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Get a PS3, Add Linux

● The PS3 can boot user installed Operating Systems
Dual boot: GameOS and Other OS

● Installing Linux on the PS3 is well documented
Yellow Dog Linux
Fedora Core Linux
Other Linux distributions reportedly work as well
For recipes: http://cag.csail.mit.edu/ps3/recipes.shtml

● User level access to the PS3 processor: Cell
Cell SDK from IBM alphaWorks adds compilers, examples, etc.
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PS3 Cell Processor

● Cell Broadband Engine Architecture  
Heterogeneous multicore architecture with 9 cores
1 general purpose core: Power Processor Element (PPE)
8 accelerator cores: Synergistic Processor Elements (SPEs)

● On the PS3 only 6 SPEs are accessible, and 256MB RAM
No access to graphics card

● Cell is unique: one of the first easily accessible (distributed-
memory) multicore architectures

Distributed-memory, each core has its own local memory
– SPE can only directly access data in its local store
Compared to multicores that shares a cache and can directly 
access any data in the address space
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Obligatory Multicore Slide

● Monolithic processor design complexity no longer scalable due 
to power and wire delay limitations

● New design pattern: distribute resources, more cores on a chip
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Multicores, how do you program them?

● Painfully! 
But you’ll change that…

● Multicores require orchestration of concurrent computation 
across many cores to deliver high performance

Cores run in parallel
Programming becomes exercise in partitioning, mapping (layout), 
routing (communication) and scheduling

Partitioning Layout Routing 
and Scheduling
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Parallelism Applicable Everywhere
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Aerospace & DefenseAerospace & Defense
Signal & Image ProcessingSignal & Image Processing
Security, SurveillanceSecurity, Surveillance
Simulation & Training, Simulation & Training, ……

Petroleum IndustryPetroleum Industry
Seismic computingSeismic computing
Reservoir Modeling, Reservoir Modeling, ……

Communications EquipmentCommunications Equipment
LAN/MAN RoutersLAN/MAN Routers
AccessAccess
Converged NetworksConverged Networks
Security, Security, ……

Medical ImagingMedical Imaging
CT ScanCT Scan
Ultrasound, Ultrasound, ……

Consumer / Digital MediaConsumer / Digital Media
Digital Content CreationDigital Content Creation
Media PlatformMedia Platform
Video Surveillance, Video Surveillance, ……

Public Sector / GovPublic Sector / Gov’’t & Higher t & Higher EducEduc..
Signal & Image ProcessingSignal & Image Processing
Computational Chemistry, Computational Chemistry, ……

FinanceFinance
Trade modelingTrade modeling

IndustrialIndustrial
Semiconductor / LCDSemiconductor / LCD
Video ConferenceVideo Conference

Cell Application Domains
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Take Away Messages

● Experience with Cell has demonstrated that good 
programming models are not optional for multicores

● PS3s offer convenient access to Cell processors and provide 
a practical platform for research and innovation

Many hard problems to solve that are applicable in a more 
general context

● Using PS3s in an educational setting can provide students 
with hands on experience that can acclimate them to the 
parallel programming challenges in a fun and exciting context
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On Teaching Multicore Programming
Using PS3s and Cell

● Multicore programming primer short course at MIT, Jan. 2007
Covered parallel programming challenges
(18 lectures)
Offered students hands on parallel programming experience
(5 recitations, one take-home lab)
Culminated in student projects designed and implemented for PS3
– Students formed teams and determined their own projects
– Some project source code is available online

● All course material available online
http://cag.csail.mit.edu/ps3
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Sample Student Project: Backgammon

● AI Backgammon player
● 1M board evaluations in ~3 seconds (6 SPEs)
● Data parallel implementation, linear speedup
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Eddie Scholtz and Mike Fitzgerald
http://cag.csail.mit.edu/ps3/backgammon.shtml
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Sample Student Project: Battery Simulation

● 2D electrochemical model of lead acid battery cell
Solves linear system using two solvers
Banded LU solver and dense LU solver

James Geraci, Sudarshan Raghunathan, and John Chu
http://cag.csail.mit.edu/ps3/battery-model.shtml
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Sample Student Project: Ray Tracer

Blue-Steel team (6 students)
http://cag.csail.mit.edu/ps3/blue-steel.shtml

● Full ray tracer running on each SPE 
● Data parallel implementation
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Tutorial Agenda

● Brief overview of Cell performance characteristics

● Programming Cell
Cell components
Application walk through
Inter-core parallelism: structuring computation and communication
Orchestration: synchronization mechanisms
SIMD for single thread performance: it still matters

● Opportunities for research and innovation, and education
Programming Language
Parallelizing Compiler 
Abstract Streaming Layer
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Cell
Systems and Technology Group
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Cell History

● IBM, SCEI/Sony, Toshiba Alliance formed in 2000
● Design Center opened in March 2001 (based in Austin, Texas)
● Single Cell BE operational Spring 2004
● 2-way SMP operational Summer 2004
● February 7, 2005: First technical disclosures
● October 6, 2005: Mercury Announces Cell Blade  
● November 9, 2005: Open Source SDK & Simulator Published
● November 14, 2005: Mercury Announces Turismo Cell Offering
● February 8, 2006  IBM Announced Cell Blade 

Systems and Technology Group
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Cell Chip
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Freescale
MPC8641D

1.5 GHz

Theoretical Peak Operations

0

50

100

150

200

250

B
ill

io
n 

O
ps

 / 
se

c

FP (SP) FP (DP) Int (16 bit) Int (32 bit)

AMD
Athlon™ 64 X2

2.4 GHz

PowerPC®

970MP
2.5 GHz

Cell Broadband
EngineTM

3.2 GHz

Intel
Pentium D®

3.2 GHz



19Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Rendering Scenes by Ray Tracing

