
A GA-Based Scheduling Method for FlexRay Systems

Shan Ding, Naohiko Murakami, Hiroyuki Tomiyama and Hiroaki Takada
Graduate School of Information Science,

Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
{ding, murakami, tomiyama, hiro}@ertl.jp

ABSTRACT
An advanced communication system, the FlexRay system,
has been developed for future automotive applications. It
consists of time-triggered clusters, such as drive-by-wire in
cars, in order to meet different requirements and constraints
between various sensors, processors, and actuators. In this
paper, an approach to static scheduling for FlexRay systems
is proposed. Our experimental results show that the pro-
posed scheduling method significantly reduces up to 36.3%
of the network traffic compared with a past approach.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Real-time systems and
embedded systems; D.4.1 [Process Management]: Schedul-
ing; F.2.2 [Nonnumerical Algorithms and Problems]:
Sequencing and scheduling

General Terms
Algorithms, Theory

Keywords
distributed embedded systems, FlexRay, genetic algorithm

1. INTRODUCTION
The FlexRay system[1] is a communication system developed

for the next generations of automobiles by a consortium founded
in 2000 by BMW, DaimlerChrysler, Motorola, and Philips
Semiconductors. The core of the FlexRay system is the FlexRay
communication protocol. It has been designed for high data trans-
mission rates required by advanced automotive control systems.

The FlexRay system is a time-triggered architecture providing
a computing infrastructure for the design and implementation of
dependable distributed embedded systems. The communication
in this architecture based on a fault-tolerant time-triggered pro-
tocol.

In the FlexRay protocol, media access control is based on a
recurring communication cycle. Within one communication cycle
FlexRay offers the choice of two media access schemes. One is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05 September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

Microcontroller

CC(Communication Controller)

BG BD BG BD

Channel A

Channel B

ECU

Node 2 Node 3

Figure 1: The node architecture and dual bus topology configuration

a static time division multiple access(TDMA) scheme, and the
other is a dynamic mini-slotting based scheme. The portion of
the communication cycle where the media access is controlled via
a TDMA scheme called static segment.

In FlexRay systems, a structure used by the communication
system to exchange information within the system is called a
frame. Frame is sent when the slot number is corresponding to
frame ID. In the static segment, a periodic transmission of the
fixed length data is guaranteed. Static slot messages can be pro-
tected by Bus Guardian (BG). From above characteristics, an
application messages had better be allocated to static segments
in order to ensure that it can meet its time constraints.

For various sensors, processors, and actuators with different
execution period, it is necessary to develop an efficient scheduling
method for static segment of communication cycle in the FlexRay
system. An optimization procedure based on a Simulated An-
nealing (SA) has been proposed by Murakami et al [5]. In this
paper, an approach to static scheduling for FlexRay systems is
proposed. The advantages of GA-based approach depends heav-
ily on how well the various components of GA incorporate the
salient features of the problem under consideration. To evaluate
the effectiveness of this approach, we have chosen a representative
safety critical application to simulate as case study. Our experi-
ments show the GA can be applied to such kinds of application
to find a schedule better than SA approach.

2. SYSTEM ARCHITECTURE
The FlexRay system architectures consisting of nodes are

connected by broadcast communication channels. The FlexRay
protocol is a dual channel protocol. FlexRay systems can
be configured as single-channel or dual channel bus network, a
single-channel or dual-channel star network, or in various hybrid
combinations of bus and star topologies. Figure 1 shows one kind
of topology configuration of the communication network as a dual
bus.

In the FlexRay protocol, media access control is based on a
recurring communication cycle. Figure 2 shows one complete
instance of the communication structure of a communication
cycle. Cycle counter, the number of the current communication
cycle, ranges from zero to 63.

Because the communication channel is a broadcast channel,
a message sent by a node is received by all the other nodes.

110

Cycle0 Cycle1 Cycle2 Cycle3 Cycle4 Cycle4

Static Segment Dynamic Segment

NIT

Static Slot Dynamic Slot

Symbol
window

idle idleidleidle

t

Figure 2: The communication cycle

Node T1 T2 ...

