Qwords for different vectors stored consecutively

x0 y0 z0

Q
w

or
ds

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5

typedef union _VEC3D {
struct {float x, y, z;};
vector float vec;

} QWORD_ALIGNED VEC3D;

91Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Re-engineering for SIMD

● Now we can replace component-wise addition, subtraction, and
multiplication with SIMD instructions

VEC3D d;
// Calculate displacement from i to j
d.x = pos[j].x - pos[i].x;
d.y = pos[j].y - pos[i].y;
d.z = pos[j].z - pos[i].z;

vector float d;
// Calculate displacement from i to j
d = spu_sub(pos[j].vec, pos[i].vec);

92Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

SIMD Design Considerations

● Data layout: array of structs (AOS) vs. struct of arrays (SOA)
SOA layout is alternative data organization to lay out
the same fields consecutively
Can apply different algorithms on new data layout

x0

struct of arrays

x1 x2 x3

x4 x5 x6 x7

y0 y1 y2 y3

y4 y5 y6 y7

z0 z1 z2 z3

z4 z5 z6 z7

x0 y0 z0

array of structs

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5

93Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Struct of Array Layout

● Need 12 qwords to store state for 8 objects
x, y, z position and velocity components
No padding component needed in SOA

● For each component, do four pair-interactions at once with
SIMD instructions

Rotate qword 3 more times to get all 16
pair-interactions between two qwords

x0 x1 x2 x3

x4 x5 x6 x7

x0 x1 x2 x3

x5 x6 x7 x4
Rotate etc.

94Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Performance Summary for Example

● Baseline native code was sequential and scalar
Scalar (PPU): 1510 ms

● Parallelized code with double buffering for SPUs
Scalar (6 SPUs): 420 ms

● Applied SIMD optimizations
SIMD array of structs: 300 ms

● Redesigned algorithm to better suite SIMD parallelism
SIMD struct of arrays: 80 ms

● Overall speedup compared to native sequential execution
Expected: ~ 24x (6 SPUs ∗ 4 way SIMD)
Achieved: 18x*

* Note comparison is PPU to 6 SPUs

95Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Programming the Cell

● Guide to programming PS3/Cell: google “PS3 programming”
http://cag.csail.mit.edu/ps3
MIT short course on parallel programming using
the PS3/Cell as the student project platform
Provides detailed examples with walk through
– Lectures, recitations, and labs
Student projects and source code
Lots of recipes (installing Linux, SDK, Cell API mini-reference)
Links to additional documentation

96Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Cell Programming Summary

● Programming multicore architectures: “parallelize or perish”
● Orchestrating parallelism is hard

Data management
Code placement
Scheduling
Hiding communication latency

● Lots of opportunities for impact
Scheduling ideas
Dynamic load balancing
Static scheduling
Intra-core performance still matters

● Cell offers a unique platform to explore and evaluate lots of
ideas, PS3s make it easily accessible

97Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Tutorial Agenda

● Brief overview of Cell performance characteristics

● Programming Cell
Cell components
Application walk through
Inter-core parallelism: structuring computation and communication
Orchestration: synchronization mechanisms
SIMD for single thread performance: it still matters

● Opportunities for research and innovation, and education
Programming Language
Parallelizing Compiler
Abstract Streaming Layer

98Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Acknowledgements

StreamIt group at MIT, especially
● Prof. Saman Amarasinghe
● Michael Gordon (PhD)
● Bill Thies (PhD)
● Qiuyuan Jimmy Li (MEng)
● David Zhang (MEng)

CCCP group at UMICH, especially
● Prof. Scott Mahlke
● Manjunath Kudlur (PhD)

99Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Programming For Parallelism

EIB (up to 96B/cycle)

PPU

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

AUC

MFC MFC MFC MFC MFC MFC MFC MFC

AUC AUC AUC AUC AUC AUC AUC

EIB (up to 96B/cycle)

PPU

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

AUC

MFC MFC MFC MFC MFC MFC MFC MFC

AUC AUC AUC AUC AUC AUC AUC

EIB (up to 96B/cycle)

PPU

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

AUC

MFC MFC MFC MFC MFC MFC MFC MFC

AUC AUC AUC AUC AUC AUC AUC

application

discover
parallelism

determine
communication

patterns

graft explicit parallel
constructs onto

imperative language

● Huge burden on programmer
Introducing parallelism
Correctness of parallelism
Optimizing parallelism

more voodoo
e.g., load balancing, locality,
synchronization decisions

● Is implementation composable
or malleable?

100Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Explicit Parallelism

● Programmer controls details of parallelism!
● Granularity decisions:

If too small, lots of synchronization and thread creation
If too large, bad locality

● Load balancing decisions
Create balanced parallel sections (not data-parallel)

● Locality decisions
Sharing and communication structure

● Synchronization decisions
barriers, atomicity, critical sections, order, flushing

● For mass adoption, we need a better paradigm:
Where the parallelism is natural
Exposes the necessary information to the compiler

101Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Common Machine Language

● Represent common properties of architectures
Necessary for performance

● Abstract away differences in architectures
Necessary for portability

● Cannot be too complex
Must keep in mind the typical programmer

● C and Fortran were the common machine languages for
uniprocessors

102Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Common Machine Languages

Single memory image

Single flow of control

Common Properties
Uniprocessors:

ISA

Functional Units

Register File

Differences:

Multiple local memories

Multiple flows of control

Common Properties
Multicores:

Communication Model

Synchronization Model

Number and capabilities of cores

Differences:

von-Neumann languages represent the
common properties and abstract away
the differences

Need common machine language(s)
for multicores

103Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Why a New Language?

For uniprocessors,
C was:
• Portable
• High Performance
• Composable
• Malleable
• Maintainable

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005

Raw

Power4 Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Boardcom 1480

20??

of
cores

1

2

4

8

16

32

64

128
256

512

Opteron 4P
Xeon MP

Athlon

Ambric
AM2045

Raw

Power4 Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Boardcom 1480 Opteron 4P
Xeon MP

Ambric
AM2045

104Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Why a New Language?

What is the common
machine language
for multicores?

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005

Raw

Power4 Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Boardcom 1480

20??

of
cores

1

2

4

8

16

32

64

128
256

512

Opteron 4P
Xeon MP

Athlon

Ambric
AM2045

Raw

Power4 Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Boardcom 1480 Opteron 4P
Xeon MP

Ambric
AM2045

105Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Unburden the Programmer

● Move hard decisions to compiler!
Granularity
Load Balancing
Locality
Synchronization

● Hard to do in traditional languages: can a novel language help?

106Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Adder

Speaker

AtoD

FMDemod

LPF1

Scatter

Gather

LPF2 LPF3

HPF1 HPF2 HPF3

Streaming as a Common Machine Language

● For programs based on streams of data
Audio, video, DSP, networking,
security (cryptography), etc.
Examples: HDTV editing, radar
tracking, microphone arrays, cell
phone base stations, graphics

● Several attractive properties
Regular and repeating computation
Independent filters
with explicit communication
Task, data, and pipeline parallelism

● Benefits:
Naturally parallel
Expose dependencies to compiler
Enable powerful transformations

107Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Streaming Models of Computation

● Many different ways to represent streaming
Do senders/receivers block?
How much buffering is allowed on channels?
Is computation deterministic?
Can you avoid deadlock?

● Three common models:
1. Kahn Process Networks
2. Synchronous Dataflow
3. Communicating Sequential Processes

108Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Streaming Models of Computation

Buffering NotesCommunication
Pattern

109Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Streaming Models of Computation

Conceptually
unbounded

Buffering

- UNIX pipes
- Ambric (startup)

Notes

Data-dependent,
but deterministic

Kahn process
networks (KPN)

Communication
Pattern

110Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Streaming Models of Computation

Fixed by
compiler

Conceptually
unbounded

Buffering

- Static scheduling
- Deadlock freedom

- UNIX pipes
- Ambric (startup)

Notes

Static Synchronous
dataflow (SDF)

Data-dependent,
but deterministic

Kahn process
networks (KPN)

Communication
Pattern

SDF

KPN
space of program behaviors

111Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Streaming Models of Computation

None
(Rendesvouz)

Fixed by
compiler

Conceptually
unbounded

Buffering

- Rich synchronization
primitives

- Occam language

- Static scheduling
- Deadlock freedom

- UNIX pipes
- Ambric (startup)

Notes

Data-dependent,
allows non-
determinism

Communicating
Sequential
Processes (CSP)

Static Synchronous
dataflow (SDF)