● Shoot rays into scene through pixels in image plane and 
follow their paths

Rays bounce around as they strike objects
Rays generate new rays
Result is color and opacity for that pixel
Abundant parallelism (process rays in parallel)

transmission ray

primary ray

normal

reflection
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SPEs vs GPU

● Cell 4-5x better performance
7 SPEs used for rendering 
1 SPE reserved for image 
compression

● Renewed interest in ray tracing
Real-time ambient occlusion 
Now practical for real time
Visualization of huge digital models

● Seamless Scale Out
More cores More performance

Courtesy of Barry Minor, IBM
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IBM Interactive Ray Tracer (iRT) Demo

http://www.alphaworks.ibm.com/tech/irt
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Key Performance Characteristics

● Cell performance ~10x better than GPP for media and other 
applications that can take advantage of its SIMD capability

PPE performance is comparable to a traditional GPP performance
SPE performance mostly the same as, or better than, a GPP with SIMD 
Performance scales with number of SPEs

● Cell sufficiently versatile to cover a wide application 
Floating point operations
Integer operations
Data streaming / throughput support
Real-time support

● Cell architecture is exposed to software (compilers and applications)
Performance gains from tuning can be significant
Tools are provided to assist in performance debugging and tuning
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Tutorial Agenda

● Brief overview of Cell performance characteristics

● Programming Cell
Cell components
Application walk through
Inter-core parallelism: structuring computation and communication
Orchestration: synchronization mechanisms
SIMD for single thread performance: it still matters

● Opportunities for research and innovation, and education
Programming Language
Parallelizing Compiler
Abstract Streaming Layer
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Cell Broadband Engine Architecture

MIC BIC
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Power Processor Element 

● PPE handles operating system and control tasks
● 64-bit Power Architecture with VMX
● In-order, 2-way hardware simultaneous multi-threading (SMT)
● 32KB L1 cache (I & D)  and 512KB L2
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Synergistic Processor Element

● Specialized high performance core 
● Three main components

SPU: processor
LS: local store memory
MFC: memory flow control manages data in and out of SPE
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SPU Processing Core

● In-order processor: no speculation or branch prediction

● Greatest compute power is single precision floating point
Single precision floating point is not full IEEE compliant, similar to 
graphics HW 
Double precision floating point is full IEEE compliant

● 128 unified registers used for all data types

● Can only access (load & store) data in the SPE local store
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Local Store (LS)

● 256KB of memory per SPE
● Code and data share LS
● SPU can load 16B per cycle from LS

● Data from main memory is explicitly copied to and from the 
local store since SPU cannot access any other memory 
locations directly
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Data In and Out of the SPE Local Store 

● SPU needs data
1. SPU initiates MFC request for data

MFC

memory

data

SPU

local
store

SPE
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Data In and Out of the SPE Local Store 

● SPU needs data
1. SPU initiates MFC request for data
2. MFC requests data from memory

SPE

MFC

memory

data

SPU

local
store
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Data In and Out of the SPE Local Store 

● SPU needs data
1. SPU initiates MFC request for data
2. MFC requests data from memory
3. Data is copied to local store MFC local

store

memory

SPU

SPE

datadata
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Data In and Out of the SPE Local Store 

● SPU needs data
1. SPU initiates MFC request for data
2. MFC requests data from memory
3. Data is copied to local store
4. SPU can access data from local store

MFC

memory

data

SPU

local
store data

SPE
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Data In and Out of the SPE Local Store 

● SPU needs data
1. SPU initiates MFC request for data
2. MFC requests data from memory
3. Data is copied to local store
4. SPU can access data from local store
● SPU operates on data then copies

data from local store back to memory 
in a similar process

MFC

memory

data

SPU

local
store data

SPE
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MFC DMAs and SPEs

● 1 Memory Flow Controller (MFC) per SPE
● High bandwidth – 16B/cycle

● Each MFC can service up to 24 outstanding DMA 
commands

16 transfers initiated by SPU
8 additional transfers initiated by PPU
PPU initiates transfers by accessing MFC through MMIO 
registers

● DMA transfers initiated using special channel 
instructions
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MFC DMAs and SPEs

● DMA transfers data between virtual address space and 
local store

SPE uses PPE address translation machinery
Each SPE local store is mapped in virtual address space
– Allows direct local store to local store transfers
– Completely on chip, very fast

● Once DMA commands are issued, MFC processes them 
independently

SPU continues executing/accessing local store
Communication-computation concurrency/multibuffering
essential for performance
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Element Interconnect Bus 

● EIB data ring for internal communication
● Four 16B data rings, supporting multiple transfers

2 clockwise and 2 counter-clockwise
● 96B/cycle peak bandwidth 
● Over 100 outstanding requests
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EIB Data Topology 

● Physically overlaps all processor elements
● Central arbiter supports up to 3 concurrent transfers per ring

2 stage, dual round robin arbiter
● Each port supports concurrent 16B in and 16B out data path

Ring topology is transparent to element data interface

16B 16B 16B 16B

Data Arb
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Internal Bandwidth Capability

● Each EIB Bus data port supports 25.6GBytes/sec* in each 
direction

● The EIB Command Bus streams commands fast enough to 
support 102.4 GB/sec for coherent commands, and 204.8 
GB/sec for non-coherent commands.

● The EIB data rings can sustain 204.8GB/sec for certain 
workloads, with transient rates as high as 307.2GB/sec 
between bus units

* Assuming a 3.2GHz core frequency – internal bandwidth scales with core frequency
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Example of 8 Concurrent Transactions
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● Potential benefit from near-
neighbor communication
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Programming Cell

The good and the hard
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What Makes Cell Diff*?

