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ABSTRACT 
Performance is an important quality attribute that needs to be 
planned and managed proactively. Abstract models of the system 
are not very useful if they do not produce reasonably accurate 
metrics. Detailed models are time consuming and expensive to 
build as well as to simulate. In order to strike a right balance, a 
framework is proposed in this paper that takes advantage of the 
flexibility of abstract modeling and intricacies of detailed 
modeling. Performance is modeled and verified per use case using 
a hierarchical queuing model of the system. Each component job 
is represented through characterization functions and service 
requests. Characterization functions may be parametric regression 
models derived from job measurements on system level model. A 
co-design framework is used to simulate and measure the 
performance of software components. The use case simulator 
analyzes the performance and verifies the use case requirements. 

Categories and Subject Descriptors 
D.4.8 [Performance]: Measurements, modeling and prediction, 
queuing theory, simulation 

I.6.4 [Simulation and Modeling]: Model validation and analysis, 
model development, simulation output analysis 

General Terms 
Measurement, performance and verification.   

Keywords 
Performance analysis, system level modeling, use case 
verification. 

1. INTRODUCTION 
The overall performance of a system is dependent on both the 
hardware and the software architecture. The processor speed, bus 

speed, cache configuration, number of processors, type of 
processors etc., determine the hardware configuration and in turn 
contribute to the system performance. The software component is 
like a workload generator to the hardware elements.  Algorithmic 
complexity of the software component, interdependencies 
between components, task structure, inter-task communication, 
event handling etc, contribute to the performance of software.  
Software tasks that need faster processing can probably meet their 
performance needs when they are embedded in hardware. For 
example, some complex video/audio encoding and decoding 
algorithms are processed in hardware in order to enhance 
performance. To accommodate changes in hardware 
configurations, the software is built in layers. Therefore, higher-
level applications layers are unaffected by minor hardware 
changes. This makes the software more portable across platforms. 
For example, on a mobile phone the core software for handling 
call origination and terminations are not frequently modified 
since the protocol requirements are seldom changed. Whereas the 
hardware platform changes significantly over a period of time to 
provide improved performance and to accommodate advanced 
features such as support for color display, image processing for 
camera phones, video streaming and voice recording.  
It is a challenge for system designers to decide the architectural 
enhancements that are required to support a future application. 
For example: how to plan the system architecture of a mobile 
device that support about 10 times higher data rate in the next 
four years. This kind of decision-making involves in-depth 
analysis of various system level elements arranged in different 
configuration.  There are several interesting situations. First, the 
software that is running on existing platform should run at least as 
well on the new platform. Second, the hardware platform should 
support the requirements of future applications. For example, the 
3GPP quality of service requirement for audio streaming 
downlink needs at least a guaranteed downlink bit rate of 72 
Kbps. The maximum bit rate is product specific and can range 
from 128 Kbps to 384 Kbps. If a product needs to support such 
high bit rates in the future, then its hardware should be capable of 
handling these requirements. And finally, the application 
demands might become higher due to which there might be 
changes in software as well as hardware. Performance of a system 
needs to be planned ahead of time based on several uncertainties 
and yet the estimates should be as close to reality as possible. 
This paper proposes a model based performance estimation 
approach that uses modular, composable, and reusable component 
job models. Model characterizations are derived based on 
measurements obtained from hardware system models. 
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Section 2 presents a brief description of performance use cases. 
The modeling framework is explained in section 3. Use case 
model is outlined in section 4 with components and jobs further 
discussed in section 5. Section 6 describes job characterization 
and its dependencies on the execution paths, which is elaborated 
in sections 7 and 8. Section 9 shows how information for 
modeling is gathered and section 10 touches upon specifics of 
component context setup. Section 11 describes how 
characterizations are built from measurements. All these pieces 
are used in section 12 to analyze and verify the use cases.  

2. PERFORMANCE CRITICAL USE 
CASES 
 

Mobile Phone 
 Speech 

Call 
 

Play 
Music 

 

File 
Transfer 

 

