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ABSTRACT

Early applications of smart cards have focused in the area of per-
sonal security. Recently, there has been an increasing demand for
networked, multi-application cards. In this new scenario, enhanced
application-specific on-card Java applets and complex cryptographic
services are executed through the smart card Java Virtual Machine
(JVM). In order to support such computation-intensive applica-
tions, contemporary smart cards are designed with built-in micro-
processors and memory. As smart cards are highly area-constrained
environments with memory, CPU and peripherals competing for a
very small die space, the VM execution engine of choice is often a
small, slow interpreter. In addition, support for multiple applica-
tions and cryptographic services demands high performance VM
execution engine. The above necessitates the optimization of the
JVM for Java Cards.

In this paper we present the concept of an annotation-aware in-
terpreter that optimizes the interpreted execution of Java code us-
ing Java bytecode SuperOperators (SOs). SOs are groups of byte-
code operations that are executed as a specialized VM instruction.
Simultaneous translation of all the bytecode operations in an SO re-
duces the bytecode dispatch cost and the number of stack accesses
(data transfer to/from the Java operand stack) and stack pointer up-
dates. Furthermore, SOs help improve native code quality without
hindering class file portability. Annotation attributes in the class
files mark the occurrences of valuable SOs, thereby dispensing the
expensive task of searching and selecting SOs at runtime. Besides,
our annotation-based approach incurs minimal memory overhead
as opposed to just-in-time (JIT) compilers.

We obtain an average speedup of 18% using an interpreter cus-
tomized with the top SOs formed from operation folding patterns.
Further, we show that greater speedups could be achieved by stat-
ically adding to the interpreter application-specific SOs formed by
top basic blocks. The effectiveness of our approach is evidenced
by performance improvements of (upto) 131% obtained using SOs
formed from optimized basic blocks.
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1. INTRODUCTION
Smart cards have become ubiquitous platforms for personalized

services [1]. For example, a smart card is used as a phone card, a
health insurance card, identity cards, in GSM phones or an elec-
tronic wallet [2, 3]. A typical smart card consists of a microproces-
sor, ROM (Read Only Memory), EEPROM (Electrically Erasable
Programmable Read Only Memory) and RAM (Random Access
memory). The ROM contains the card operating system and other
applications.

Although a smart card has benefits over magnetic-strip cards,
it has certain limitations such as non-portability of applications,
lack of flexibility to download applications into a smart card. Re-
cently, Java Card has been proposed as a solution to these limita-
tions. Java Card is based on a subset of the Java API plus some
special-purpose card commands [4, 5]. The Java Card technology
enables portability of applications, and provides a secure platform
to store and execute multiple applications, called applets,1 on a
smart card [6]. Applets are small enough so that several of them
can fit into a single card with small amount of memory. Further, it
facilitates installation of applications after the card has been issued
which provides card issuers with the ability to dynamically respond
to their customer’s changing needs. For example, if a customer de-
cides to change the frequent flyer program associated with the card,
the card issuer can make this change, without having to issue a new
card. Java provides a security model that lets applets from multiple
sources reside safely on the same card. This is important because
an applet on a smart card may attempt to access data intended to be
private only to some other applet. The Java Card platform can be
implemented in either of the following two ways:

a) It can be implemented as an external Java Card tool. The tool
loads, verifies and prepares Java classes for on-card execution.

1Applets are small code objects that are designed to be down-
loaded onto a client machine from a remote host.
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(1) ldub [ PC + 2], TARGET ! Read next bytecode to be executed

