
Uniform object modeling methodology and
reuse of real-time system using UML

Bui Minh Duc, Professor, CSSE Dept.

Laval University, Québec, Canada
duc.bui@ift.ulaval.ca

http://www.ift.ulaval.ca/`bui

Abstract
The recent release of UML 2.0 has corrected a lot of design diffi-
culties encountered in the 1.x revisions. The biggest change which
allows UML to really attack embedded systems is the implemen-
tation of true object diagram and business process diagram. For
embedded systems, at analysis stage, use cases and business proc-
esses express system requirements. At design time, class diagrams
store operations of generic objects and object diagrams show all
instantiated objects participating in macroscopic processes. Nor-
mally, dynamic studies are supported by sequence suite, activity
and state diagrams. Unfortunately, dynamic support undergoes
only cosmetic changes. Based on UML version 2.0 diagrams,
uniform object modeling methodology shown hereafter handles
indifferently any object in the model: a user, a mechanical button
or a piece of software program. This uniform abstraction is neces-
sary to implement easily simulation and test. A design of a very
simple load elevator going through two levels with security sys-
tem is used here to illustrate the uniform process and serve as a
basic design for discussion.

Categories and Subject Descriptors
D.2.13 [Reusable software] Reuse models

Keywords: Embedded real-time systems, reactive systems,
UML design, object technology, modeling methodology, induced
energy, object message.

General Terms: Theory

1. INTRODUCTION
Complex software development would require minimum devel-
opment effort and is a fastest "time to market" design if reuse
mechanism making use of available designs and components is
planned carefully. The basic question is how to design "true" re-
usable objects. To satisfy large scale reuse of heterogeneous sys-
tems, objects must be designed uniformly across domains without
ever questioning what kind of object (mechanical, electrical, soft-
ware, biological…) we are using.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009...$5.00.

The term "object" used in this paper does not mean only "software
object" in object paradigm. Traditionally, software frontiers are
traced on the I/O interfaces as they connect computer systems to
real world. This frontier is somewhat artificial as all hard/soft
systems can be now simulated (e.g. fly simulator). A mechanical
button is replaced by a software button in a windows environ-
ment. A pressure on a mechanical button is equivalent to a click
on a software button. An electrical, biological, mechanical de-
vice… can be assimilated to objects with attributes and opera-
tions/methods. Messages are unique channels of communication
between objects and the way we interpret messages must be re-
vised.

2. BACKGROUND AND CASE STUDY

2.1 UML version 2.0
Uniform Modeling Language (UML) is an object oriented model-
ing language [1] standardized by Object Management Group
(OMG) mainly for software system development. Its development
is due to the effort of researchers and industrial partners [2] [3].
UML consists of a set of diagrams whose graphical elements rep-
resent concepts and abstractions, rules that dictate their use and
common mechanisms that enhance or extend models through
stereotypes. As a language, UML does not impose any methodol-
ogy. Embedded specialists are interested to UML [4] and real time
UML-RT [5] is a profile that extends core UML with stereotyped
active objects, called capsules, to represent system components.

2.2 Case study
Our purpose aims to illustrate the Uniform Object Modeling
Methodology of a system made of components taken from various
disciplines. Buttons, contacts sensors of the load elevator are in-
puts, power supplies of the cabin and doors of the elevator are
electrical outputs with digital commands for power on/off and
direction, the optical detector is the security element. User is bio-
logical object, buttons and sensors are mechanical objects; cabin
and doors power supplies are electrical objects and software are
computer objects. The cabin and the doors watch events on sensor
contacts to operate between two levels L0 and L1. When the cabin
reaches a level, it urges the doors to open and the doors remain
always opened. When the user gets into the cabin, he must act on
B_Close/B_Open to close/open the doors and on B_Up/B_Down
to change level. If an obstacle hinders the door during closing, the
door changes to opening. During the movement of the cabin, a
movement sensor inhibits all buttons except the Stop button. So
doing, we have most ingredients of real time and embedded sys-
tem. Hereafter, we make use of a subset of UML diagrams for the
two phases: analysis and design.