 
Figure 1. A sample mobile phone performance use case  

There are several use cases in a system, a subset of which is 
performance critical [1]. Performance critical use cases are those 
that produce heavy demand for system resources and have tight 
timing constraints. Such use cases may partially be supported by 
existing systems or may be in the road map for future systems. 
These use cases are driven by user requirements and contribute to 
the success of the product. In order to satisfy these requirements, 
performance of the system needs to be improved both in terms of 
software and hardware. Often performance solutions are not very 
generic but are tied to specific use cases. Choosing the right use 
case and concentrating on the requirement will facilitate an 
efficient problem analysis. 
A simple use case on a mobile phone is illustrated in Figure 1. 
The user may invoke several system operations individually or 
simultaneously as shown in Figure 2.  For example, while the user 
has an active speech call he may also be trying to backup some 
pictures that were captured using a mobile phone during a recent 
trip. We have at least two simultaneous scenarios: the speech call 
and the file transfer. While the file transfer is considered a 
background process, the speech call is an active foreground 
process that usually has a higher priority. The speech call will 
have load on both the application processor and the DSP. On the 
other hand, the file transfer scenario will have activity only on the 
application processor. In order to have good end user 
performance the system should support both scenarios without 
any distortion in voice or any delay in file transfers. Also, the file 
can be transferred through different physical medium, like IR, 
Bluetooth, serial cable, USB, etc. Depending on the medium, 
different performance constraints may be attached to the scenario. 
The goal of use case verification is to ensure that the model of 

system satisfies the use case requirements and any associated 
constraints. 

MMC External DeviceMobile Phone

connect_via_USB()

transfer_data()

check_mmc_status()

mmc_full()

data_upload()

transfer_complete()

{  < 5 min}

User

speech_call()

check_mmc()

transfer_content_via_USB()

play_music()

 
 Figure 2. A scenario illustrating file transfer 

3. MODELING FRAMEWORK 
Product visionaries foresee the features supported by future 
products and outline certain product requirements. System 
designers use these requirements to plan the platform architecture. 
Such architectural planning could happen at least three to four 
years before the product program starts developing the software 
and proceeds to manufacture the final product. There is usually a 
big gap between the time an idea is born and the time when the 
product hits the market. Any performance defects found on the 
target are very expensive to fix. The model based performance 
estimation provides a co-design framework through which 
performance of the system can be estimated earlier on in the life 
cycle [2]. Design alternatives may be analyzed and fixed to evade 
any costly mistakes. Models may be verified based on the use 
case with reasonable accuracy to ascertain that important 
performance requirements are met. The level of abstraction is 
very important in order to obtain practical results. If we use very 
abstract models then the estimates may not be very realistic. On 
the other hand, if we try to perform detailed simulation it might 
be overwhelming and expensive. The proposed approach is an 
intermediate solution that uses an abstract modeling framework, 
like LQN [3], but obtains parametric service time metrics through 
measurements on system models. The traditional co-design 
approach of executing the software on top of system model 
involves time-consuming simulation.  
Our goal is to analyze performance characteristics, such as 
throughput and response latencies, for various use cases on the 
platforms that currently do not exist in hardware. However, we 
assume that software for these platforms exists and is executable 
on the hardware simulators. In such a situation, the 
straightforward solution would be to execute the software on the 
simulator and get the performance results from the execution. 
There are several issues with this approach. The most important 
one is that the hardware simulators are slow.  For example, 
ARM926 processor with 211.2 MHz clock frequency and 
effective CPI of 3.94 (with caches) provides an effective MIPS of 
53.63. The system level simulated MIPS on commercial tools that 
run cycle-accurate simulation ranges between 0.05 to 0.2 based 
on the level of detail, number of modules in the system and the 
processing capacity of the host system. For a reasonably small 
system model that includes an ARM9 CPU, memory system and 
AMBA bus the simulation running on a Pentium III 1 GHz 
machine has approximate slowdown factor in the range of 250 to 
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1000 compared to the actual target. This means that in the worst 
case the simulator can take approximately 24 hours to complete a 
use case that only takes about 86.4 s (1.44 min) on real hardware. 
This is unacceptable for mobile device systems, since the 
initialization process itself could take between 40-80 s and the 
actual use case may be even longer. Extended simulation lengths 
will delay the system validation process and may hinder the 
capabilities to experiment variations within reasonable time [4,5]. 
 
A related issue is that we need to collect and analyze performance 
metrics (throughput and latencies) not just for a single execution 
but also for a large number of diverse executions that may differ 
in input parameters, concurrently executing use cases, scheduling 
mechanisms, hardware characteristics and so on. It is a laborious 
and time-consuming task to gather all this information. Finally, 
without a model it is impossible to understand the performance 
metrics of software components and hardware resources that are 
parts of the use case. 
 
Therefore, we were looking for approaches to lower the execution 
time requirements and yet to gather large amounts of reliable 
information. For this we decided to apply a well-known principle 
of “divide and conquer”, modularity and reuse. First of all, we 
decided to execute only single use cases on a system level 
simulator and analyze multiple parallel use cases on LQN-like 
use-case simulator. Such simulator would take as an input use 
case models and provide capability to schedule single or parallel 
use case execution generating performance metrics (throughput 
and latencies) as an output. 
 