Data-dependent,
but deterministic

Kahn process
networks (KPN)

Communication
Pattern

SDF

KPN CSP
space of program behaviors

112Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Representing Streams

● Conventional wisdom: streams are graphs
Graphs have no simple textual representation
Graphs are difficult to analyze and optimize

● Insight: stream programs have structure

unstructured structured

113Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Streaming and Multicore Related Work

● CellSs (http://www.bsc.es/cellsuperscalar)
● Corepy (http://www.corepy.org/)
● Mercury Multicore Plus SDK (http://www.mc.com/ps3/)
● Rapidmind (http://www.rapidmind.net/)
● Sequoia (http://sequoia.stanford.edu/)

114Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

The StreamIt Language

● A high-level, architecture-independent language for streaming
applications

Improves programmer productivity (vs. Java, C)
Offers scalable performance on multicores

● Based on synchronous dataflow, with dynamic extensions
Compiler or dynamic scheduler can determine execution order
Many aggressive optimizations possible

115Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

parallel computation

Structured Streams in StreamIt

may be
any StreamIt
language construct

joinersplitter

pipeline

feedback loop

joiner splitter

splitjoin

filter ● Each structure is single-
input, single-output

● Hierarchical and
composable

116Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

StreamIt Execution Model

● Nodes push and pop data
to FIFOs

● Constant number of items
every time

● Static schedule possible
● Nodes can have local state

117Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Example: A Simple Counter

void->void pipeline Counter() {
add IntSource();
add IntPrinter();

}
void->int filter IntSource() {

int x;
init { x = 0; }
work push 1 { push (x++); }

}
int->void filter IntPrinter() {

work pop 1 { print(pop()); }

}

Counter

IntSource

IntPrinter

% strc Counter.str –o counter
% ./counter –i 4
0
1
2
3

118Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Filter Example: Low Pass Filter

N

float->float filter LowPassFilter (int N, float freq) {
float[N] weights;

init {
weights = calcWeights(freq);

}

work peek N push 1 pop 1 {
float result = 0;
for (int i=0; i<weights.length; i++) {

result += weights[i] * peek(i);
}
push(result);
pop();

}
}

filter

119Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Low Pass Filter in C

void FIR(
int* src,
int* dest,
int* srcIndex,
int* destIndex,
int srcBufferSize,
int destBufferSize,
int N) {

float result = 0.0;
for (int i = 0; i < N; i++) {
result += weights[i] * src[(*srcIndex + i) % srcBufferSize];

}
dest[*destIndex] = result;
*srcIndex = (*srcIndex + 1) % srcBufferSize;
*destIndex = (*destIndex + 1) % destBufferSize;

}

● FIR functionality obscured by
buffer management details

● Programmer must commit to a
particular buffer implementation
strategy

120Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

float→float pipeline BandPassFilter (int N,
float low,
float high) {

add LowPassFilter(N, low);
add HighPassFilter(N, high);

} HighPassFilter

LowPassFilter

Pipeline Example: Band Pass Filter

121Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

duplicate

SplitJoin Example: Equalizer

BPF BPF BPF

Adder

roundrobin

Equalizerfloat→float pipeline Equalizer (int N,
float lo,
float hi) {

add splitjoin {

split duplicate;

for (int i=0; i<N; i++)

add BandPassFilter(64, lo + i*(hi - lo)/N);

join roundrobin(1);

}

add Adder(N);

}

122Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

void->void pipeline FMRadio(int N, float lo, float hi) {
add AtoD();

add FMDemod();

add splitjoin {
split duplicate;
for (int i=0; i<N; i++) {

add pipeline {

add LowPassFilter(lo + i*(hi - lo)/N);

add HighPassFilter(lo + i*(hi - lo)/N);
}

}
join roundrobin();

}
add Adder();

add Speaker();
}

Adder

Speaker

AtoD

FMDemod

LPF1

Duplicate

RoundRobin

LPF2 LPF3

HPF1 HPF2 HPF3

Building Larger Programs: FMRadio

123Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Picture Reorder

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Motion Vector Decode

Repeat

Color Conversion

MPEG bit stream
MPEG Decoder

Motion
Compensation

Display

Where’s the Concurrency?

124Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

● Task decomposition
Independent coarse-grained
computation
Inherent to algorithm

● Sequence of statements
(instructions) that operate
together as a group

Corresponds to some logical part of
program
Usually follows from the way
programmer thinks about a problem

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Motion
Compensation

Where’s the Concurrency?

125Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Motion
Compensation

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Where’s the Concurrency?

● Task decomposition
Parallelism in the application

● Data decomposition
Same computation is applied to
small data chunks derived from
large data set

126Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Motion
Compensation

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Where’s the Concurrency?

● Task decomposition
Parallelism in the application

● Data decomposition
Same computation many data

● Pipeline decomposition
Data assembly lines
Producer-consumer chains

127Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Productive (Stream) Programming
For Parallelism using StreamIt

EIB (up to 96B/cycle)

PPU

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

AUC

MFC MFC MFC MFC MFC MFC MFC MFC

AUC AUC AUC AUC AUC AUC AUC

EIB (up to 96B/cycle)

PPU

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

AUC

MFC MFC MFC MFC MFC MFC MFC MFC

AUC AUC AUC AUC AUC AUC AUC

EIB (up to 96B/cycle)

PPU

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

AUC

MFC MFC MFC MFC MFC MFC MFC MFC

AUC AUC AUC AUC AUC AUC AUC

Multicore Streaming Layer (Collection of Cores e.g., SPEs)

application
● Application is naturally parallel,

exposes concurrency, dependencies,
and communication patterns

StreamIt
Compiler

StreamIt
Dynamic

Scheduler
MSL is not StreamIt specific

128Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

The StreamIt Compiler

1. Coarsen: Fuse stateless sections of the graph
2. Data Parallelize: parallelize stateless filters
3. Software Pipeline: parallelize stateful filters

Coarsen
Granularity

Data
Parallelize

Software
Pipeline

[Gordon et al. ASPLOS ‘06]

129Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Coarse Grained Software Pipelining

A

B C

D

A

SPE0 SPE1 SPE2 SPE3

Time

B C
D

A
B C

D
A

B C
D

Initiation
Interval

● Good work estimation enables static load balancing…
● … Leads to better utilization and throughput
● Pipelining hides communication latency

130Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Impact of Load Balance

Dist

Ident

doE nextL

Anon

Xor

SBox

doP

Xor

Dist

Ident

doE nextL

Anon

Xor

SBox

doP

Xor
Speedup ~ 1.2 Speedup ~ 1.7

DES
StreamIt
pipeline

time

SPE0 SPE1

131Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Software Pipelining On Cell

0

1

2

3

4

5

6

7

8

bit
on

ic

ch
an

ne
l

dc
t

de
s fft

filt
erb

an
k

fm
rad

io tde

mpe
g2

vo
co

de
r

rad
ar

Geo
m-M

ea
n

R
el

at
iv

e
Sp

ee
du

p 1 SPE
2 SPE
4 SPE
6 SPE
8 SPE

[Kudlur et al. UMich ’07]

132 ESWeek 2007 Salzburg, AustriaRodric Rabbah, IBM

Automatic Parallelization Beyond Cell

[Gordon et al. ASPLOS ‘06]

133Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Task Parallelism

Adder

Splitter

Joiner

Compress

BandPass

Expand

Process

BandStop

Compress

BandPass

Expand

Process

BandStop

● Inherent task parallelism between two
processing pipelines

● Task Parallel Model:
Only parallelize explicit task
parallelism
Fork/join parallelism

● Execute this on a 2 core machine ~2x
speedup over single core

● What about 4, 16, 1024, … cores?

134Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bito
nic

Sor
t

Cha
nn

elV
oc

od
er

DCT

DES

FFT

Filte
rba

nk

FMRad
io

Ser
pe

nt

TDE
MPEG2D

ec
od

er

Voc
od

er

Rad
ar

Geo
metr

ic
Mea

n
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e
C

or
e

St
re

am
It

Task Parallelism

Raw Microprocessor
16 inorder, single-issue cores with D$ and I$

16 memory banks, each bank with DMA
Cycle accurate simulator

135Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bito
nic

Sor
t

Cha
nn

elV
oc

od
er

DCT

DES

FFT

Filte
rba

nk

FMRad
io

Ser
pe

nt

TDE
MPEG2D

ec
od

er

Voc
od

er

Rad
ar

Geo
metr

ic
Mea

n
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e
C

or
e

St
re

am
It

Task Parallelism

Parallelism: Not matched to target!
Synchronization: Not matched to target!

136Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Data Parallelism

Adder

Splitter

Joiner

● Each of the filters in the example are
stateless

● Fine-grained Data Parallel Model:
Fiss each stateless filter N ways (N is
number of cores)
Remove scatter/gather if possible

● We can introduce data parallelism
Example: 4 cores

● Each fission group occupies entire
machine

BandStopBandStopBandStopAdder
Splitter

Joiner

ExpandExpandExpand

ProcessProcessProcess

Joiner

BandPassBandPassBandPass

CompressCompressCompress

BandStopBandStopBandStop

Expand

BandStop

Splitter

Joiner

Splitter

Process

BandPass

Compress

Splitter

Joiner

Splitter

Joiner

Splitter

Joiner

ExpandExpandExpand

ProcessProcessProcess

Joiner

BandPassBandPassBandPass

CompressCompressCompress

BandStopBandStopBandStop

Expand

BandStop

Splitter

Joiner

Splitter

Process

BandPass

Compress

Splitter

Joiner

Splitter

Joiner

Splitter

Joiner

137Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Fine-Grained Data Parallelism

0

1

2

3
4

5

6

7

8

9
10

11

12

13

14

15
16

17

18

19

Bito
nic

Sort
Cha

nne
lVoc

od
er

DCT

DES

FFT

Filte
rban

k

FMRad
io

Serp
en

t

TDE
MPEG2Deco

der

Voc
od

er

Rad
ar

Geo
metr

ic
Mea

n
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e
C

or
e

St
re

am
It

Task
Fine-Grained Data

Good Parallelism!
Too Much Synchronization!

138Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Coarse-Grained Data Parallelism

0
1
2

3
4
5
6
7

8
9

10
11

12
13
14
15
16

17
18
19

Bito
nic

Sort
Cha

nnelVoco
der

DCT

DES

FFT

Filte
rba

nk

FMRadio

Serpent

TDE
MPEG2Dec

oder

Voco
der

Rad
ar

Geometr
ic

Mean

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 S
in

gl
e

C
or

e
St

re
am

It

Task
Fine-Grained Data
Coarse-Grained Task + Data

Good Parallelism!
Low Synchronization!

139Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Bito
nic

Sort
Cha

nnelVoco
der

DCT

DES

FFT

Filte
rba

nk

FMRadio

Serpent

TDE
MPEG2Dec

oder

Voco
der

Rad
ar

Geometr
ic

Mean
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e
C

or
e

St
re

am
It

Task Fine-Grained Data
Coarse-Grained Task + Data Coarse-Grained Task + Data + Software Pipeline

Coarse-Grained
Task + Data + Software Pipelining

Best Parallelism!
Lowest Synchronization!

140 ESWeek 2007 Salzburg, AustriaRodric Rabbah, IBM

Virtualizing Multicore Architecture

141Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Productive (Stream) Programming
For Parallelism using StreamIt

EIB (up to 96B/cycle)

PPU

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

AUC

MFC MFC MFC MFC MFC MFC MFC MFC

AUC AUC AUC AUC AUC AUC AUC

EIB (up to 96B/cycle)

PPU

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

AUC

MFC MFC MFC MFC MFC MFC MFC MFC

AUC AUC AUC AUC AUC AUC AUC

EIB (up to 96B/cycle)

PPU

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

AUC

MFC MFC MFC MFC MFC MFC MFC MFC

AUC AUC AUC AUC AUC AUC AUC

Multicore Streaming Layer (Collection of Cores e.g., SPEs)

application
● Application is naturally parallel,

exposes concurrency, dependencies,
and communication patterns

StreamIt
Compiler

StreamIt
Dynamic

Scheduler
MSL is not StreamIt specific

142Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Multicore Steaming Layer

● Computation viewed as a collection of
Filters: encapsulate computation and state
Buffers: input and output attached to filters

● Provides a instruction set
Filter commands (load, unload)
Buffer commands (allocate, attach)
Data transfer commands (indirectly translate to synchronization)

[Zhang. MIT MEng ‘07]

143Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Multicore Steaming Layer

● Abstracts away details of explicit data communication
Far easier to implement scheduling patterns on top of MSL,
compared to for example Cell API