● Multiple programs in one
PPU and SPU programs cooperate to carry out computation

● Local store
Something new to worry about, but potential for high performance

● Short vector parallelism (SIMD)
Intra-core parallelism in addition to parallelism across cores
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SPU Programs

● SPU programs are designed and written to work together but 
are compiled independently

● Separate compiler and toolchain (ppu-gcc and spu-gcc)

● Produces small ELF image for each program that can be 
embedded in PPU program

Contains own data, code sections
On startup, C runtime (CRT) initializes and provides malloc
printf/mmap/other I/O functions are implemented by calling on the 
PPU to service the request
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A Simple Cell Program

#include <stdio.h>
#include <libspe.h>

extern spe_program_handle_t hello_spu;

int main() {
speid_t id[8];

// Create 8 SPU threads
for (int i = 0; i < 8; i++) {

id[i] = spe_create_thread(0,
&hello_spu,
NULL,
NULL,
-1,
0);

}

// Wait for all threads to exit
for (int i = 0; i < 8; i++) {

spe_wait(id[i], NULL, 0);
}

return 0;
}

#include <stdio.h>

int
main(unsigned long long speid,

unsigned long long argp,
unsigned long long envp)

{
printf("Hello world! (0x%x)\n", (unsigned int)speid);
return 0;

}

PPU (hello.c)

SPU (hello_spu.c)
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SPE Threads

● Not the same as “normal” threads

● SPE does not have protection, only run one thread at a time
PPU can “forcibly” context-switch a SPE by saving context, 
copying out old local store/context, copying in new

● Early SDKs did not support context switching SPEs
SPE threads are run on physical SPEs in FIFO order
If more threads than SPEs, additional threads will wait for running 
threads to exit before starting
Don’t create more threads than physical SPEs
Improvements to this model in newer SDKs
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Mapping Computation to SPEs

f1

f2

f3

● Example: single-threaded program performs computation in 
three stages on data: f3 (f2 (f1 (…))

● Several possible parallel mappings to SPEs

Data in memory
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Types of Parallelism

Data-Level Parallelism (DLP)
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Thread-Level Parallelism (TLP)
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Instruction-Level Parallelism (ILP)

Pipeline Parallelism
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Mapping Computation to SPEs

SPE

f1

f2

f3

SPE

f1

f2

f3

SPE

f1

f2

f3

Data in memory

● Coarse-Grained Data Parallelism
Each SPE contains all computation stages
Split up data and send to different SPEs
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Example Data Parallelization on Cell

● Calculate distance from each point in a[...] to each point in 
b[...] and store result in c[...][...]

● How to divide the work between 2 SPEs?

for (i = 0; i < NUM_POINTS; i++) {
for (j = 0; j < NUM_POINTS; j++) {

c[i][j] = distance(a[i], b[j]);

x

y

b

a
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Example Data Parallelization on Cell

a[i]

b[j]

c[i][j]

SPE 0

j

i

Memory
SPE 1

each SPE runs the same thread (code)
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Mapping Computation to SPEs

SPE

f1

SPE

f2

SPE

f3

● Coarse-Grained Pipeline Parallelism
Map computation stages to different SPEs
Use DMA to transfer intermediate results from SPE to SPE in 
pipeline fashion

Data in memory
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Mapping Computation to SPEs

● Mixed or other approaches are possible, depends on problem
Pipeline parallelism when stateful computation is bottleneck
Or when locality is important
Data parallelism across most of the cores for simplicity

SPE
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f3

SPE
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SPE
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SPE
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SPE

f2

SPE
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Increasing Performance
with Parallelism

What’s all the fuss about?
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Cell-ifying a Program

● Simple 3D gravitational body simulator
● n objects, each with mass, initial position, initial velocity

● Simulate motion using Euler integration

float mass[NUM_BODIES];
VEC3D pos[NUM_BODIES];
VEC3D vel[NUM_BODIES];
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Single-threaded Version

● For each step in simulation
Calculate acceleration of 
all objects
– For each pair of objects, 

calculate the force 
between them and update 
accelerations accordingly

Update positions and 
velocities

● Slow: n = 3072 1500ms

VEC3D acc[NUM_BODIES] = 0;

for (i = 0; i < NUM_BODIES - 1; i++) {
for (j = i + 1; j < NUM_BODIES; j++) {

// Displacement vector
VEC3D d = pos[j] – pos[i];
// Force
t = 1 / sqr(length(d));
// Components of force along displacement
d = t * (d / length(d));

acc[i] += d * mass[j];
acc[j] += -d * mass[i];

}
}

VEC3D acc[NUM_BODIES] = 0;

for (i = 0; i < NUM_BODIES; i++) {
pos[i] += vel[i] * TIMESTEP;
vel[i] += acc[i] * TIMESTEP;

}
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● Divide objects into 6 sections (n = 3072 = 6 * 512)

● Each SPE is responsible for calculating the motion of one 
section of objects

SPE still needs to know mass, position of all objects to compute
accelerations
SPE only needs to know and update velocity of the objects it is 
responsible for

● Everything fits in local store
Positions for 3072 objects take up 36 KB

Cell-ification: using SPEs for acceleration

pos

SPE 0 SPE 1 SPE 2 SPE 3 SPE 4 SPE 5
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SPU 2

PPU/Memory

● Initialization
PPU tells SPU which section of objects it is responsible for

mass

initial vel

pos mass

vel

pos

// Index [i] stores mass/position of objects SPU i
// is responsible for
float mass[6][SPU_BODIES];
VEC3D pos[6][SPU_BODIES];

// The section of objects this SPU is responsible for
int id;
// Pointer to pos[id]
VEC3D *own_pos;
// Velocity for this SPU's objects
VEC3D own_vel[SPU_BODIES];

// Pass id in envp
id = envp;
own_mass = mass[id];
own_pos = pos[id];

Cell-ification: using SPEs for acceleration
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SPU copies in mass of all objects