(2) ldub [PC +1], %o2 ! Read ILOAD index operand

(3) sll %o2, 2, %o2

(4) neg %o2

(5) ld [LOCALS + %o2], %l3 ! Read local variable at index %o2

(6) st %l3 [ TOP - 4 ] ! Save local variable on the stack

(7) add TOP, -4, TOP ! Update stack pointer

(8) sll TARGET, SDISP, TARGET ! Calculating address of next bytecode

(9) jmp ORIGIN + TARGET

(10) add PC, 2, PC ! Update PC, delay slot

(11) ldub [ PC + 2], TARGET ! Read next bytecode to be executed

(12) ldub [PC +1], %o2 ! Read ISTORE index operand

(13) sll %o2, 2, %o2

(14) neg %o2

(15) ld [ TOP], %l3 ! Load value from the stack

(16) st %l3, [LOCALS + %o2] ! Store value in local variable at index %o2

(17) add TOP, 4, TOP ! Update stack pointer

(18) sll TARGET, SDISP, TARGET ! Calculating address of next bytecode

(19) jmp ORIGIN + TARGET

(20) add PC, 2, PC ! Updating PC, delay slot

Separate Translation: ILOAD followed by ISTORE

(1) ldub [ PC + 4], TARGET ! Read next bytecode to be executed

(2) ldub [PC +1], %o2 ! Read ILOAD index operand

(3) sll %o2, 2, %o2

(4) neg %o2

(5) ld [LOCALS + %o2], %l3 ! Read local variable at index %o2

(6) ldub [PC + 3], %o2 ! Read ISTORE index operand

(7) sll %o2, 2, %o2

(8) neg %o2

(9) st %l3, [LOCALS + %o2] ! Store value in local variable at index %o2

(10) sll TARGET, SDISP, TARGET ! Calculating address of next bytecode

(11) jmp ORIGIN + TARGET

(12) add PC, 4, PC ! Updating PC, delay slot

Combined Translation: ILOAD followed by ISTORE

(1) ldub [ PC + 2], TARGET ! Read next bytecode to be executed

(2) ldub [PC +1], %o2 ! Read ILOAD index operand

(3) sll %o2, 2, %o2

(4) neg %o2

(5) ld [LOCALS + %o2], %l3 ! Read local variable at index %o2

(6) st %l3 [ TOP - 4 ] ! Save local variable on the stack

(7) add TOP, -4, TOP ! Update stack pointer

(8) sll TARGET, SDISP, TARGET ! Calculating address of next bytecode

(9) jmp ORIGIN + TARGET

(10) add PC, 2, PC ! Update PC, delay slot

(11) ldub [ PC + 2], TARGET ! Read next bytecode to be executed

(12) ldub [PC +1], %o2 ! Read ISTORE index operand

(13) sll %o2, 2, %o2

(14) neg %o2

(15) ld [ TOP], %l3 ! Load value from the stack

(16) st %l3, [LOCALS + %o2] ! Store value in local variable at index %o2

(17) add TOP, 4, TOP ! Update stack pointer

(18) sll TARGET, SDISP, TARGET ! Calculating address of next bytecode

(19) jmp ORIGIN + TARGET

(20) add PC, 2, PC ! Updating PC, delay slot

Separate Translation: ILOAD followed by ISTORE

(1) ldub [ PC + 4], TARGET ! Read next bytecode to be executed

(2) ldub [PC +1], %o2 ! Read ILOAD index operand

(3) sll %o2, 2, %o2

(4) neg %o2

(5) ld [LOCALS + %o2], %l3 ! Read local variable at index %o2

(6) ldub [PC + 3], %o2 ! Read ISTORE index operand

(7) sll %o2, 2, %o2

(8) neg %o2

(9) st %l3, [LOCALS + %o2] ! Store value in local variable at index %o2

(10) sll TARGET, SDISP, TARGET ! Calculating address of next bytecode

(11) jmp ORIGIN + TARGET

(12) add PC, 4, PC ! Updating PC, delay slot

Combined Translation: ILOAD followed by ISTORE

(1) ldub [ PC + 4], TARGET ! Read next bytecode to be executed

(2) ldub [PC +1], %o2 ! Read ILOAD index operand

(3) sll %o2, 2, %o2

(4) neg %o2

(5) ld [LOCALS + %o2], %l3 ! Read local variable at index %o2

(6) ldub [PC + 3], %o2 ! Read ISTORE index operand

(7) sll %o2, 2, %o2

(8) neg %o2

(9) st %l3, [LOCALS + %o2] ! Store value in local variable at index %o2

(10) sll TARGET, SDISP, TARGET ! Calculating address of next bytecode

(11) jmp ORIGIN + TARGET

(12) add PC, 4, PC ! Updating PC, delay slot

Combined Translation: ILOAD followed by ISTORE

Figure 1: Traces of the translations of an ILOAD followed by an
ISTORE operation

b) It can be implemented as an on-card Java Card VM based on
Java bytecode Interpreter.

With the development of Java Cards, new application languages are
being designed and put into use, for example, Java Card 2.x [7, 8].
The above facilitates code reuse with the potability across different
chip architectures. In addition, the object-oriented approach of Java
Card 2.x provides flexibility in programming smart cards.

The widespread use of networked devices has rendered the pro-
gram and application data on such cards susceptible to external at-
tacks. Thus it has increased the need for securing the data against
such attacks[9, 10]. Securing the digital data mandates personal
identification and non-repudiation. For the same, most cards have
builtin support for cryptography. The need for higher security lev-
els has led to the use of complex crypto keys (usually DES or RSA
private keys). However, use of complex, computation-intensive se-
curity algorithms adversely affects the performance of the smart
card due to its limited computation resources.

Most of the research in the context of the JVM has concen-
trated in high-end optimizations such as advanced garbage col-
lection techniques, just-in-time (JIT) compilation, hotspot analy-
sis and adaptive compilation techniques. However, Java programs
running on low-end smart cards cannot afford the overhead (such
as increase in class file size and additional compilation time) asso-
ciated with such optimizations. The latter stems from the limited
on-card memory which restricts the size of the VM code itself. In
addition, support for multiple applications and cryptographic ser-
vices demands high performance VM execution engine. The above
necessitates the optimization of the JVM for Java cards.

In this paper we propose new methods for optimizing the per-
formance of Java interpreters for Java cards with patterns of Java
bytecode operations or SuperOperators.2 For example, consider
the two traces shown in Figure 1 which illustrate how combining
bytecode operations into patterns can lead to optimized interpreted

2Techniques based on SOs are orthogonal to implementing
threading and should further boost the efficiency of a threaded code
interpreter (shown in lower portion of Figure 2).

execution. The upper side of Figure 1 shows the execution trace of
an ILOAD operation immediately followed by an ISTORE operation.
A total of 20 instructions are executed. The trace in the bottom
portion of Figure 1 shows the situation in which at the moment of
translating the ILOAD operation it was known that such instruction
was followed by an ISTORE operation. In this new trace, the dis-
patch cost for the ISTORE operation is eliminated (instructions 8,
9, 10 and 11 from the upper trace). Besides, the stack accesses
and stack pointer updates in the translation of both operations are
completely eliminated (instructions 6, 7 and 15 in the upper trace).
The result produced by the ILOAD operation is kept in the machine
register l3 and reused by the subsequent ISTORE bytecode, with
no need to access the stack (instructions 5 and 9 in the lower trace).
The combined translation of the two bytecodes executes 12 instruc-
tions, a 40% improvement over the separate translation.