44

45

3. DESIGN WITH UNIFORM OBJECT
MODELING METHODOLOGY

3.1 Use cases in analysis phase
In the analysis phase, use cases (UC) diagram and business proc-
ess (BP) diagram [8] are used to express functional constraints of
a project and as such, they must not contain any design flavors
unless they are constraints. If reusable components are required,
they become constraints. These diagrams are invaluable tools to
understand "what to do" before starting the "how to do" design
phase. The UC diagram shown hereafter is actor-centric (actor can
be human or not).

3.2 Business Process in analysis phase
BP diagram gives new life to older bubble diagrams of functional
methodologies [6] and as such, there is a potential danger to start
a functional study. If we avoid making early designs in the re-
quirement analysis phase, BP diagram is a plus as it can nail down
all I/O and events out of a "macroscopic" process. The difference
with the functional approach relies mainly in the fact that almost
everything is object now. If data are used at this phase, they must
be assigned to existing objects at the design phase. In the require-
ment analysis, everything is not "still" object as developers work
with non object specialists at the interface of the development
process.

3.3 Design phase with sequence and interac-
tion overview diagrams
The rationale of the design phase is to get a logical definition of
all objects/classes. Class methods must be defined at such a
granularity that people involved at the implementation phase
should not have any question to ask while coding. Even private
methods must be named, though not coded. As for attributes,
things are hazier. Evident object attributes can be listed at this
design phase for good documentation and comprehension but the
full set will emerge only at the implementation phase.

As all systems are based on three principal views [7], structural,
functional and dynamic, class diagrams deal mainly with struc-
tural and functional views (definition of classes and operations
inside classes). Sequences are mainly dynamic but the object dia-
gram is hybrid. Object diagram, instance of class diagram, de-
scribes all the objects involved in a particular high level process.
Each object diagram relates a "story". The whole complex system
has a lot of stories to tell us through high-level and mostly public
operations. Each operation involves object subsets. UML 2.0 has
corrected a major deficiency of its previous 1.x versions by delet-
ing the dynamic collaboration diagram generated from a sequence
diagram and authorizing a real hybrid object diagram.

Sequence diagrams are used at the beginning of a process to iden-
tify classes, objects and operations. The main interesting addition
in the "interactions" suite in UML 2.0 was the Interaction Over-
view Diagram with graphical "fragments" to organize dynamic
sequences, to represent alternatives, cases, exceptions, etc.

In a true design, we cannot establish all the sequences because the
task is incommensurable. We need most representative sequences
to start a study but once objects/classes are identified, we can add
operations directly to classes by representing sequences "men-
tally" while reasoning.

Hereafter is a user at level 0 calling the cabin at level 1, entering
the cabin and trying to access L1 level. It is the longest sequence,
so we start with an interaction overview to identify "fragments".
We detail only the "closing doors sequence" to illustrate the pro-
cedure of identifying objects, classes and operations through se-
quences and Interaction Overview.

3.4 Design phase with state and activity dia-
grams

State and activity diagrams are used to specify algorithms. As
these diagrams take a long time to establish, they typically deter a
lot of people. We must find some means to work around the gen-
eration of algorithms. In this sense, UML 2.0 has shortcomings as
the dynamic parts only underwent cosmetic changes. In [9], some

46

efforts are done in the direction of Petri-like networks to address
the problem of designing graphical algorithms. Due to the limited
format of this paper, we cannot show them.

3.5 Design phase with Classes/Objects Dia-
gram
Opposite to database practice, classes are presented in real-time
systems without any relationship. Only heritage/derivation is
shown in a class diagram. Object diagram is more informative.
Linked objects can communicate signals and data.

4. DISCUSSIONS
In the object diagram, we can close the loop by expressing the fact
that the cabin lifts the user and the obstacle can be also his leg. All
objects in this system are modeled uniformly as software objects.
They act through messages. When the user puts his finger on the
button, he sends a message to the button and urges the button to
make a contact. The user execute an internal operation Activate-
CallButtonAtLevel0(), not represented, and the button has also an
internal service Activate(). Messages in a software program con-
vey activation signals and data through communication channels
to wake up processes, messages in non computer systems can
convey energy. Energy is then another form of data and is mostly
"induced". Roof tiles do not have energy but the wind can induce
energy to tiles so they can hurt people. The energy transmitted by
the user is sufficient to allow the button to activate itself and make
a contact. We can model easily the domino effect.