SPU copies in initial position, velocity of its objects

SPU 2

PPU/Memory

mass

initial vel

pos mass

vel

pos

mfc_get(mass, cb.mass_addr, sizeof(mass), ...);

mfc_get(own_pos, cb.pos_addr + id * sizeof(pos[0]), sizeof(pos[0]), ...);
mfc_get(own_vel, cb.vel_addr + id * sizeof(own_vel), sizeof(own_vel), ...);

Cell-ification: using SPEs for acceleration
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● Simulation step
PPU sends message telling SPU to simulate one step

SPU 2

PPU/Memory

pos

vel

pos

spu_read_in_mbox();

Cell-ification: using SPEs for acceleration
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SPU 2

PPU/Memory

pos

vel

pos

if (id != 0) {
mfc_get(pos, cb.pos_addr + id * sizeof(pos[0]), id * sizeof(pos[0]), ...);

};
if (id != 5) {

mfc_get(pos[id + 1], cb.pos_addr + (id + 1) * sizeof(pos[0]),
(5 – id) * sizeof(pos[0]), ...);

}

SPU copies in updated positions of other objects

Cell-ification: using SPEs for acceleration
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SPU sends message to PPU indicating it has finished copying 
positions
– PPU waits for this message before it can tell other SPUs to write back 

positions at end of simulation step

SPU 2

PPU/Memory

pos

vel

pos

spu_write_out_mbox(0);

Cell-ification: using SPEs for acceleration
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SPU calculates acceleration and updates position and velocity of
its objects

SPU 2

PPU/Memory

pos

vel

pos

// Process interactions between this SPU's objects
process_own();
// Process interactions with other objects
for (int i = 0; i < 6; i++) {

if (i != id) {
process_other(pos[i], mass[i]);

}
}

Cell-ification: using SPEs for acceleration
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SPU waits for message from PPU indicating it can write back 
updated positions

SPU 2

PPU/Memory

pos

vel

pos

spu_read_in_mbox();

Cell-ification: using SPEs for acceleration
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SPU writes back updated positions to PPU

SPU 2

PPU/Memory

pos

vel

pos

mfc_put(own_pos, cb.pos_addr + id * sizeof(pos[0]), sizeof(pos[0]), ...);

Cell-ification: using SPEs for acceleration
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SPU sends message to PPU indicating it is done simulation step

SPU 2

PPU/Memory

pos

vel

pos

spu_write_out_mbox(0);

Cell-ification: using SPEs for acceleration
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Coordination with Mailboxes and Signals

● Facility for SPU to exchange small messages with PPU/other SPUs
E.g. memory address, “data ready” message

● From perspective of SPU
1 inbound mailbox (4-entry FIFO) – send messages to this SPU
1 outbound mailbox (1-entry) – send messages from this SPU
1 outbound mailbox (1-entry) – interrupts PPU to send messages from SPU
2 signal notification registers – send messages to this SPU
32 bits

● SPU accesses its own mailboxes/signals by reading/writing to channels 
with special instructions

Read from inbound mailbox, signals
Write to outbound mailboxes
Accesses will stall if empty/full

● SPU/PPU accesses another SPU mailboxes/signals through MMIO 
registers
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Orchestration and Coordination

● Lots of signals sent back and force 
I’m ready
I’m done
What’s my work?
Where’s my data?
…

● Couple this with architecture issues
Cell alignment constraints

● And a lot can go wrong
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Cell Debugging Tools

● GNU gdb source level debugger
Supports PPE and SPE multithreading
Interaction between PPE and SPE threads
Standalone SPE debugging
Or attach to SPE threads

● Existing methodologies for debugging are not well suited for 
multicores
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Overlapping Communication and 
Computation
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Overlapping DMA and Computation

Get Data

● Simple approach:

● Pipelining can achieve communication-computation concurrency
Start DMA for next piece of data while processing current piece 

Compute

Get Data

Compute

Synchronization point

SPU is idle

DMA engine is idle
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Overlapping DMA and Computation

SPU 2

PPU/Memory

pos

pos

Get Data

Compute

// pos[i] stores positions of objects SPU i is
// responsible for
VEC3D pos[6][SPU_BODIES];

// Start transfer for first section of positions
i = 0;
tag = 0;
mfc_get(pos[i],

cb.pos_addr + i * sizeof(pos[0]),
sizeof(pos[0]),
tag,
...);

tag ^= 1;

// Process interactions between objects this SPU
// is responsible for
process_own();



71Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Overlapping DMA and Computation

SPU 2

PPU/Memory

pos

pos

Get Data

Compute

while (!done) {
// Start transfer for next section of positions
mfc_get(pos[next_i],

cb.pos_addr + next_i * sizeof(pos[0]),
sizeof(pos[0]),
tag,
...);

// Wait for current section of positions to
// finish transferring
tag ^= 1;
mfc_write_tag_mask(1 << tag);
mfc_read_tag_status_all();

// Process interactions
process_other(pos[i], mass[i]);

i = next_i;
}
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Overlapping DMA and Computation

SPU 2

PPU/Memory

pos

pos

Get Data

Compute

while (!done) {
// Start transfer for next section of positions
mfc_get(pos[next_i],

cb.pos_addr + next_i * sizeof(pos[0]),
sizeof(pos[0]),
tag,
...);

// Wait for current section of positions to
// finish transferring
tag ^= 1;
mfc_write_tag_mask(1 << tag);
mfc_read_tag_status_all();

// Process interactions
process_other(pos[i], mass[i]);

i = next_i;
}
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Overlapping DMA and Computation

SPU 2

PPU/Memory

pos

pos

Get Data

Compute

while (!done) {
// Start transfer for next section of positions
mfc_get(pos[next_i],

cb.pos_addr + next_i * sizeof(pos[0]),
sizeof(pos[0]),
tag,
...);

// Wait for current section of positions to
// finish transferring
tag ^= 1;
mfc_write_tag_mask(1 << tag);
mfc_read_tag_status_all();