Furthermore, we decided to modularize the use cases themselves. 
While the whole use case sometimes can be parameterized and 
reused, it is usually composed from various software components. 
Executions of these software components – these executions we 
call jobs - can be parameterized and reused more naturally. For 
example, the use case of file transfer via Bluetooth could be 
parameterized by the file size. However, a more precise approach 
would be to split it into the file reading component, whose jobs 
can be parameterized by the file size and the drive properties. 
Similarly, the Bluetooth transfer component is parameterized by 
the file size and transfer speed. It is possible to look at even finer 
grain at initialization of Bluetooth, initialization of file server, file 
read, file transfer and the connection teardown jobs. These jobs 
would be likely to be reused in other use cases, such as file 
transfer over USB or audio listening over Bluetooth. Also, from 
software engineering point of view file server and Bluetooth 
components are independently reusable and changeable. 
Separating use case into components requires minimal software 
reexecution on hardware simulator if certain component behavior 
changes. 

4. USE CASE MODEL 
As mentioned in Section 3, use case is composed from reusable 
component jobs. Here we provide some more details about this 
composition. 
Component job is an execution of a software component. A 
concrete job can be characterized by its input, output, new system 
state, service requests to other components and resource 
consumption. However, we are interested not in a single job of a 
component, but in a collection of same component jobs with 
different inputs, initial and final states. Such job collection can be 

represented as a parameterized job that is characterized by a state 
transfer function. This function produces a new global state based 
on a job’s input and global state, resource usage function that 
produces the resource usage of the job, and service request 
function that produces service requests to other jobs (Figure 3).  

Component 1
input

resource_useC1 (input, state)
statenew = state_transferC1 (input, state)

service_requestsC1 (input, state)

 
Figure 3: Component job and its functions 

This is a rather abstract representation, since, for example, 
resource usage function can be a multi-function that produces 
execution time, memory consumption, energy consumption, and 
so on. The functions themselves could be described in various 
ways. A function could be represented as a table, where each row 
corresponds to specific input and shows what is the output of the 
function. A function could be a regression model – a linear or 
non-linear dependency of the output on the input parameters. 
Finally, a function could be a simple program mapping input to 
the output. Software components may differ a lot in their transfer 
functions. Some software, such as simple filters, protocols and 
codecs may have simple linear transfer functions. Other software 
such as complex graphical converter may have only complex 
transfer functions that are impossible to simplify without 
unacceptable loss of precision and may be difficult to extract 
during reverse engineering.  
Service request multi-function produces the service requests to 
other jobs including the timing of such requests, input parameters, 
synchronous or asynchronous nature and so on. If we look at the 
jobs as nodes and service requests as arcs, we obtain job 
dependency graph that represents causal and temporal 
dependencies of jobs in a use case (Figure 4 shows jobs of two 
components C1 and C2). 

Time

C1

C2

C1

Job J1

Job J2

 
Figure 4. Job dependency graph 

In reality, job multi functions are probably best represented as an 
abstract algorithm in pseudocode program indicating resource 
consumption and service requests to other jobs. However, other 
forms of representation and visualization of multi functions are 
possible and useful.  
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5. COMPONENTS AND JOBS 
As discussed in section 4, use case is composed from component 
jobs. However, component identification is a complex problem. 
We consciously delay our definition of a component, since 
components can be defined and identified in various ways. Each 
such way would lead to different components and their models. If 
components are not identified at a correct granularity, it may be 
difficult to discover the job transfer functions or there may not be 
a good transfer function at all.  
Job transfer functions depend on the modeling approximation. 
Totally exact representation of any job for given input and state is 
the component execution itself, i.e. transfer function of a job is 
the execution of the component. If we want to obtain a simpler 
transfer function, we have to abstract and lose the precision. This 
loss of precision – and attempts to achieve the highest precision 
with the “simplest” representation – is intertwined with the 
identification of components leading to complex 
multidimensional optimization problem that could be informally 
expressed as follows: 