If we model a message from the button to SysCabin, we think of
interruption. We can do so but, at the implementation phase, pro-
grammers will poll the button as this process needs less hardware.
Buttons are able to give its status by transforming their mechani-
cal contacts to signal when the button is powered on. At this time,
energy is induced by the power supply. With this reasoning, we
are able to uniformly consider any mechanical, physical, biologi-
cal objects with attributes and methods.

Uniform object modeling methodology and reuse are very sensi-
tive to naming. Never name the method of the motor as "GoUp"
"GoDown". So doing, we interpret what the motor is doing in a
specific application and we destroy the reuse mechanism. In the
nature, motors "Rotate+" or "Rotate-". With a mechanical cou-
pling that we can model either, this rotational movement is trans-
formed in a specific application to translational movements to act
on doors and cabin.

Software simulation and test of real time and reactive systems can
be done with this uniform modeling since every pieces of physical
parts found along the reaction loop can now be modeled as ob-
jects. Properties of objects, structural, functional or dynamic find
their replica in attributes while processes are materialized as op-
erations. The model of communication in an object program is
demonstrated in the past [7] as a reduced model of a more general
interaction between objects; object interaction cannot be consid-
ered as simple object call in programming language but as a com-
plex sequence of object calls/exchanges of data, controls, ener-
gies.

The impact of this uniform view has considerable consequences
on the way software and models are designed with reuse in sight.
In fact, reuse patterns are not limited only on software chunks but
can now be designed as more generalized components which in-

clude, besides software, physical, electronic, mechanical, biologi-
cal, etc. parts. In this sense, the notion of components must be
revised in the future to allow more generalized reuse frameworks.

 5. CONCLUSIONS
The substance of this methodology is resumed as follows: "Uni-
form modeling to facilitate integration" and "Molding objects as
they are naturally in the nature for reuse". In reactive systems,
objects must react to stimuli and act on real world. The reaction
loop includes several objects of various nature and disciplines. A
uniform modeling concept is needed for not to change the way we
view, reason or model objects along the reactive loop. To make
objects fully reusable, the key concept is to give to objects only
natural properties in its "own domain" and never give them prop-
erties oriented towards any specific application.

In this paper, we approach a hypothetic system with UML 2.0
through a uniform object modeling methodology considering all
objects of various natures with a same view and modeling tech-
nique. The concept of message developed in object technology
can be extended to ease design of heterogeneous systems. Attrib-
utes, methods and messages are strong abstractions that govern
universe systems. We suspect that this uniform methodology can
profit to intelligent systems, problems in human sciences. Despite
its weaknesses in dynamic modeling, UML 2.0 has overcome a lot
of youth errors and turns into a more interesting tool with the
arrival of the true and expressive object diagram where we can
bind objects with associations freely interpreted as communica-
tion channels. Embedded systems can benefit from these pro-
gresses waiting for more formal methods to expressing algorithms
to terminate the object design phase.

REFERENCES
[1] Official OMG website http://www.omg.org. The current norm
of UML is 2.0. It replaces older revisions 1.x

[2] J. Rumbaugh. I. Jacobson and G. Booch. The Unified Model-
ing language User Guide, Addison-Wesley, 1998

[3] B. Selic, A generic Framework for modeling resources with
UML, IEEE Comp. Soc., June 2000, pp 64-69

[4] G. Martin, L. Lavagno, J. Louis Guérin, Embedded UML: a
merger of real-time UML. And co-design, Proceedings of CODES
2001, Copenhagen, April 2001, pp 23-28

[5] B. Selic, J. Rumbaugh, Using UML for modeling complex
real-time systems, White Paper, Rational (Object Time) 1998

[6] H. Gomaa, A software design method for real-time systems,
Comm. ACM, vol 27, No 9, Sept 1984, pp. 938-949

[7] Bui Minh Duc, Analyse et conception objet des systèmes
temps réel, second edition, Eyrolles 1998, France, ISBN 2-212-
09027-7

 [8] Official SparX Systems website
http://www.sparxsystems.com. All diagrams in this paper are
drawn with Enterprise Architect version 4.51 implementing UML
2.0

[9] Bui Minh Duc, SEN State Event Net, proposal to enrich the
arsenal of UML dynamic diagram, 2005 World Congress On
Applied Computing, Las Vegas

47