The rest of the paper is organized as follows: In Section 2 we
present a brief overview of program interpretation schemes. Next,
in Section 3 we discuss our approach for generation of SOs. Static
and dynamic customization of the interpreter is discussed in Sec-
tions 4 and 5 respectively. The SO annotation format is discussed
in Section 6. The experimental framework and results are presented
in Section 7. In Section 8 we discuss previous work. Finally, we
conclude with directions for future research in Section 9.

2. BACKGROUND
Program interpretation is the process of emulating in software

the basic tasks of fetching, decoding and executing instructions of
a normal program execution, which are usually done by a micropro-
cessor hardware. Therefore interpretation has inferior performance
compared to direct program execution. An interpreter is essentially
structured as an infinite loop that reads in a new instruction from
an array of instructions pointed by a software program counter, de-
codes the instruction, transfers control to code parts that handle
the instruction just decoded, updates the program counter to point
to the next instruction in the stream and eventually returns to the
same fetch-decode-execute cycle to translate the next instruction.
The implementation of an interpreter loop in a high level language
like C is shown in the upper part of Figure 2, and is referred to as a
switch-based or bytecoded interpreter.

There are two main sources of overhead in the interpreted execu-
tion of Java bytecode programs. We discuss the overheads by ana-
lyzing Figure 3, which shows part of LaTTe’s interpreter engine di-
rectly written in SPARC assembly code. LaTTe is an open-source,
high performance JVM interpreter implementation [11]. We use
LaTTe for our experiments as it is non-proprietary and for ease of
reproducibility of results. However, the ideas presented in this pa-
per are applicable and beneficial for optimizing any JVM.

Each Java bytecode implementation is declared as a section of
assembly code at position

interpret start + opcode * DISP

where interpret start label marks the base address of the loop;
opcode is the byte representing the bytecode opcode; and DISP is
the maximum number of bytes (256) reserved for the native code
that implements the bytecode semantics. Notice that in LaTTe’s
interpreter engine, the most important loop variables, the top of
the stack (TOP) and the logical program counter (PC), are kept in
SPARC machine registers for improved performance. Figure 3 also
details the execution of an ILOAD operation, which requires 6 ma-
chine instructions. The tasks of fetching, decoding and jumping to
the next bytecode to be executed define the bytecode dispatch cost.
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void bytecoded_Interpreter_Engine{

char program[] = {ICONST_2, ICONST_2, ICONST_1, IADD,…}

char *pc = program; /* bytecode pointer */

/* dispatch loop implementation */

while (true){

switch(*pc++){ /* Fetch, Decode, Update pointer */

case ICONST_1: *++sp = 1; break; /* Execute bytecode */

case ICONST_2: *++sp = 2; break;

case IADD: sp[-1] += *sp; --sp; break;

… /* Other cases */

}

}

}

void threaded_Interpreter_Engine{

void * program[] = {&&ICONST_2, &&ICONST_2, &&ICONST_1, &&IADD,…}

void **pc = program; /* pointer to the address of bytecode implementation */

/* bytecode implementations */

goto **(pc++); /* Fetch */

ICONST_1: *++sp = 1; goto **(pc++); /* Execute bytecode, Fetch, update pointer */

ICONST_2: *++sp = 2; goto **(pc++);

IADD: sp[-1] += *sp; --sp; goto **(pc++);

… /* Other cases */

}

void bytecoded_Interpreter_Engine{

char program[] = {ICONST_2, ICONST_2, ICONST_1, IADD,…}

char *pc = program; /* bytecode pointer */

/* dispatch loop implementation */

while (true){

switch(*pc++){ /* Fetch, Decode, Update pointer */

case ICONST_1: *++sp = 1; break; /* Execute bytecode */

case ICONST_2: *++sp = 2; break;

case IADD: sp[-1] += *sp; --sp; break;

… /* Other cases */

}

}

}

void threaded_Interpreter_Engine{

void * program[] = {&&ICONST_2, &&ICONST_2, &&ICONST_1, &&IADD,…}

void **pc = program; /* pointer to the address of bytecode implementation */

/* bytecode implementations */

goto **(pc++); /* Fetch */

ICONST_1: *++sp = 1; goto **(pc++); /* Execute bytecode, Fetch, update pointer */

ICONST_2: *++sp = 2; goto **(pc++);

IADD: sp[-1] += *sp; --sp; goto **(pc++);

… /* Other cases */

}

Figure 2: Bytecoded interpreter and threaded code interpreter
schemes

The dispatch cost requires 4 more instructions of expensive type
(load and branch instructions) to be executed: a ldub to load the
next bytecode; a sll to calculate the next bytecode address; a jmp
to transfer control to that new address; and an add to update the pro-
gram counter. In this example, we also notice that the dispatch cost
is more than half of the typical size of the native code implemen-
tation of the most commonly executed Java bytecode (load from
local variables on the average account for 35.5% of SPEC JVM98
total executed bytecodes [12]). A dispatch optimization technique
has been proposed in [13].

Another source of overhead exists in the execution of the byte-
code semantics in which a stack machine is being emulated in soft-
ware. This forces the copy of operands and results to and from
the other Java memory areas (e.g., the heap and the local variables
array) to the Java stack. Any technique that reduces the cost of dis-
patching a new bytecode (like threaded code interpreter), reduces
the data transfer to/from the Java stack or reutilizes the translation
work of previously executed bytecodes can improve the overall per-
formance of Java programs. In this paper we focus on minimizing
the stack machine overhead.

JIT compilers [11, 14, 15] eliminate the above issues altogether
at the cost of more space to store the compiled methods and the
compilation framework itself and associated runtime cost. A JIT
compiler is not a viable solution in domains where space constraints
limit the available memory such as smart card.