1

MAX CYCLE(40slots 4ms)

Node 1

T11 T22T18 T19

PROCESSORS

BUSState(FlowNG, ProcessorNG, StateOK)

Data Flow (Bus)

Slot(100µsec)

10,11...Null 4,19 716

frame

.

.

.

...NULL

SlotNum*SlotSize, 4ms

T11

2

T21 T23

0 3 2 34 5

Mssage_in_same_processor

* *0 2 * ** *

Figure 3: An individual

Node can transmit only during a predetermined time interval,
so-called TDMA. In a slot, a node can send several messages
packaged in a frame. The sequence and length of the slots are
the same for all TDMA rounds. However, the length and contents
of the frames may change. Each node consists of a microcon-
troller(host), a communication controller(CC) a bus driver(BD),
and bus guardian(BG).

The periods of tasks and messages are assumed to be the value
2n(n = 0,1,2,. . .) times at FlexRay communication cycle. The
main reason for this assumption is to avoid the time violation be-
tween messages. For example, if m1 and m2 have periods of 2, 5
respectively, it can not avoid a time violation at communication
cycle. In an actual design, it is necessary to adjust the com-
munication cycle and the period of the application in FlexRay
systems.

3. PROBLEM DESCRIPTION
This paper addresses the same problem as proposed in [5]. In

order to indicate our algorithm, we give a brief description of the
problem as follows. An application consists of a set of task graphs
{Gi = (Ti, Ei) }, where Ti is a finite set of task vertices(i.e.,
nodes) , Ei is a finite set of message edges representing connetions
between these nodes. Each node Ti is allocated to a uncertain
processor, and has a known worst case execution time Ci, a period
Ti, a deadline Di. Output is a schedule comprising identical bus.

As the primary objective, we construct a schedule meeting all
deadlines of task groups and performance goals of the embedded
application. The secondary objective is that the schedule can
optimize communication buses to minmize hardware cost. Since
bin-packing problem is known as NP − hard [3], in this paper,
we propose a GA-based scheduling method.

Constraints
Response Time (RT): To the output task processes, mes-

sages are sent by the input task processes through the commu-
nication routes. RT is the time from beginning of all input task
processes that inflected by the output task processes, until end of
the output task processes.

Freshness Time (FT): Messages are sent by the input task
processes through the communication routes. FT is the time from
beginning of input task processes until the end of all output task
proceesses that be inflected by these messages.

Maximum Response Time: The maximum response time
of all input tasks processes.

Maximum Freshness Time: The maximum Freshness time
of all output tasks processes.

Based on above preliminaries, four time constraints are defined
as follows;

Response Constraint: For certain route, the maximum
response time must be less than a given time.

Generate Individual()
{
 for each edge ei in edge set Ei;
 do {
 if (two vertexes of ei in difference processors){
 Select a slot in dataflow randomly;
 while (unsatisfy contraints condition){
 Slip one slot;
 if (dataflow is enough){
 BUSState = FlowNG;
 break; }
 }
 if (satisfy contraints condition){
 Insert the edge into dataflow;
 }
 }else{
 write message_in_same_processor;
 }
 }while(Ei != φ)
 scheduling for each processor;
 }

Figure 4: Algorithm for generating an individual
t[ms]

DataFlow

Node 1

Node 2

0 2 4 6 8

T1

T3 T3’

M2

cycle[2ms] Slot Size
1ms

Figure 5: The example for calculating freshness constraint

Freshness Constraint: For certain route, the maximum fresh-
ness time must be less than a given time.

Synchronous Input Constraint: To these routes which
have the same output task, the maximum difference of feshness
time of these routes must be smaller than a given time.

Synchronous Output Constraint: To these routes which
have the same input task, the maximum difference of response
time of these routes must be smaller than a given time.

In this paper, we assume that all the constraints are equal to
deadline of task graph. Besides above time constraints, we define
another constraint by considering character of static segment.

Slot Redundancy: The number of the slot not used at the
end of the communication cycle continuously expresses the degree
of empty slots in the schedule. The larger number unused slots
is, the higher the slot redundancy is.