Problem 1. Given a software system, find decomposition into 
components C1… Cn  such that the approximation of component 
job transfer function is minimized using some measure (min 
totali=1…n (ApproximationMeasure(Ci, transferCi()))) and total 
transfer function complexity is minimized using some measure 
(min totali=1,…n Complexity (transferCi())). 
This problem is practically unsolvable, since the exploration 
space for decompositions and transfer functions are enormous.   
As we mentioned, the components should be software 
components from the software engineering point of view, i.e. they 
should be separable, reusable software entities with clear 
semantics. Finer granularity components can improve the job 
approximation precision, however, they can lead to high 
complexity and very low reusability of components. Therefore 
decisions on component identification have to be balanced.  
Component identification is easier for the software designers, 
since they usually know the “componentization” of their software 
and even possibly relevant job transfer functions. On the other 
hand, component view of performance engineers may not be the 
same as the component view of software designers. Component 
identification after system creation by someone performing 
system analysis is related to software reverse engineering, since 
components need to be created without having the knowledge of 
the original designer and architect. This can be achieved through 
the software reverse engineering techniques including static and 
dynamic system analysis, static call tree analysis, dynamic tracing 
and trace analysis [6,7,8]. 
To achieve simple and yet useful division into components, we 
propose to use as components the smallest schedulable entities. In 
our case, these entities correspond to RunL() method executions 
in active objects in Symbian operating system [9]. 
Most embedded operating systems support execution of multiple 
tasks and also provide mechanisms to switch between tasks. Such 
kernels usually operate in pre-emptive multitasking mode. Which 
means higher priority tasks can preempt lower priority tasks and 
switch the context. Symbian OS, one of the most popular 
operating systems on mobile devices, supports co-operative 
multitasking in addition to the conventional pre-emptive 
multitasking. This is implemented at the object level. Multiple 

objects can remain active and be scheduled to execute based on 
some event occurrence. This mechanism facilitates scheduling 
multiple objects and asynchronous event communication without 
the context-switching overhead. Cooperative multitasking 
between active objects a1, a2, a3 etc., is shown in Figure 5. In this 
illustration t1, t2 and t3 are three different tasks. All the active 
objects except a5 run to completion. Active object a5 is 
preempted due to task switch from t2 to t3. The active object a5 
resumes operation after completion of active object a6 in task t3.  

a1 a2 

a3 a4 

a6 

  a7 

t1 

t2 

t3 

a5 

 
Figure 5. Active object and task scheduling 

When an event is dispatched to an active object, a special 
Symbian active object method called RunL() is executed. This 
method executes to completion without being rescheduled by the 
active object scheduler. This method may, however, be 
interrupted during task switching. We define component job as a 
RunL() method execution. The RunL() method may contain other 
function calls. These calls belong to the same job as the RunL() 
itself. 
Active object in one task may communicate with active object in 
another task using a SendReceive() method. 

 void CMyAO::RunL() 
{ 
 foo1(); 
 foo2(); 
 foo3(); 
} 
 
void foo2() 
{ 
 bar1(); 
 SendReceive(); 
 bar2(); 
} 
 

SendReceive() is a Symbian API defined in RSessionBase class 
and it may be used to send asynchronous or synchronous 
messages. When this function is invoked using the 
TRequestStatus parameter, it sends a message to the server and 
waits asynchronously for a reply. If this parameter is not used, the 
message is passed synchronously. When a SendReceive() happens 
synchronously and the message is sent to another thread, the 
originating thread is put to a wait state until the operation is 
completed. The function resumes when the called thread 
completes the function and releases control. Message passing 
happens through a pointer to the message array, which has four 
32-bit parameters on the client address space into which the 
server can read or write data. The execution path in the client 
function after the SendReceive() call may depend on the data 
received from the server. SendReceive() calls correspond to 
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service requests in our job description. The called entities are 
themselves component jobs. 
Currently we use active object execution within thread context as 
a boundary condition for a component job. In general, there can 
be several other conditions that mark the boundary, such as 
invocation or loading of methods from dynamically linked 
library, switch to processing in hardware or peripherals, 
input/output, and interrupts. 

6. JOB CHARACTERIZATION 
Although the proposed correspondence between RunL() methods 
and jobs seems to be straightforward and intuitive, it is not as 
simple as it appears.  

void CSimpleAO::RunL() 
{ 
 x = obj->simpleCall(); 
 iStatus = x; 
} 

 
In simple RunL() methods the execution is linear and the job 
characterization in terms of resources is trivial. In general though, 
there may be many execution paths through the RunL(): 

void CStateMachineAO::RunL() 
{ 
 switch(event) 
 { 
  case 1: callFoo1();break; 
  case 2: callFoo2();break; 
  default: callInvalid(); 
 } 
} 
 

An active object may implement a state machine within RunL() 
that maintains various states of the object and uses the events as 
triggers to transition from one state to another. A switch statement 
on the event is sufficient to structure the states. Because of the 
conditional constructs, state machines have multiple execution 
paths. In this case, the job characterization may be quite complex 
and should represent the whole state machine. 
When RunL() calls SendReceive() methods, these methods may 
return information affecting further control flow in RunL(). Such 
dependencies have to be reflected in the job transfer functions. 
In general, the characterization of jobs depends on the number of 
execution paths in a component. 