3. GENERATION OF SOS

Operation folding (OF) has been proposed as a mechanism to en-
hance the PicoJava’s performance by turning many cycles of stack
oriented instructions into a one-cycle register-based instruction, which
can be implemented with a few registers [16]. OF groups or folds
contiguous operations that have true data dependency [17]. For ex-
ample, the following bytecode sequence can be transformed using
operation folding in the Java processor.

iload 1 iload 2 iadd istore 3 → add R1, R2, R3

In PicoJava instructions are combined into folding patterns ac-

DISP .EQU 256 ! Maximum size of each opcode implementation

SDISP .EQU 8 ! log_2 DISP

METHOD .REG (%i0) ! Method structure

ORIGIN .REG (%i1) ! Beginning of opcode implementations

PC .REG (%i2) ! Address containing the current bytecode

TOP .REG (%i3) ! Operand stack top

LOCALS .REG (%i4) ! Local variables

TARGET .REG (%i5) ! Next opcode to execute

FP .REG (%l0) ! Java stack frame pointer

POOL .REG (%l1) ! Resolved pool

FAKEI .REG (%l2) ! Instruction which trampolines start with

…

.macro DECLARE opcode

\(\(.org)) _interpret_start + \opcode * DISP

.endm

…

! void interpret (Method *m, void *args, void* bcode)

! m is the method to be interpreted

! args is the memory containing arguments; the return value also goes in here.

! bcode is Bytecode address to execute

interpret:

…

! Initialize registers, e.g., %i1

sethi %hi(_interpret_start), ORIGIN

or ORIGIN, %lo(_interpret_start), ORIGIN

…

_interpreter_start:

DECLARE 0 !NOP

…

DECLARE 1 ! ACONST_NULL

…

! Load word from local variable and push onto operand stack

DECLARE 21 !ILOAD

! Read next bytecode to be executed

ldub [ PC + 2], TARGET

! Execute the current bytecode semantics

ldub [PC +1], %o2 ! Read index operand

sll %o2, 2, %o2

neg %o2

ld [LOCALS + %o2], %l3 ! Read local variable at index %o2

st %l3 [ TOP - 4 ] ! Save local variable on the stack

add TOP, -4, TOP ! Update stack pointer

!Transfer control to the next bytecode

sll TARGET, SDISP, TARGET ! Calculating address of next bytecode

jmp ORIGIN + TARGET

add PC, 2, PC ! Updating PC, delay slot

…

DECLARE 201 ! JSR_W

…

_interpreter_end:

…

Figure 3: Bytecoded interpreter loop example

cording to a definite set of language-based grouping rules. The
algorithm for folding instructions is very simple. It scans the byte-
code stream looking for sequences of instructions that match the
patterns and folds instructions corresponding to the longest pat-
tern amongst the choices. Instruction folding in PicoJava is imple-
mented directly in hardware. It is limited by the maximum number
of instructions it can fold at a time and in the number of grouping
rules, which together define the size and complexity of the instruc-
tion decoder. Also, it only folds bytecode operations for which
there is a microcode instruction that executes the bytecode seman-
tics.

In order to alleviate the above limitation, we proposed to gener-
alize the PicoJava instruction folding mechanism in software [18].
As a natural consequence, we can process more complex bytecodes
and longer sequences as long as we have enough registers to hold
the values from the stack accesses which are eliminated during the
folding process. For example, our technique can handle both long
and double values in local variables or in the constant pool. The
proposed technique can be easily extended to include method invo-
cation bytecodes to facilitate exploitation of registers for parameter
passing when folding instructions.

One way to form SOs is from stack operation folding (OF) pat-
terns. The patterns are groups of Java bytecode operations that re-
peat across methods pertaining to a single program or whole bench-
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mark suites. Language-based grouping rules as in PicoJava I and
PicoJava II can be employed to find patterns. Another way to find
patterns is to search for them in the compiler’s internal expression
trees. In [19], Kim proposed a Java bytecode optimization wherein
non-contiguous operations that may be far apart on the stack can
be folded together. El-Kharashi proposed an operand extraction-
based stack folding technique for finding nested folded patterns
[20].

A dictionary-based search can be employed for searching the
longest pattern [18]. The OF patterns are prioritized by different
heuristics such as length of the pattern, static/dynamic frequency
of occurrence and are selected for forming SOs according to the
level of customization of the interpreter, as discussed below:

i) Application-specific OF Patterns: The SOs are formed by
OF patterns which are application-specific.

ii) Benchmark Suite-specific OF Patterns: The SOs are formed
by OF patterns common to all the applications within a bench-
mark suite.

iii) OF Patterns Across Benchmark Suites: The stack operation
folding technique is applied across all applications of the dif-
ferent application suites to obtain SOs that are valuable across
benchmark suites.

Another way of looking for valuable patterns of bytecodes is
to identify basic blocks (BBs) in Java bytecode programs, pro-
file them, calculate their dynamic execution frequencies, prioritize
them and form SOs with the top most important basic blocks. For
further details, the reader is referred to [18]. In this study, we do
not consider patterns of instructions that include control transfer
instructions, except when it is the last instruction in the pattern.
Therefore, when identifying basic blocks, method invocations, con-
ditional jump bytecodes (e.g., if icmpeq), unconditional branch
bytecodes (e.g., goto), compound conditional branch bytecodes
(e.g., tableswitch, lookupswitch) and the bytecodes associated
with the implementation of the finally keyword (jsr and ret) all
terminate the basic blocks.