// Process interactions
process_other(pos[i], mass[i]);

i = next_i;
}
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Overlapping DMA and Computation

SPU 2

PPU/Memory

pos

pos

Get Data

Compute

while (!done) {
// Start transfer for next section of positions
mfc_get(pos[next_i],

cb.pos_addr + next_i * sizeof(pos[0]),
sizeof(pos[0]),
tag,
...);

// Wait for current section of positions to
// finish transferring
tag ^= 1;
mfc_write_tag_mask(1 << tag);
mfc_read_tag_status_all();

// Process interactions
process_other(pos[i], mass[i]);

i = next_i;
}
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Overlapping DMA and Computation

SPU 2

PPU/Memory

pos

pos

Get Data

Compute

// Wait for last section of positions to finish
// transferring
tag ^= 1;
mfc_write_tag_mask(1 << tag);
mfc_read_tag_status_all();

// Notify PPU that positions have been read
spu_write_out_mbox(0);

// Process interactions
process_other(pos[i], mass[i]);
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Overlapping DMA and Computation

● Pipelining can improve performance by a lot, or not by much
Depends on program: communication to computation ratio
Can avoid optimizing parts that don’t greatly affect performance

Get Data

Compute

Get Data

Compute
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Double-buffering

● LS is finite
● Avoid wasting local store space
● Keep 2 buffers

Start data transfer into one
Process data in other
Swap buffers for next transfer

SPU 2

PPU/Memory

pos

pos
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Double-buffering

SPU 2

PPU/Memory

pos

pos
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Double-buffering

SPU 2

PPU/Memory

pos

pos
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Double-buffering

SPU 2

PPU/Memory

pos

pos
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Intra-Core Parallelism

SIMD Programming on Cell
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SIMD

● Many compute-bound applications perform the same 
computations on a lot of data

Dependence between iterations is rare
Opportunities for data parallelization

for (int i = 0; i < n; i++) {
c[i] = a[i] + b[i]

}

Scalar code

a

b

c
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SIMD

● Single Instruction, Multiple Data
● SIMD registers hold short vectors
● Instruction operates on all elements in SIMD register at once

for (int i = 0; i < n; i++) {
c[i] = a[i] + b[i]

}

Scalar code
for (int i = 0; i < n; i += 4) {

c[i:i+3] = a[i:i+3] + b[i:i+3]
}

Vector code

a

b

c

a

b

c

SIMD registerscalar register
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SIMD

● Can offer high performance
Single-precision multiply-add instruction: 8 flops per cycle per SPE

● Scalar code works fine but only uses 1 element in vector
● SPU loads/stores on quad-word (qword) granularity only

Can be an issue if the SPU and other processors (via DMA) try to
update different variables in the same qword

● For scalar code, compiler generates additional instructions to 
rotate scalar elements to the same slot and update a single 
element in a qword

● SIMDizing code is important
Auto SIMDization (compiler optimization)
Intrinsics (manual optimization)
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Example: Scalar Operation

B0

* 

C0

C[0] = A[0] * B[0]

A0
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Example: SIMD Vector Operation

A0

B0

* 

C0

for(i = 0; i < N/4; ++i)
C[i] = vector_mul(A[i],B[i]);

A1

B1

* 

C1

A2

B2

* 

C2

A3

B3

* 

C3

A4

B4

* 

C4

A5

B5

* 

C5

A6

B6

* 

C6

A7

B7

* 

C7



87Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Hardware Support for Data Parallelism

● Registers are 128-bits
● Can pack vectors of different data types into registers
● Operations consume and produce vector registers

Special assembly instructions
Access via C/C++ language extensions (intrinsics)
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Accessing Vector Elements

● typedef union {
int v[4];
vector signed int vec;

} intVec;

● Unpack scalars from vector:
intVec a;
a.vec = …;
… = a.v[2];
… = spu_extract(va, 2);

● Pack scalars into vector:
a.v[0] = …; a.v[1] = …;
a.v[2] = …; a.v[3] = …; 
… = a.vec;

Interpret a segment of 
memory either as an 

array…

or as a vector type…

so that values written in 
one format can be read 

in the other

v[0]

vec

v[1] v[2] v[3]
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Review: 3D Gravitational Simulator

● n objects, each with mass, initial position, initial velocity

● Simulate motion using Euler integration
Calculate the force of each object on every other
Calculate net force on and acceleration of each object
Update position

float mass[NUM_BODIES];
VEC3D pos[NUM_BODIES];
VEC3D vel[NUM_BODIES];

typedef struct _VEC3D {
float x, y, z;

} VEC3D;

VEC3D d;
// Calculate displacement from i to j
d.x = pos[j].x - pos[i].x;
d.y = pos[j].y - pos[i].y;
d.z = pos[j].z - pos[i].z;
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Re-engineering for SIMD

● One approach to SIMD: array of structs
Pad each (x, y, z) vector to fill a qword
Components (x, y, z) correspond to first three words of vector float
Qwords for different vectors stored consecutively

x0 y0 z0

Q
w

or
ds

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5

typedef union _VEC3D {
struct {float x, y, z;};
vector float vec;

} QWORD_ALIGNED VEC3D;
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Re-engineering for SIMD

● Now we can replace component-wise addition, subtraction, and 
multiplication with SIMD instructions

VEC3D d;
// Calculate displacement from i to j
d.x = pos[j].x - pos[i].x;
d.y = pos[j].y - pos[i].y;
d.z = pos[j].z - pos[i].z;

vector float d;
// Calculate displacement from i to j
d = spu_sub(pos[j].vec, pos[i].vec);
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SIMD Design Considerations

● Data layout: array of structs (AOS) vs. struct of arrays (SOA)
SOA layout is alternative data organization to lay out 
the same fields consecutively
Can apply different algorithms on new data layout

x0

struct of arrays

x1 x2 x3

x4 x5 x6 x7

y0 y1 y2 y3

y4 y5 y6 y7

z0 z1 z2 z3

z4 z5 z6 z7

x0 y0 z0

array of structs

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5
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Struct of Array Layout