7. EXECUTION PATHS 
The execution path is defined as a sequence or control path 
encountered during a component execution. Component may 
contain assignment operations, control operations and function 
calls. Component may have numerous execution paths each 
uniquely distinguished by system state or input parameters.  
Some components may have very few and very simple execution 
paths; others may have very many and complicated paths. The 
complexity of a RunL() method varies from one active object to 
another. For example, a simple RunL() may be as illustrated 
below: 

void CHelloWorld::RunL() 
{ 
 iEnv->InfoMsg( 

R_ACTIVEHELLO_HELLO_WORLD); 
} 

On the other hand, the server that handles all window 
management events involves sophisticated processing that 
invokes many functions as shown in the call stack below: 

CCoeEnv::RunL() 
CQikAppUi::HandleWsEventL( 

const TWsEvent &, CCoeControl *) 
CEikAppUi::HandleWsEventL( 

const TWsEvent &, CCoeControl *) 
CCoAppUi::HandleWsEventL( 

const TWsEvent &, CCoeControl *) 
CCoeControl::ProcessPointerEventL( 

const TpointerEvent &) 
CEikMenuPane::HandlePointerEventL( 

const TpointerEvent &) 
CEikMenuPane::ReportSelectionMadeL() 
CEikMenuPane::ProcessCommandToAllObserversL 

(int) 
CQikAppUi::ProcessCommandL(int) 
CQHelloGuiAppUi::HandleCommand(int) 

7.1 Simple Components  
For simple components it is easy to find all execution paths. If a 
function does not call other functions and if the number of 
alternative paths in the function is easily determinable using the 
conditional statements in the function, then it is simple to count 
the number of the execution paths. 
 

void setX(int y) 

{ 

 class_attribute_x = y; 

} 

 

The above function for example, is a basic helper function with 
some assignment statements. It may also include some basic 
arithmetic calculations. These patterns are commonly encountered 
in getter/setter functions of a class or some conversion functions. 
There is only one execution path in this function and it is pretty 
straightforward to capture this. These functions are considered to 
be end nodes as they do not invoke other functions and the data 
flow ends here. Transfer function of such component jobs is also 
simple, since they usually do not depend on external parameters. 

 1=d  
where 

  d  is the number of execution paths 

Components with conditional statements have multiple alternative 
paths. One or more parameters may be responsible for separate 
paths during program execution.  
 

void setMenu(int selection) 
{ 

 switch(selection) 

 { 

 case 1: choice = voiceCall; break; 

 case 2: choice = sms; break; 

 case 3: choice = calendar; break; 

 default: choice = browser; 

 } 

} 
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Based on the function parameter there are four possible paths in 
the above function. Each path does some operation and 
terminates. In general, the number of execution paths is equal to 
the number of conditional branches that exists in the function. 
Conditional branches are due to language constructs like for, 
while, if, switch, #ifdef etc.  

 cbd =
 

where  

 cb  is the number of conditional branches 

Loop structures with fixed iterations to perform some operation 
are deterministic. Even if the loop has variable iterations, it is still 
executed in a single execution path. However, if the iterator is not 
initialized within the loop statement there can be at least two 
distinct execution paths based on the value of the iterator. 

 
int multiPathLoop(int iterator) 

{ 

 int i = iterator; 

 for(;i< 1000; i++) 

 { 

  x = x*i; 

 } 

 return x; 

} 

 

Clearly there are two paths, in the above function, based on the 
value of the iterator. One path is covered within the loop if the 
iterator is less than 1000 and the loop is skipped if the iterator is 
greater than or equal to 1000. Nested loops are also similar. If the 
iterators are initialized then we will have only one execution path, 
otherwise each nesting level will result in branches and hence we 
will have multiple execution paths. In general, a loop structure 
will result in one execution path and may occasionally be two if 
the iterators are not initialized.  

 
∑
=

+=
ni

uild
..0

)1(
 

where 

 1=uil  if the ith loop has un-initialized iterator  

 0=uil  otherwise 

 n is the number of loops 

7.2 Complex Components 
Some components are more complex than the components above. 
The number of execution paths can get really large and difficult 
to determine as the dependency of a component on the program 
state and parameters increase. In general, the execution path is 
complex if the number of branch choices is not deterministic. 
 