Although an interpreter optimized with SOs formed with OF pat-
terns can improve the performance of a wider range of applications,
the speedups it will produce will probably be lower compared to
techniques that deploy sets of SOs formed by basic blocks. Also,
it should be noted that the basic block approach for forming SOs
is applicable on a per-application basis as basic blocks, unlike OF
patterns, do not repeat across applications or benchmark suites.

The BB and OF candidate patterns for folding are prioritized ei-
ther statically or dynamically, as discussed in Sections 4 and 5 re-
spectively. A higher priority value of a SO is indicative of larger
performance gain achievable by folding the corresponding pattern.
We are interested in patterns that repeat across all applications of
our Java Card benchmark suite. From these patterns we select the
topmost ones (most frequently occurring) to form SOs.

4. STATIC CUSTOMIZATION
When statically customizing the interpreter, the original inter-

preter loop is extended with new bytecodes that define the SOs.
The number of new bytecodes is limited by the number of free op-
codes available, i.e., the number of opcodes the interpreter does not
use. Figure 4 illustrates an example of LaTTe’s interpreter loop
with a SO defined as a new bytecode in the interpreter engine, with
opcode 203.

A single optimal set of common patterns is statically chosen
from the set of all possible OF patterns. One of the ways to pri-

DISP .EQU 512 ! Maximum size of each opcode implementation

SDISP .EQU 9 ! log_2 DISP

METHOD .REG (%i0) ! Method structure

ORIGIN .REG (%i1) ! Beginning of opcode implementations

PC .REG (%i2) ! Address containing the current bytecode

TOP .REG (%i3) ! Operand stack top

LOCALS .REG (%i4) ! Local variables

TARGET .REG (%i5) ! Next opcode to execute

FP .REG (%l0) ! Java stack frame pointer

POOL .REG (%l1) ! Resolved pool

FAKEI .REG (%l2) ! Instruction which trampolines start with

…

.macro DECLARE opcode

\(\(.org)) _interpret_start + \opcode * DISP

.endm

…

! void interpret (Method *m, void *args, void* bcode)

interpret:

…

! Initialize registers, e.g., %i1

sethi %hi(_interpret_start), ORIGIN

or ORIGIN, %lo(_interpret_start), ORIGIN

…

_interpreter_start:

DECLARE 0 !NOP

…

DECLARE 1 ! ACONST_NULL

…

DECLARE 201 ! JSR_W

…

DECLARE 203: ! SO iload_3 iload iadd

! Read next bytecode to be executed

ldub [ PC + 4], TARGET

! Execute the SO semantics

ld [%i4 -12], %l3

ldub [%i2 +2], %o2

sll %o2, 2, %o2

neg %o2

ld [%i4 + %o2], %l4

add %l3, %l4, %o0

st %o0, [%i3 -4]

add TOP, -4, TOP

!Transfer control to the next bytecode or SO

sll TARGET, SDISP, TARGET

jmp ORIGIN + TARGET

add %i2, 4, %i2

…

_interpreter_end:

…

Figure 4: Statically customizing an interpreter loop

oritize the candidate SOs is based on their average static frequency
(SF). SF of a SO i is defined as follows:

SFi =
∑n

1
100×SFik

∑t
1 SFik

n
(1)

where SFik is the number of times SO i repeats in the static code of
program k, t is the total number of SOs in the static code of pro-
gram k and n is the number of programs averaged over (n = 20).
In [18], Azevedo showed that it is better to prioritize the candidate
SOs based on their dynamic frequencies instead of their static fre-
quencies. Therefore, we use dynamic frequency as the basis for SO
selection. Each SO is “marked” in a class file with an annotation.
The interpreter uses the annotations at run-time to switch to execute
an SO.

The advantage of the static approach is that executing a SO has
the same dispatch cost of a single bytecode execution. As a SO
comprises of more than one bytecode operation, the overall dis-
patch cost is reduced. When generating machine code for each SO
we also optimize stack accesses and stack pointer updates, placing
values in registers whenever possible.

55



5. DYNAMIC CUSTOMIZATION
One of the ways to achieve best speedup is to optimize an inter-

preter with SOs customized for a particular application. However,
the above has very limited applicability. A better solution would
be to adapt the interpreter code based on the application under ex-
ecution. A JIT compiler achieves this by compiling functions at
the method level and recompiling, in case of re-optimizing compil-
ers. However, JIT leads to large JVM code which makes the above
approach unsuitable for Java cards.

DISP .EQU 512 ! Maximum size of each opcode implementation

SDISP .EQU 9 ! log_2 DISP

METHOD .REG (%i0) ! Method structure

ORIGIN .REG (%i1) ! Beginning of opcode implementations

PC .REG (%i2) ! Address containing the current bytecode

TOP .REG (%i3) ! Operand stack top

LOCALS .REG (%i4) ! Local variables

TARGET .REG (%i5) ! Next opcode to execute

FP .REG (%l0) ! Java stack frame pointer

POOL .REG (%l1) ! Resolved pool

FAKEI .REG (%l2) ! Instruction which trampolines start with

BCBASE .REG (%l5) ! base of bytecode stream

SONCODE .REG (%l6) ! SO native code table

…

.macro DECLARE opcode

\(\(.org)) _interpret_start + \opcode * DISP

.endm

…

! void interpret (Method *m, void *args, void* bcode)

interpret:

…

! Initialize registers, e.g., %i1

sethi %hi(_interpret_start), ORIGIN

or ORIGIN, %lo(_interpret_start), ORIGIN

…

_interpreter_start:

DECLARE 0 !NOP

…

DECLARE 1 ! ACONST_NULL

…

DECLARE 201 ! JSR_W

…

DECLARE 203 ! opcode identifying a SO

sub PC, BCBASE, %l3

sll %l3, 2, %l4

add SONCODE, %l4, %l4

ld [%l4], %l4

jmp %l4

nop

! displacement from bytecode begin %l3

! calculating index into native code table %l4

! address of the translated code %l4

! jump to the SO translated code

…

_interpreter_end:

…

Figure 5: Dynamically customizing an interpreter loop

In this section we propose a dynamic scheme that is more flexi-
ble in customizing the interpreter for a particular applet or service
application. In this new approach, we propose to add SOs to the in-
terpreter “on-the-fly”. For efficient selection of the candidate SOs,
the same are prioritized dynamically based on their average dy-
namic frequency (DF). DF of a SO i is defined as follows:

DFi =
∑n

1
100×DFik

∑t
1 DFik

n
(2)

where DFik is the number of times SO i executed during the execu-
tion of program k.