● Need 12 qwords to store state for 8 objects
x, y, z position and velocity components
No padding component needed in SOA

● For each component, do four pair-interactions at once with 
SIMD instructions

Rotate qword 3 more times to get all 16
pair-interactions between two qwords

x0 x1 x2 x3

x4 x5 x6 x7

x0 x1 x2 x3

x5 x6 x7 x4
Rotate etc.
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Performance Summary for Example

● Baseline native code was sequential and scalar
Scalar (PPU): 1510 ms 

● Parallelized code with double buffering for SPUs
Scalar (6 SPUs): 420 ms 

● Applied SIMD optimizations 
SIMD array of structs: 300 ms 

● Redesigned algorithm to better suite SIMD parallelism
SIMD struct of arrays: 80 ms 

● Overall speedup compared to native sequential execution
Expected: ~ 24x (6 SPUs ∗ 4 way SIMD)
Achieved: 18x*

* Note comparison is PPU to 6 SPUs
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Programming the Cell

● Guide to programming PS3/Cell: google “PS3 programming”
http://cag.csail.mit.edu/ps3
MIT short course on parallel programming using 
the PS3/Cell as the student project platform
Provides detailed examples with walk through
– Lectures, recitations, and labs
Student projects and source code
Lots of recipes (installing Linux, SDK, Cell API mini-reference)
Links to additional documentation
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Cell Programming Summary

● Programming multicore architectures: “parallelize or perish”
● Orchestrating parallelism is hard

Data management
Code placement
Scheduling
Hiding communication latency

● Lots of opportunities for impact
Scheduling ideas
Dynamic load balancing
Static scheduling
Intra-core performance still matters

● Cell offers a unique platform to explore and evaluate lots of 
ideas, PS3s make it easily accessible
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Tutorial Agenda

● Brief overview of Cell performance characteristics

● Programming Cell
Cell components
Application walk through
Inter-core parallelism: structuring computation and communication
Orchestration: synchronization mechanisms
SIMD for single thread performance: it still matters

● Opportunities for research and innovation, and education
Programming Language
Parallelizing Compiler
Abstract Streaming Layer
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Programming For Parallelism
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application

discover 
parallelism

determine 
communication 

patterns

graft explicit parallel 
constructs onto 

imperative language

● Huge burden on programmer
Introducing parallelism
Correctness of parallelism
Optimizing parallelism

more voodoo
e.g., load balancing, locality, 
synchronization decisions

● Is implementation composable
or malleable?
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Explicit Parallelism

● Programmer controls details of parallelism!
● Granularity decisions:

If too small, lots of synchronization and thread creation 
If too large, bad locality

● Load balancing decisions
Create balanced parallel sections (not data-parallel)

● Locality decisions
Sharing and communication structure

● Synchronization decisions
barriers, atomicity, critical sections, order, flushing

● For mass adoption, we need a better paradigm:
Where the parallelism is natural
Exposes the necessary information to the compiler
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Common Machine Language

● Represent common properties of architectures
Necessary for performance

● Abstract away differences in architectures
Necessary for portability

● Cannot be too complex
Must keep in mind the typical programmer

● C and Fortran were the common machine languages for 
uniprocessors
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Common Machine Languages

Single memory image

Single flow of control

Common Properties
Uniprocessors:

ISA

Functional Units

Register File

Differences:

Multiple local memories

Multiple flows of control

Common Properties
Multicores:

Communication Model

Synchronization Model

Number and capabilities of cores

Differences:

von-Neumann languages represent the 
common properties and abstract away 
the differences

Need common machine language(s) 
for multicores
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Why a New Language?

For uniprocessors,
C was:
• Portable
• High Performance
• Composable
• Malleable
• Maintainable 

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005

Raw

Power4 Opteron

Power6

Niagara
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Tanglewood

Cell

Intel
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Xbox360
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Raza
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PA-8800

Cisco
CSR-1

Picochip
PC102

Boardcom 1480

20??
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1

2
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8
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Xeon MP

Athlon
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AM2045
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Power4 Opteron
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Xbox360
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Octeon
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XLR

PA-8800
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CSR-1
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AM2045
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Why a New Language?

What is the common
machine language
for multicores?

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005

Raw

Power4 Opteron

Power6

Niagara
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PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800
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Picochip
PC102

Boardcom 1480

20??

# of
cores

1

2

4

8

16

32

64

128
256

512

Opteron 4P
Xeon MP

Athlon

Ambric
AM2045

Raw

Power4 Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Boardcom 1480 Opteron 4P
Xeon MP

Ambric
AM2045
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Unburden the Programmer

● Move hard decisions to compiler!
Granularity
Load Balancing
Locality
Synchronization

● Hard to do in traditional languages: can a novel language help?
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Adder

Speaker

AtoD

FMDemod

LPF1

Scatter

Gather

LPF2 LPF3

HPF1 HPF2 HPF3

Streaming as a Common Machine Language

● For programs based on streams of data
Audio, video, DSP, networking,
security (cryptography), etc.
Examples: HDTV editing, radar 
tracking, microphone arrays, cell 
phone base stations, graphics

● Several attractive properties
Regular and repeating computation
Independent filters 
with explicit communication
Task, data, and pipeline parallelism

● Benefits:
Naturally parallel
Expose dependencies to compiler
Enable powerful transformations



107Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Streaming Models of Computation

● Many different ways to represent streaming
Do senders/receivers block?
How much buffering is allowed on channels?
Is computation deterministic?
Can you avoid deadlock?