4. GENETIC ALGORITHM FOR
SCHEDULING PROBLEM

Our GA requires the definition of a set of genetic operations
and an evaluation function as follows:

4.1 Coding Scheduling Individual
Figure 3 shows the structure of an individual. A string is used

for showing which processor the node belongs to. The length
of this string is the number of nodes in the task graph. The
ith number in the string expresses that the ith node belongs to
processor j. Another string is used for showing the messages (i.e.,
edges) in the communication cycle. We assume that the slot size
is 32 bytes in this paper. If the communication cycle time is
∆cycle and each transmission slot time is ∆slot, the number of
slots can be calculated as ∆cycle/∆slot. As mentioned above, a
structure called frame can load messages in the dataflow (bus).
Several messages can be assembled into one frame when they are
sent by the same node and sum of their sizes is not larger than the
slot size. Several strings are prepared for scheduling of processor
to record when and how long the nodes execute. The individual
states include three states, processorNG, busNG, and stateOK.

The process of generating individual is shown in Figure 4. The
process of message transmission can be considered two portions,
i.e., send and receive. As a synchronous algorithm, the sending
node is executed before dataflow (bus) slot number(i.e., time) in
the processor which it belong to, and receiving node is executed
after dataflow (bus) slot number (i.e., time) in the processor which
it belong to. When there is no time to execute in the processor,
the individual state will become processorNG state. When the
message is transmitted in the same processor, it will not display
in the dataflow. Finally, based on the node order appeared in the
routes, we check the lost nodes in the processor strings. If there

111

Dataflow string A

Dataflow string B

Child dataflow string

8 7 6 9 0 5 4 1 2 3

5 0 1 8 4 2 6 7 3 9

8 9 5 2 3

Initial starting spot = 2

10 4 6 7

(b)

Dataflow string A 8 7 6 9 0 5 4 1 2 3

Parent A
8 7 6 9 0 5,4 1 2 3

(a)

8 7 1 2 3Null Null Null ...

Max period

7

Figure 6: The crossover operation

T1 T2

T3

T

20

T

21

T

11

T4

T5 T6

T

12

T

13

T

16

T

17

T

18

T

14

T

15

T9
T

10

T

26

T

25

T

27

F0F1

F3 F2 F5
F13 F14

F15

F16

F18

F20

F17

F22

F19

F9

F6 F7

F11F8 F10

F12

T0 T7 T8
T

19

T

22

T

23

T

24

F21

F24

F25
F26

F28
F27

F29 F30

N0 N2 N1 N1

N3 N4

N4 N5 N4 N5

N0

F4 F23

(a)

(b)
(c)

period(a) = 2ms
period(b) = 4ms period(c) = 8ms

Figure 7: A safety critical application model

are lost nodes, it is necessary to schedule the lost nodes in their
processors that they belong to. We insert lost node in the front
of the node that appears to the individual by the same route.

4.2 Generate initial generation
Individuals are generated randomly as many as population size.

The operation is performed as described elsewhere [2] in details.

4.3 Evaluation and Optimization Strategy
Our evaluation function captures the “degree of schedule” for

a certain individual. When an individual is in stateOK state,
we calculate the optimization cost value. According to definition
of RT/FT, the routes which only include same period nodes or
from longer period nodes to shorter period nodes must be cal-
culated by response constraint for measuring the synchronous in-
put/output constraints. However, when the routes is from shorter
period nodes to longer period nodes, it is necessary to use the
freshness constraint for measuring the synchronous input/output
constraints.

If the route cost is larger than deadline, we give a penalty as
the following formula.

P =
n∑

i=1

fi =

⎧⎪⎨
⎪⎩

Ri

Di
, if Ri ≤ Di

(Ri − Di)

Di
∗ α + β, if Ri > Di

fi is the cost value of ith routes, Ri is the execution time of
ith route which will be calculated by freshness time constraint or
response time constraint. Di is the deadline of the ith route. α
and β are coefficients. We set α and β to 10 and 2, respectively.

In addition to the slot redundancy, the individual fitness value
is calculated as follows,

Cost = P ∗ w1 + Nslot ∗ w2

Nslot is slot redundancy, w1 and w2 are coefficients. We set
w1 and w2 to 1 and 0.5, respectively.