The interpreter loop is essentially the same as in LaTTe’s origi-
nal interpreter code (except for some extra operations to control the
dynamic scheme). However, at runtime when a SO is identified (via

Annotated Bytecode

Method void foo1(int[], int)

0 iconst_0 SO 1

1 istore_2

2 goto 12
5 aload_0 SO 3

6 iload_2

7 iload_1

8 iastore

9 iinc 2 1

12 iload_2 SO 4
13 aload_0

14 arraylength

15 if_icmplt 5

18 return

Annotated Bytecode

Method void foo2(int[], int)
0 iconst_0 SO 1

1 istore_2

2 iconst_0 SO 2

3 istore_3

4 goto 18
7 iload_2 SO 5

8 aload_0

9 iload_3

10 iaload

11 iload_1

12 iadd
13 iadd

14 istore_2

15 iinc 3 1

18 iload_3 SO 9

19 aload_0
20 arraylength

21 if_icmplt 7

24 return
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&SO[1]

&SO[2]

&SO[3]

&SO[4]

&SO[5]

&SO[9]

ldub [%i2 +2], %i5

st %g0, [%i4 -8]

…

ldub [%i2 +2], %i5
st %g0, [%i4 -12]

…

…

ld [%i4 -8], %o1

ld [%i4], %o0

…

ldub [%i2 +3], %i5

ld [%i4], %o0

…

ldub [%i2 +8], %i5

ld [%i4 -8], %o1
…

ld [%i4 -12], %o1

ld [%i4], %o0
…

Annotated Bytecode

Method void foo1(int[], int)

0 iconst_0 SO 1

1 istore_2

2 goto 12
5 aload_0 SO 3

6 iload_2

7 iload_1

8 iastore

9 iinc 2 1

12 iload_2 SO 4
13 aload_0

14 arraylength

15 if_icmplt 5

18 return

Annotated Bytecode

Method void foo2(int[], int)
0 iconst_0 SO 1

1 istore_2

2 iconst_0 SO 2

3 istore_3

4 goto 18
7 iload_2 SO 5

8 aload_0

9 iload_3

10 iaload

11 iload_1

12 iadd
13 iadd

14 istore_2

15 iinc 3 1

18 iload_3 SO 9

19 aload_0
20 arraylength

21 if_icmplt 7

24 return
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Method void foo2

Method void foo1

SO Native Code Table

&SO[0]

&SO[1]

&SO[2]

&SO[3]

&SO[4]

&SO[5]

&SO[9]

ldub [%i2 +2], %i5

st %g0, [%i4 -8]

…

ldub [%i2 +2], %i5
st %g0, [%i4 -12]

…

…

ld [%i4 -8], %o1

ld [%i4], %o0

…

ldub [%i2 +3], %i5

ld [%i4], %o0

…

ldub [%i2 +8], %i5

ld [%i4 -8], %o1
…

ld [%i4 -12], %o1

ld [%i4], %o0
…

Figure 6: Data structures used in a dynamically customized
interpreter

annotations) in the bytecode stream, a call to a software translation
function produces the machine instructions that implement the SO
semantics. The translated code is stored in the native code table,
indexed by the SO identification number. This table is shared by all
the methods in the program. Each bytecode in a method that corre-
sponds to a SO start is annotated and associated with a pointer to an
entry in the native code table. Future executions of instances of a
previously translated SO can skip the translation process and jump
straight to this pointer to execute the SO implementation. Figure 5
(on page ) shows how the interpreter loop of a dynamically cus-
tomized interpreter invokes a SO. The data structures used in the
dynamic case are shown in Figure 6.

The interpreter size in the dynamic approach differs from the
static approach in the space required by the SO translation func-
tions for each pattern class, the array of pointers to the shared na-
tive code table created for each method and the shared native code
table. The latter can grow as large as the number of SOs executed.
Besides the SO annotation overhead, dynamic customization also
incurs the overhead of invoking the translated SOs.

6. SO ANNOTATION FORMAT

Approaches such as JIT compilation rely on bytecode analysis
(of varying sophistication) to extract information about the pro-
gram, which is then used to optimize the native code during the
translation process. However, extracting information from a low-
level representation such as the bytecodes is very expensive. In
order to alleviate the same, Hummel et al. proposed an approach
based on annotations, wherein the bytecodes are annotated during
the source code to bytecode translation, thus facilitating aggressive
optimization by an annotation-aware bytecode compiler [21, 18].
We employ the same (annotation-based) approach for optimizing
the performance of Java interpreters with SOs.