● Facilitate mapping of computation to a multicore
Compiler (or programmer) focuses on optimizations
and graph refinement
Compiler uses communication patterns that are suitable for the
application
Details of the actual communication mechanism may differ, and
are hidden from the compiler

[Zhang. MIT MEng ‘07]

144Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Multicore Steaming Layer

● StreamIt compiler easily maps filters and buffers for MSL
Benefit of a practical and lightweight dynamic scheduler
Between 1-9% of runtime overhead
[Zhang. MIT MEng ‘07]

● Compiler can also implement static schedule directly in MSL
instruction set

Evaluate both static and dynamic scheduling algorithms
[Zhang, Li, et al. ‘07]

145Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

● Applications
DES and Serpent [PLDI 05]
MPEG-2 [IPDPS 06]
SAR, DSP benchmarks, JPEG, …

● Programmability
StreamIt Language (CC 02)
Teleport Messaging (PPOPP 05)
Programming Environment in Eclipse (P-PHEC 05)

● Domain Specific Optimizations
Linear Analysis and Optimization (PLDI 03)
Optimizations for bit streaming (PLDI 05)
Linear State Space Analysis (CASES 05)

● Architecture Specific Optimizations
Compiling for Communication-Exposed Architectures
(ASPLOS 02)
Phased Scheduling (LCTES 03)
Cache Aware Optimization (LCTES 05)
Load-Balanced Rendering
(Graphics Hardware 05)
Exploiting Coarse-Grained Parallelism in
Stream Programs (ASPLOS 06)

● http://cag.csail.mit.edu/streamit

StreamIt Program

Front-end

Stream-Aware
Optimizations

Cluster
backend

Raw
backend

IBM X10
backend

C per tile +
msg code

Streaming
X10 runtime

Cell
backend

Cell C

Annotated Java

MPI-like
C/C++

Simulator
(Java Library)

The StreamIt Project

UniProc.
backend

C/C++

new

/cell

146Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

The following terms are trademarks of International Business Machines Corporation in the United States and/or other countries: alphaWorks,
BladeCenter, Blue Gene, ClusterProven, developerWorks, e business(logo), e(logo)business, e(logo)server, IBM, IBM(logo), ibm.com, IBM Business
Partner (logo), IntelliStation, MediaStreamer, Micro Channel, NUMA-Q, PartnerWorld, PowerPC, PowerPC(logo), pSeries, TotalStorage, xSeries;
Advanced Micro-Partitioning, eServer, Micro-Partitioning, NUMACenter, On Demand Business logo, OpenPower, POWER, Power Architecture,
Power Everywhere, Power Family, Power PC, PowerPC Architecture, POWER5, POWER5+, POWER6, POWER6+, Redbooks, System p, System
p5, System Storage, VideoCharger, Virtualization Engine.

A full list of U.S. trademarks owned by IBM may be found at: http://www.ibm.com/legal/copytrade.shtml.

Cell Broadband Engine and Cell Broadband Engine Architecture are trademarks of Sony Computer Entertainment, Inc. in the United States, other
countries, or both.
Rambus is a registered trademark of Rambus, Inc.
XDR and FlexIO are trademarks of Rambus, Inc.
UNIX is a registered trademark in the United States, other countries or both.
Linux is a trademark of Linus Torvalds in the United States, other countries or both.
Fedora is a trademark of Redhat, Inc.
Microsoft, Windows, Windows NT and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries or both.
Intel, Intel Xeon, Itanium and Pentium are trademarks or registered trademarks of Intel Corporation in the United States and/or other countries.
AMD Opteron is a trademark of Advanced Micro Devices, Inc.
Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States and/or other countries.
TPC-C and TPC-H are trademarks of the Transaction Performance Processing Council (TPPC).
SPECint, SPECfp, SPECjbb, SPECweb, SPECjAppServer, SPEC OMP, SPECviewperf, SPECapc, SPEChpc, SPECjvm, SPECmail, SPECimap
and SPECsfs are trademarks of the Standard Performance Evaluation Corp (SPEC).
AltiVec is a trademark of Freescale Semiconductor, Inc.
PCI-X and PCI Express are registered trademarks of PCI SIG.
InfiniBand™ is a trademark the InfiniBand® Trade Association
Other company, product and service names may be trademarks or service marks of others.

Revised July 23, 2006

Special Notice – Trademarks