Figure 5 shows a freshness time constraint calculating case.
The route can be expressed as T1 → m2 → T3. Task T1’s period
and T3’s period are 8ms and 4ms respectively. There are two

task e(µsec)
T0 150
T1 350
T2 200
T3 250
T4 300
T5 200
T6 400
T7 300
T8 350
T9 400

T10 250
T11 400
T12 300
T13 400

task e(µsec)
T14 300
T15 200
T16 400
T17 350
T18 400
T19 400
T20 300
T21 600
T22 350
T23 800
T24 300
T25 400
T26 300
T27 400

Edge Size
E0 12
E1 12
E2 20
E3 12
E4 20
E5 12
E6 12
E7 10
E8 12
E9 10

E10 10
E11 12
E12 20
E13 12
E14 12

Edge Size
E15 10
E16 12
E17 12
E18 12
E19 10
E20 12
E21 20
E22 20
E23 12
E24 20
E25 12
E26 20
E27 10
E28 22
E29 20
E30 12

Table 1: The execution time of nodes and the message sizes

Slot Edge
0 4
1 9, 13
2 3, 26
3 11, 15
4 17
5 7
6 23

Slot Edge
20 20
21 24
22 3
23 28, 30
24 null
25 7
26 null

Slot Edge
40 4
41 9, 13
42 3
43 11, 15
44 17
45 7
46 null

Slot Edge
60 20
61 null
62 3
63 null
64 null
65 7
66 null

Table 2: The network traffic of the optimum schedule

routes from input task T1 to output task T3. They are expressed
by solid lines and dotted lines. The cost values(i.e., time) of
solid lines and dotted lines are 5 and 9 respectively. As a result,
the maximum freshness time of this route is 9. The response
time constraint can be calculated similarly, but depending on the
execution timing of the input tasks instead.

4.4 Selection
As described above, all individuals in the population are sorted

out according to their fitness, so the first individual is the best
in this generation. The operation is performed as described else-
where [2] in details.

4.5 Crossover
The crossover operation is held between two parents. If the two

strings that show to which the node belongs are the same in two
individual parents, we conduct crossover operation by randomly
choose one of the three suboperations. One is merge the two
messages in one slot in child individual. The second is inserting
a message at the slot whose number that is equal to the average
value of two parents’ in child’s string. The last one as shown in
Figure 6 is to find a exchange sets in two parents and exchange
genes in the child individual.

4.6 Mutation
The exchange mutations are defined as follows,
• Search for the slots unsatisfying constraints. Suppose that

there are two messages unsatisfying constraints messagea

and messageb.
• If the period of messagea is longer than that of messageb,

then messageb occupies the slot of messagea. Messagea

must find its new slot by scanning the static segment.

If the period of messagea is shorter than that of messageb,
then messageb must find its new position by scanning the
static segment.

• If there is no slot unsatisfying constraints, randomly select
two slots in static segment, exchange them in each cycle.

112

Generation number

F
it

n
es

s
va

lu
e

Maximum number of bytes

S
lo

t
N

u
m

b
er

Processor Number

S
lo

t
N

u
m

b
er

Figure 8: The relation between the best fittness Figure 9: The relation between message Figure 10: Maximum number of processors
value and the generation number size and number of slots

Node Number

S
lo

t
N

u
m

b
er

Figure 11: Maximum number of nodes

4.7 Differentiation of the same individual
After crossover or mutation, we sort the individuals. If the

same individual is found, then we operate mutation to it in order
to generate a new different individual.

5. EXPERIMENTS
To demonstrate the effectiveness of the GA-base scheduling

algorithm, we conducted a set of experiments. We assume the
FlexRay communication protocol having a bandwidth of 250kb/s
and a bandwidth of 100µsec for the transmission slots. In this
paper, we assume that the deadline of the node and edge is equal
to the period of the node and edge. The developed GA is imple-
mented using C language on the Linux.