SO annotations identify where SOs occur in the bytecode stream.
Thus, annotations help eliminate the expensive pattern search and
the selection phases at runtime. SO annotations are encoded in Java
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Figure 7: SuperOperators formed by OF Pattern with DF > 1%

SOAnnotationTableAttribute{

u2 name;

u4 length;

u2 tableLength;

{

u2 pc;

u1 id;

u1 type; // used in the dynamic case only

}SOAnnotationTable[tableLength];

}

Figure 8: SOAnnotationTable attribute format

class files as a new user-defined attribute to the Code attribute [22]
of a Java method, referred to as SOAnnotationTable, as shown in
Figure 8 (on page ). Field name is a valid index into the constant
pool table representing the string “SOAnnotationTable”; length
indicates the total size of the attribute; and tableLength indicates
the number of entries in the SOAnnotationTable array. Each en-
try in the SOAnnotationTable array contains an index pc into the
code array of the corresponding Code attribute; a SO id identifica-
tion number; and the type of the SO.

7. EXPERIMENTAL EVALUATION
To evaluate the proposed techniques we use three Java card appli-

cations, viz., Blowfish, GSM and Banking, and applications from
the SPEC JVM98, JGF S2 benchmark suites. In Section 7.1, we

present a quantitative measure of the percentage of total bytecode
execution corresponding to the SOs generated using our annotation-
based approach. Speedup results of the static and dynamic schemes
discussed earlier are presented in Sections 7.2 and 7.3 respectively.
Results of the code size overhead associated with both the static and
dynamic schemes are discussed in Section 7.4. Lastly, we compare
the performance of the different SO-based techniques.

7.1 SO Selection
Figure 7 shows the percentage of the total bytecode execution of

the top SOs formed by OF patterns with dynamic frequency > 1%
for different benchmarks. The top SOs for Java Card applications
are shown in Figure 7(a). Observe that the SOs of GSM and Blow-
fish account for more than 50% of the total bytecode execution. In
order to illustrate the generic nature of our approach, the percentage
of the total bytecode execution of the top SOs for SPEC JVM98 and
JGF S2 benchmark suites is shown in Figures 7(b) and 7(c) respec-
tively. Note that the SOs of LUFact and SparseMatMul constitute
over 50% of the total bytecode execution. For complete results on
SpecJVM98, Java Grande Forum S2 see [18]. From hereon, we
only present the results for the applications of the Java Card bench-
mark suite.

7.2 Statically Customized Interpreter

In order to estimate an upper bound of the performance of SO-
based interpreters, we statically customized the interpreter, forming
the SOs statically on a per-application basis. We chose to imple-
ment the top 21 SOs formed from OF patterns, for this is the num-
ber of free opcodes available in LaTTe’s interpreter. Figure 9 shows
the corresponding application-specific speedup for the different ap-
plications of the Java Card suite. Speedups of 28% and 23% were
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obtained for Blowfish and GSM respectively. The low speedup for
Banking can be attributed to the fact that the OF patterns contribute
only 10% of the total bytecodes executed.
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Figure 9: Results of application-specific static customization

7.3 Dynamically Customized Interpreter
The results in Figure 10 correspond to dynamically customizing

interpreters with SOs formed by OF patterns that are application-
specific. We obtain an average speedup 15% for Blowfish, 2.1%
for GSM and 2.6% for the Banking application. We note that
the OF patterns are too small to overcome the overhead associ-
ated with dynamic customization. In order to mitigate the affect
of the overhead, we experiment with SOs formed by top BBs in
Section 7.5. Greater speedups (compared to static customization)
can be achieved by considering larger number of BBs.
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Figure 10: Results of Dynamic Customization

7.4 Code Size Overhead
Static and dynamic customization of the interpreter leads to in-

crease in (Java) code size. Table 1 shows the % increase in code in-
crease for both static and dynamic schemes, discussed in Sections
4 and 5 respectively. From Table 1 we note that there is a modest
increase in code size of 6.6% and 14.7% (on an average) for static
and dynamic schemes respectively. The slightly higher code size
increase in the dynamic case can be attributed to the added byte to
represent each type of SO.

7.5 Comparing SO-based Techniques
Previously proposed techniques for optimizing interpreters with

patterns of instructions have been implemented in either different
virtual machines other than JVMs or use different intermediate lan-
guages other than Java bytecode. In order to compare the tech-
niques under the same virtual machine engine we designed three

Benchmark
% Code size increase

Statically Customized Dynamically Customized

Blowfish 7 18

GSM 4 15

Banking 9 11

Table 1: % increase in code size

Java SO annotation-aware interpreter versions, building on top of
LaTTe’s interpreter. The description of the optimizing techniques
implemented by each interpreter version is given below (for details
refer to [18]).

❐ BBOpt: Optimizing top SOs formed by basic blocks
In this interpreter version, the most valuable SOs are fully
optimized, i.e., the bytecode translations within a BB are
concatenated and optimized, eliminating the dispatch and stack
model costs.

❐ BB: Unoptimized SOs formed by basic blocks
The interpreter simply concatenates the translation of the in-
dividual bytecodes that compose the most important SOs.

❐ OF: Optimizing top SOs formed by Operation Folding
patterns
The interpreter fully optimizes SOs as in BBOpt, but SOs are
formed by operation folding sub-patterns that appear in the
most executed basic blocks.