 
 

int loopWithConditions() 

{ 

 int x = 1; 

 for(int i = 1 ;i< 1000; i++) 

 { 

  y = generateNewValue(); 

  if(y< 50) 

{  

   x = x+i; 

  } 

  else  

  { 

   x = x – i; 

  } 

 } 

 return x; 

} 

 
The function above has both loop structure and conditional 
statements. Execution of the section of code inside the loop 
during each iteration is dependent on the value returned by the 
function generateNewValue(). Therefore, during each iteration 

one of the possible cib
 paths within the loop will be covered.  

 
∑
=

+=
ni

iui yld
..0

)(
 

ix
cii by )(=

when cib
> 0 

1=iy
 when cib

= 0 
where 

1=uil  if the ith loop has un-initialized iterator  

 0=uil  otherwise 

ix
is the number of iterations in ith loop 

cib
is the number of conditional branches within ith 

loop 
 n is the number of loops 
 

This is a polynomial equation and the number of the execution 

paths could get very large with larger values of ix
. It is therefore 

not practical to find all execution paths for this component. This 
situation may happen under the following conditions: 

• the variables used in the conditional statement is 
modified due to function returns and have the possibility 
of varying during each iteration. 
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• the variables used in the conditional statement are shared 
variable that can be modified by other concurrent 
threads. 

int loopWithBreaks() 

{ 

 int x = 1; 

 for(int i = 1 ;i< 1000; i++) 

 { 

  y = generateNewValue(); 

  if(y< 50) 

{  

   x = x+i; 

  } 

  else if(y == 75) 

  { 

   break; 

  } 

 } 

 return x; 

} 

Break within a loop can increase the complexity of the execution 
path. As illustrated in the function above, during each iteration of 
the loop one out of all the possible conditional branches is 
executed. A break statement may occur in one or more of the 
conditional branches, which causes an exit from the loop. If there 

are cib
conditional branches and bib

branches with breaks in the 
ith loop then: 

 cibibi bbp /=  

 where bip
is the probability of traversing the branches 

with breaks in ith loop 
If the variables on conditional statements are changing during 

each iteration, then the situation becomes complex and can only 
be dealt per use case. 

8. JOB CHARACTERIZATION 
REVISITED 
As shown in Section 7, component jobs may be very complicated 
and the number of component execution paths could be unknown 
beforehand. How can we then characterize component jobs? 

First of all, we can look only at a subset dd p ⊂  

 where pd is the performance execution paths 

The performance execution paths are a subset of all the execution 
paths that are interesting from performance point of view. Certain 
execution paths are not very interesting from performance 
perspective since they only perform few basic operations and 
their resource consumption is not very significant. On the other 
hand, some execution paths that are parts of the performance use 
case involve intense processing. Only the sections of the 
component code that generate significant resource load during the 
use case are important to consider in performance modeling with 

reasonable approximation. The relevant code sections could be 
extracted from code coverage information during execution. 
Also if the number of component execution paths is large and 
difficult to calculate, an approximate characterization functions 
could be used. Models are not intended to capture all the 
implementation details. Instead we attempt to capture only the 
characteristics of the component. The characteristics may be 
represented as a simple linear regression equation or may be 
derived from a complex vector table indexed by some input 
parameter. This method of associating a characteristic function 
that generates workload to resources and input to other 
components is more refined than specifying numeric values to 
service time parameter, as in LQN models. 

9. INFORMATION GATHERING  
A large amount of information can be gathered for component job 
characterization from software executions on a system level 
simulator. Component execution paths, their service requests and 
resource requirements can be gathered by executing varied use 
cases.  
Measurement is done by loading the executable component image 
on system level environment that comprises of various system 
elements like ARM, AMBA, memory, peripherals etc., assembled 
to form the target platform [10,11]. 