A safety critical application with hard real-time constraints,
to be implemented on a FlexRay based architecture, includes a
vehicle adaptive cruise controller (ACC), electric power steering
(EPS), and traction control (TC) as detailed in [4]. Considering
the synchronous input/output constraints, we model the applica-
tion as Figure 7. Task groups a, b and c have periods of 2ms,
4ms and 8ms, respectively. The Edge F4 and F23 have periods of
4ms, 8ms respectively. There are six processors available to allo-
cate the nodes in this application. In Figure 7, the nodes labeled
Ni, means that this node is allocated to ith processor. The other
nodes can be allocated to any processor freely.

Table 1 summarizes the execution time of nodes and the var-
ious message attributes affecting network topology generation.
The names of nodes and edges are in column “task” and column
“Edge”, respectively. The column “e(µsec)” and column “Size”
show the execution time (µsec) of nodes and message size (in
byte) of edge, respectively.

Parameters for GA were set as follows. Population size was 28,
generation number was 3000, optimum value was 17.09 (taking
1888 seconds of optimization time). Table 2 shows the network
traffic of an optimum schedule. The Relationship between the
best fitness value of generation and generation number is shown
Figure 8.

In table 2, column “Slot” and column “Edge” show the slot
number and edge name. Null means there is no edge in the
slot. Table 2 shows the minimum number of slots can be used
for schedule is 7. In [5], the minimum number of slot can be used
for schedule was 11. This experimental result shows that the

proposed scheduling method significantly reduces up to 36.3% of
the network traffic compared with the SA approach. This sched-
ule also can meet all deadlines of the task group a, b and c.

Next, we tested our algorithm with respect to the maximum
message size allowed. For the results depicted in Figure 9 we have
assumed the maximum message size as 5, 8, 16 and 32 bytes. Fig-
ure 9 shows that the number of slots used for schedule decreases
with the decrease of the maximum number of bytes in a message.

We changed the graph for general experimental purpose. We
considered four graph architectures consisting of 15, 20, 25, and
30 nodes. Execution time, periods and message size were assigned
randomly within certain intervals. Figure 11 shows the number
of slots used for schedule satisfying the constraints and deadlines.
Good results were obtained by both algorithms. However, GA
used a fewer number of slots than SA.

Moreover, we have assumed that 28 nodes were allocated to 4,
5, 6, 7 and 8 processors in a graph respectively. Figure 10 shows
that GA is better than SA [5] at almost all kind of conditions.
Experimental results show that our developed method is able to
efficiently produce good quality results.

6. CONCLUDING REMARKS
In this paper, an approach to static scheduling for FlexRay sys-

tems is proposed. Some genetic operations are proposed in the
GA. The optimization is performed on reducing the network traf-
fic while meeting deadlines and satisfying the constraints which
have been identified. A safety critical application that includes
ACC, EPS and TC, has been studied in this paper. Our exper-
imental results show that the proposed scheduling method sig-
nificantly reduces up to 36.3% of the network traffic compared
with a past approach. The effectiveness of the developed GA is
confirmed by the experiments.

ACKNOWLEDGMENTS
This work is partially supported by JSPS postdoctoral fellowship
for foreign researchers (No. P04284). The authors are also grate-
ful to the industrial partners at Toyota Motor Corporation for
their valuable feedback during this work.

7. REFERENCES
[1] J.Berwanger et al. FlexRay - the communication system for

advanced automotive control systems. In Proc. SAE World
Congress, Paper: 2001–01–0676, 2001.

[2] S. Ding and N. Ishii. Determining feature weights of
pattern classification by using rough genetic algorithm with
fuzzy similarity measure. Journal of Japan Society for
Fuzzy Theory and Systems, 14(3):310-319 2002.

[3] D. S. Johnson. Fast algorithm for bin packing. Journal
Computer and System Sciences, 3(2):272–314, 1974.

[4] N. Kandasamy, J. P. Hayes and B. T. Murray. Dependable
communication synthesis for distributed embedded systems.
In Int’l Conf. on SAFECOMP, LNCS 2788, pp.275–288.
Sept. 2003.

[5] N. Murakami, S. Iiyama, H. Takada, M. Kido and
I. Hosotani. A static scheduling method for distributed
automotive control systems. IPSJ SIG Technical Reports,
3(27): 2005. (in Japanese).

113