● Three common models:
1. Kahn Process Networks
2. Synchronous Dataflow
3. Communicating Sequential Processes
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Streaming Models of Computation

Buffering NotesCommunication
Pattern
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Streaming Models of Computation

Conceptually 
unbounded

Buffering

- UNIX pipes
- Ambric (startup)

Notes

Data-dependent,
but deterministic

Kahn process 
networks (KPN)

Communication
Pattern
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Streaming Models of Computation

Fixed by 
compiler

Conceptually 
unbounded

Buffering

- Static scheduling
- Deadlock freedom

- UNIX pipes
- Ambric (startup)

Notes

Static Synchronous 
dataflow (SDF)

Data-dependent,
but deterministic

Kahn process 
networks (KPN)

Communication
Pattern

SDF

KPN
space of program behaviors
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Streaming Models of Computation

None
(Rendesvouz)

Fixed by 
compiler

Conceptually 
unbounded

Buffering

- Rich synchronization  
primitives

- Occam language

- Static scheduling
- Deadlock freedom

- UNIX pipes
- Ambric (startup)

Notes

Data-dependent, 
allows non-
determinism

Communicating 
Sequential 
Processes  (CSP)

Static Synchronous 
dataflow (SDF)

Data-dependent,
but deterministic

Kahn process 
networks (KPN)

Communication
Pattern

SDF

KPN CSP
space of program behaviors
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Representing Streams

● Conventional wisdom: streams are graphs
Graphs have no simple textual representation
Graphs are difficult to analyze and optimize

● Insight: stream programs have structure

unstructured structured
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Streaming and Multicore Related Work

● CellSs (http://www.bsc.es/cellsuperscalar)
● Corepy (http://www.corepy.org/)
● Mercury Multicore Plus SDK (http://www.mc.com/ps3/)
● Rapidmind (http://www.rapidmind.net/)
● Sequoia (http://sequoia.stanford.edu/)
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The StreamIt Language

● A high-level, architecture-independent language for streaming 
applications

Improves programmer productivity (vs. Java, C)
Offers scalable performance on multicores

● Based on synchronous dataflow, with dynamic extensions
Compiler or dynamic scheduler can determine execution order 
Many aggressive optimizations possible
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parallel computation

Structured Streams in StreamIt

may be 
any StreamIt 
language construct

joinersplitter

pipeline

feedback loop

joiner splitter

splitjoin

filter ● Each structure is single-
input, single-output

● Hierarchical and 
composable
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StreamIt Execution Model

● Nodes push and pop data 
to FIFOs

● Constant number of items 
every time

● Static schedule possible
● Nodes can have local state
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Example:  A Simple Counter

void->void pipeline Counter() {
add IntSource();
add IntPrinter();

}
void->int filter IntSource() {

int x;
init { x = 0; }
work push 1 { push (x++); }

}
int->void filter IntPrinter() {

work pop 1 { print(pop()); }

}

Counter

IntSource

IntPrinter

% strc Counter.str –o counter
% ./counter –i 4
0
1
2
3
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Filter Example:  Low Pass Filter

N

float->float filter LowPassFilter (int N, float freq) {
float[N] weights;

init {
weights = calcWeights(freq);

}

work peek N push 1 pop 1 {
float result = 0;
for (int i=0; i<weights.length; i++) {

result += weights[i] * peek(i);
}
push(result);
pop();

}
}

filter
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Low Pass Filter in C

void FIR(
int* src, 
int* dest, 
int* srcIndex, 
int* destIndex, 
int srcBufferSize, 
int destBufferSize,
int N) {

float result = 0.0;
for (int i = 0; i < N; i++) {
result += weights[i] * src[(*srcIndex + i) % srcBufferSize];

}
dest[*destIndex] = result;
*srcIndex = (*srcIndex + 1) % srcBufferSize;
*destIndex = (*destIndex + 1) % destBufferSize;

}

● FIR functionality obscured by 
buffer management details

● Programmer must commit to a 
particular buffer implementation 
strategy
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float→float pipeline BandPassFilter (int N, 
float low, 
float high) {

add LowPassFilter(N, low);
add HighPassFilter(N, high);

} HighPassFilter

LowPassFilter

Pipeline Example:  Band Pass Filter
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duplicate

SplitJoin Example:  Equalizer

BPF BPF BPF

Adder

roundrobin

Equalizerfloat→float pipeline Equalizer (int N, 
float lo, 
float hi) {

add splitjoin {

split duplicate;

for (int i=0; i<N; i++)

add BandPassFilter(64, lo + i*(hi - lo)/N);

join roundrobin(1);

}

add Adder(N);

}



122Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

void->void pipeline FMRadio(int N, float lo, float hi) {
add AtoD();

add FMDemod();

add splitjoin {
split duplicate;
for (int i=0; i<N; i++) {

add pipeline {

add LowPassFilter(lo + i*(hi - lo)/N);

add HighPassFilter(lo + i*(hi - lo)/N);
}

}
join roundrobin();

}
add Adder();

add Speaker();
}

Adder

Speaker

AtoD

FMDemod

LPF1

Duplicate

RoundRobin

LPF2 LPF3

HPF1 HPF2 HPF3

Building Larger Programs:  FMRadio
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Picture Reorder

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Motion Vector Decode

Repeat

Color Conversion

MPEG bit stream
MPEG Decoder

Motion 
Compensation

Display

Where’s the Concurrency?
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● Task decomposition
Independent coarse-grained 
computation
Inherent to algorithm

● Sequence of statements 
(instructions) that operate 
together as a group

Corresponds to some logical part of 
program
Usually follows from the way 
programmer thinks about a problem

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Motion 
Compensation

Where’s the Concurrency?
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join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Motion 
Compensation

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Where’s the Concurrency?

● Task decomposition
Parallelism in the application 

● Data decomposition
Same computation is applied to 
small data chunks derived from 
large data set
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join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Motion 
Compensation

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Where’s the Concurrency?