M C U  
 

D SP  
 

P er ip h er a l  B u s 

 B u s  

M 1  M 2  M 3  M 4  

P 1  P 2  P 3  P 4  

 
Figure 6. Platform model of mobile device 

The software build is prepared for execution on a simulated 
environment. During the porting process software changes are 
done to adapt the implementation to system level environment 
and to ensure successful execution of software on the system 
level platform model.  Software compiled for a specific processor 
may then be loaded on the processor model. The system level 
model is composed of various SystemC modules representing 
hardware elements. The model is a hierarchical composition of 
various basic system elements. As shown in Figure 6, a typical 
mobile device platform has an MCU for application processing 
and a DSP for signal processing. There are interfaces to RAM, 
ROM, Flash memory etc., through high-speed bus. Peripherals 
are attached to peripheral bus. Using SystemC, a library of 
various system elements is created with reasonable behavioral 
accuracy. However, for complex elements, like the processor, IP 
models may be purchased and integrated into the design. For 
example, ARM provides cycle-accurate SystemC models of 
ARM9 processor family that are very close approximations to 
actual device behavior. Transaction level models are high-level 
SystemC simulation models that are used to describe hardware. 
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At this level, data transfers are modeled as transactions. System 
level modeling activity includes architecture modeling, workload 
generation, execution of software on process models, and flow of 
data to other system elements. Appropriate monitors are inserted 
to collect performance data during simulation. 
System level models are developed in order to facilitate execution 
of the software on a platform that may not be yet available as 
hardware implementation. The system simulation environment 
aids in monitoring the service request and resource usage. By 
executing the components on such models the actual resource 
usage may be captured by logging the simulation cycles. 
Monitoring the input and output parameters of a component 
during execution assists in characterizing the component. The 
process of using measured performance data from simulated 
target environment to characterize component offers realistic and 
practical parameter values for components. 
Information gathering can be done by executing the whole use 
case. Such approach may take a lot of simulation time on 
SystemC simulator. We have also considered an approach that 
would extract components out of the software system and execute 
them in separation. 
Components are extracted by monitoring their communication 
with other components, via traces collected during use case 
execution, determining component boundaries and then compiling 
the extracted components separately to execute on the system 
model.  
The process of component extraction is currently manual. We are 
developing techniques to automate this process.  

10. CONTEXT OF COMPONENT  
For a software component to execute in isolation, certain pre-
conditions need to be met. These pre-conditions are referred to as 
context of the component. It can also be viewed as the state of the 
hardware and software required for execution of the software 
component. It is required to capture the context in order to 
facilitate execution of single component or a set of related 
components in isolation.  
The context of the component can be captured by using the trace 
information obtained during scenario execution and by 
checkpointing techniques. 
 

void NewObject::myContext() 

{ 

 StateType x; 

 x = iMyObj->GetState(); 

 switch(x) 

 { 

 case 1: anotherFunction(); break; 

 case 2: … 

 default: 

 } 

} 

 

While executing a software component, the section of code may 
assume that some of the objects that are involved are already 
created and initialized. For example, the function above assumes 

that attribute iMyObj is already created and initialized. In order to 
execute this function an object of type NewObject needs to be 
created and the attribute should be initialized properly. Also, 
functions that are called from this component could expect certain 
variable initializations that need to be satisfied in order to 
successfully execute. When isolating the component, the object 
initializations need to be programmed in order to obtain an 
executable component.  
In addition to the data and control logic of the function, the value 
returned by a function depends on the parameters that are 
supplied to the function, the attribute initialization, values 
returned from other functions etc. During a use case execution 
these values are captured via instrumentation and provided as 
input during component execution. If it is not possible to extract 
these values then estimated values are used during simulation. 
The event scheduler queues all the events and processes them one 
at a time. In Symbian, the active scheduler processes one event at 
a time based on its priority. If the component under consideration 
is part of a state machine, then based on the events that occurred 
in the past the system will advance to a specific state. In the 
source code, the state information is maintained in a state 
variable. To recreate the context, the component should be 
brought to appropriate state by initializing the respective state 
variables. 
If a software segment is communicating with other threads then 
there will be context switches between threads and some 
information may be exchanged between threads. There can be 
message exchanges of type Send() or SendReceive() that may be 
synchronous or asynchronous. However, if a component is 
executing in isolation, the delays due to inter-thread 
communication will not be accounted for. This is addressed by 
the scheduling mechanism in the use case simulator. 
Every software component has some dependency on certain 
hardware elements. The state of the bus, memory and other 
peripherals during the execution of the component is initialized as 
per the bootstrap and hardware abstraction layer specifications. 
Cache initializations are not trivial and can only be done with 
approximation by capturing average behavior over several 
simulation replications. 
Capturing component context and execution of component in 
isolation is a complex task that we have not solved yet. Some 
work on this has been done for Java in testing community [12,13]. 
Context is specific to a use case and a components execution 
state. It is therefore not reusable across multiple use cases. 