From Figure 11 we observe that the BBOpt scheme yields signif-
icantly higher speedup than BB and OF for Blowfish (131.6%) and
GSM (84.4%). It can be attributed to the fact that the two bench-
marks have large, frequently executed basic blocks. In contrast,
there is very insignificant performance gain for the Banking appli-
cation owing to small, infrequently executed basic blocks. The re-
sults shown in Figure 11 correspond to the top 7-21 basic blocks in
each application. Optimization of other basic blocks and deploying
the corresponding SOs would yield further speedups.
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Figure 11: Performance comparison of different SO types

8. RELATED WORK

The breakthrough in the efficient implementation of virtual ma-
chine interpreters is the threaded code technique [23, 24, 25, 26].
The threaded interpreter still pays the cost of an instruction dis-
patch for each bytecode executed. If simple bytecodes are com-
bined into bytecode sequences, the dispatch overhead is reduced.
Optimizing interpreters with bytecode sequences has been tried in
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previous research. Proebsting’s work on SuperOperators [27] intro-
duces SOs as specialized instructions automatically inferred from
repeated patterns in the tree-like intermediate representation pro-
duced by lcc compiler [28]. His bytecoded interpreter extended
with SOs runs 2 to 3 times faster with the tested benchmarks. Ertl,
Gregg et al. [29, 30] have combined the advantages of threaded
code interpreter with the merging of single instructions into Su-
perinstructions. By inspecting traces of a program execution, pat-
terns of instructions of length 2, 3 and up to 4 are detected. In a
later phase, the behavior of the original virtual machine operations
and the patterns of instructions are defined using a special syntax in
C. An automatic interpreter generator takes in this specification and
outputs an interpreter in C that implements the described behaviors.
Their work relies on a smart C compiler to remove redundant stack
accesses, unnecessary stack pointer updates and bytecode dispatch
instructions within patterns. Hundreds of patterns are incorporated
to the interpreter code, substantially increasing the size of the in-
terpreter. Up to 2 fold-speedups have been reported for the indirect
interpretation of Java bytecodes.

Piumarta et al. propose a technique that eliminates the dispatch
overhead within a basic block using selective inlining [31]. The
code to be interpreted is first translated to threaded code and ba-
sic blocks are identified. A second pass dynamically generates
�macro opcodes representing the basic blocks and replaces threaded
code opcodes with the macro opcodes. The implementation of each
macro is a simple concatenation of the C-code implementations of
the bytecodes that it replaces. The technique was applied to the
Objective Caml bytecode interpreter and resulted in 50% average
speedup, reaching twice as fast in some cases. Thibault et al. [32]
proposes interpreter Specialization as a more generic solution for
optimizing interpreters than Piumarta’s. An interpreter specialized
for a particular program is essentially a concatenation of the imple-
mentations of all the bytecodes in the program. This technique fully
eliminates the bytecode dispatch cost resulting in 4-fold speedups.

Sun designed a stack operation folding mechanism for PicoJava
I [33] and PicoJava II [34] architectures that converts many cycles
of stack oriented instructions into an one-cycle register based in-
struction, which can be implemented with a few registers. This
technique groups or folds contiguous operations that have true data
dependency. For example, the bytecode sequence

iload 1 iload 2 iadd istore 3

(two stack copy operations, an ALU operation and a local variable
store operation) can be transformed into a single add R1, R2, R3
operation. Sun’s folding technique is based on pattern matching
with a very limited set of patterns. A special decode unit in the
PicoJava processor converts the bytecode instructions into micro-
operations and looks for folding patterns up to 4 consecutive in-
structions long. If a pattern is identified, the decoder replaces the
instructions belonging to the pattern with a simple micro-operation.
Other stack operation folding techniques that enhance PicoJava’s
simple grouping rules have been proposed in literature [35, 36, 20].
Kim [37] has proposed a software approach to stack operation fold-
ing in which he creates a Smart Loader, a custom class loader that
finds folding patterns at load-time by applying PicoJava-like group-
ing rules. With this approach, the JVM hardware can be simplified
yet benefit from folding.

Static program analysis for identifying repetitive sequences of
bytecodes for compression has been studied in [38, 39]. Casey et
al. [40] proposed a Java instruction, called superinstruction, to re-
duce the number of instruction dispatches. However, their approach
for selecting bytecode sequences is restricted to per-program basis.
Donoghue and Power proposed an approach to (statically) select

a generic set of superinstructions to be used across different pro-
grams [41]. In [42], Ertl and Gregg proposed a method to exploit
dynamic superinstructions in conjunction with stack caching [25]
to minimize the interpreter dispatch overhead; in addition, they pro-
pose a shortest path search algorithm to determine an “optimal” se-
quence of state transitions and VM instructions. In [13], Ogata et
al. proposed a prefetching-based technique to minimize redundant
memory accesses and the overhead of indirect branches. Gaganon
and Hendren proposed a technique called preparation sequences
employed for inlined-threading of Java interpreters in presence of
dynamic class loading, lazy class initialization and multithreading
[43].

9. CONCLUSIONS

In this paper we presented an annotation-aware JVM for Java
cards that optimizes interpreted execution of Java code using Java
bytecode SOs. The most valuable SOs are identified ahead of time
via profiling and information about SOs is conveyed to the runtime
system via annotations. Annotation attributes in the class files mark
the occurrences of valuable SOs, dispensing the expensive task of
selecting SOs at runtime, without hindering class file portability.
The low run-time overhead coupled with minimal memory require-
ments makes our annotation-based approach ideal for optimization
of JVM for low-end embedded systems.

In order to achieve high performance, the SOs can be formed
by OF patterns which cover more than 50% of the total bytecodes
executed. Therefore, optimizations that target only the top SOs
can substantially improve the interpreted execution performance.
An average speedup of 18% is obtained using an interpreter cus-
tomized with the top SOs formed by OF patterns. Greater speedups
can be achieved by statically adding to the interpreter application-
specific SOs formed by top BBs. Our results show performance
improvement of (upto) 131% obtained using SOs formed from opti-
mized BBs. As future work, we would like to extend our annotation-
based approach for compression of Java bytecodes for Java cards.
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