● Task decomposition
Parallelism in the application 

● Data decomposition
Same computation many data

● Pipeline decomposition
Data assembly lines 
Producer-consumer chains
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Productive (Stream) Programming
For Parallelism using StreamIt
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Multicore Streaming Layer (Collection of Cores e.g., SPEs)

application
● Application is naturally parallel, 

exposes concurrency, dependencies, 
and communication patterns

StreamIt
Compiler

StreamIt
Dynamic

Scheduler
MSL is not StreamIt specific
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The StreamIt Compiler

1. Coarsen: Fuse stateless sections of the graph
2. Data Parallelize: parallelize stateless filters
3. Software Pipeline: parallelize stateful filters

Coarsen 
Granularity

Data 
Parallelize

Software 
Pipeline 

[Gordon et al. ASPLOS ‘06]
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Coarse Grained Software Pipelining

A

B C

D

A

SPE0 SPE1 SPE2 SPE3

Time

B C
D

A
B C

D
A

B C
D

Initiation
Interval

● Good work estimation enables static load balancing…
● … Leads to better utilization and throughput
● Pipelining hides communication latency
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Impact of Load Balance
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Software Pipelining On Cell
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[Kudlur et al. UMich ’07]
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Automatic Parallelization Beyond Cell

[Gordon et al. ASPLOS ‘06]
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Task Parallelism

Adder

Splitter

Joiner

Compress

BandPass

Expand

Process

BandStop

Compress

BandPass

Expand

Process

BandStop

● Inherent task parallelism between two 
processing pipelines

● Task Parallel Model:
Only parallelize explicit task 
parallelism 
Fork/join parallelism

● Execute this on a 2 core machine ~2x 
speedup over single core

● What about 4, 16, 1024, … cores?
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Task Parallelism

Raw Microprocessor
16 inorder, single-issue cores with D$ and I$

16 memory banks, each bank with DMA
Cycle accurate simulator
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Task Parallelism

Parallelism: Not matched to target!
Synchronization: Not matched to target! 
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Data Parallelism

Adder

Splitter

Joiner

● Each of the filters in the example are 
stateless

● Fine-grained Data Parallel Model:
Fiss each stateless filter N ways (N is 
number of cores)
Remove scatter/gather if possible

● We can introduce data parallelism
Example: 4 cores

● Each fission group occupies entire 
machine
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Fine-Grained Data Parallelism
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Task
Fine-Grained Data

Good Parallelism!
Too Much Synchronization!
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Coarse-Grained Data Parallelism
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Good Parallelism!
Low Synchronization!



139Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Bito
nic

Sort
Cha

nnelVoco
der

DCT

DES

FFT

Filte
rba

nk

FMRadio

Serpent

TDE
MPEG2Dec

oder

Voco
der

Rad
ar

Geometr
ic 

Mean
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e 
C

or
e 

St
re

am
It

Task Fine-Grained Data
Coarse-Grained Task + Data Coarse-Grained Task + Data + Software Pipeline

Coarse-Grained 
Task + Data + Software Pipelining

Best Parallelism!
Lowest Synchronization!
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Virtualizing Multicore Architecture
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Productive (Stream) Programming
For Parallelism using StreamIt
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Multicore Streaming Layer (Collection of Cores e.g., SPEs)

application
● Application is naturally parallel, 

exposes concurrency, dependencies, 
and communication patterns

StreamIt
Compiler

StreamIt
Dynamic

Scheduler
MSL is not StreamIt specific
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Multicore Steaming Layer

● Computation viewed as a collection of
Filters: encapsulate computation and state
Buffers: input and output attached to filters

● Provides a instruction set
Filter commands (load, unload)
Buffer commands (allocate, attach)
Data transfer commands (indirectly translate to synchronization)

[Zhang. MIT MEng ‘07]
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Multicore Steaming Layer

● Abstracts away details of explicit data communication
Far easier to implement scheduling patterns on top of MSL, 
compared to for example Cell API

● Facilitate mapping of computation to a multicore
Compiler (or programmer) focuses on optimizations 
and graph refinement
Compiler uses communication patterns that are suitable for the 
application
Details of the actual communication mechanism may differ, and 
are hidden from the compiler

[Zhang. MIT MEng ‘07]



144Rodric Rabbah, IBM ESWeek 2007 Salzburg, Austria

Multicore Steaming Layer

● StreamIt compiler easily maps filters and buffers for MSL
Benefit of a practical and lightweight dynamic scheduler
Between 1-9% of runtime overhead
[Zhang. MIT MEng ‘07]

● Compiler can also implement static schedule directly in MSL 
instruction set

Evaluate both static and dynamic scheduling algorithms
[Zhang, Li, et al. ‘07]
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● Applications
DES and Serpent [PLDI 05]
MPEG-2 [IPDPS 06]
SAR, DSP benchmarks, JPEG, …

● Programmability
StreamIt Language (CC 02) 
Teleport Messaging (PPOPP 05)
Programming Environment in Eclipse (P-PHEC 05)

● Domain Specific Optimizations
Linear Analysis and Optimization (PLDI 03)
Optimizations for bit streaming (PLDI 05)
Linear State Space Analysis (CASES 05)

● Architecture Specific Optimizations
Compiling for Communication-Exposed Architectures 
(ASPLOS 02)
Phased Scheduling (LCTES 03)
Cache Aware Optimization (LCTES 05)
Load-Balanced Rendering 
(Graphics Hardware 05)
Exploiting Coarse-Grained Parallelism in 
Stream Programs (ASPLOS 06)

● http://cag.csail.mit.edu/streamit

StreamIt Program

Front-end

Stream-Aware
Optimizations

Cluster
backend

Raw
backend

IBM X10
backend

C per tile +
msg code

Streaming
X10 runtime

Cell
backend

Cell C

Annotated Java

MPI-like
C/C++

Simulator
(Java Library)

The StreamIt Project  

UniProc.
backend

C/C++

new

/cell
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