11. FROM MEASUREMENTS TO 
CHARACTERIZATIONS 
The measurements of various use case scenarios on the system 
level model provide information for constructing or validating the 
characterizations of component jobs. One such characterization 
could be a parameterized regression model [4,14]. For example: 
the processor load due to window management thread during an 
image loading process was instrumented by inserting appropriate 
monitor points and the experiment was replicated multiple times. 
Table 1, illustrates the data that was captured during the 
experiment. In table 1, X represents image size in kilobytes and Y 
represents service time in seconds. 
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Table 1. Measured service time for image loading 
X Y SQR(X) X*Y 

1.413 0.074485 1.996569 0.105247 

4.079 0.074396 16.63824 0.303461 

28.411 0.075843 807.1849 2.154775 

113.385 0.076501 12856.16 8.674066 

480.058 0.07887 230455.7 37.86217 

627.346 0.380 244137.7 49.09972 

 
The regression parameters are estimated as follows: 
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The derived regression equation is:  
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Figure 7. Service time estimates for image loading 

 
The above Figure 7 shows the measured service time of a window 
management component job and its corresponding regression 
estimate. The measured values show linear characteristics and the 
estimated curve is a very close approximation of realistic values. 

12. MODEL ANALYSIS 
Once we have models for all jobs in a use case, it is possible to 
analyze the system performance by executing the use case model 
on the use case simulator. In the use case simulator, the 
performance use case is initiated by invoking a specific 
component job with certain parameters. The simulator executes 
the rest of the use case, since the service requests to other 
components are embedded in the job characterization. The 
simulator also contains the operating system scheduling policy to 
make the appropriate scheduling decisions. 

The use case simulator is used to interpret the component 
dependency graph and characterization in order to simulate the 
use case execution. In addition to the corner cases that most 
formal verification methods use to do schedulability analysis [15], 
we analyze general cases based on the underlying OS scheduling 
paradigm and our model of component jobs. The use case 
simulator executes the queuing model of the system. 
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Figure 8. Queuing model in use case simulator 

The use case simulator is an interpreter of a hierarchical queuing 
model of the system [3,4]. In Figure 8, each node of the model 
represents a component job and the links between nodes 
represents dependencies and flow of workload from one node to 
another. Each node’s characterization function produces 
appropriate workload to resources based on input parameters and 
state. Additional characterization functions produce service 
requests – workload - to appropriate components in the 
dependency graph. The use case simulator supports underlying 
operating system scheduling discipline to schedule the operating 
system tasks in the model. Tasks are schedulable entities that 
perform the work associated with the use case. Each task 
maintains a queue of events and traverses through various 
component jobs in the system as the events are processed. 
Multiple tasks may be scheduled in the system. For example: task 
1 follows the route 1,2,3 and 4. Similarly, task 2 follows the route 
1,2, 5 and 6. Tasks are scheduled using algorithms similar to the 
operating systems task scheduling mechanism [16,17,18]. This 
model captures the resources consumed by each component job. 
Performance metrics of the use case are determined by executing 
the simulation on the system. 
The end user of this model is an architect or developer who need 
not have performance expertise. The user provides use case as an 
input to the simulator and obtains the performance characteristics 
of the entire use case. From the user perspective the initiation of a 
use case is as simple as feeding an input parameter to the first 
component in the use case. The simulator handles traversal of the 
rest of the use case. Since the simulator captures the system 
behavior, it facilitates the execution of the use case, performance 
metrics collection and verification against its requirements. The 
simulator estimates resource consumption for a single or parallel 
use cases. 
We currently have an initial implementation of the use case 
simulator and are working on the full implementation. 

13. CONCLUSIONS 
Formal verification is an activity that ensures that the 
specification satisfies system properties. In the simplest form, 
verification can be conducted by design walkthrough and code 
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inspections. In a more elaborate form it involves rigorous testing 
and simulation. At the highest level, formal verification involves 
application of mathematical deduction for proving system 
properties. We have used simulation, state exploration techniques 
and scheduling analysis to verify that the requirements specified 
in the use case are satisfied by the system. We take advantage of 
the cycle-accurate models of the processor available at the 
system-level to obtain measurements that support characterization 
of software components and their jobs. The component job 
models along with the dependency graph serve as a basis for use 
case analysis of the system. This approach facilitates system 
performance analysis. An important distinction between our 
approach and other queuing techniques, like LQN, is that we 
associate a characteristic function with a component to generate 
service request and model resource usage. Another unique feature 
of our approach is the integration of characterization with system 
level measurement. As a result of these modeling framework 
enhancements, the estimated values may be more realistic and 
may be practically used during component planning and early 
stage system analysis. 
The challenging aspect of this approach is the execution path 
identification and context capture. For a given scenario we can 
manually extract this information by studying the code. However, 
to make it more efficient we are developing process and tool 
support based on source parsers like Source Navigator [19] to 
automatically capture this information.  
Accuracy of results is directly proportional to detailed modeling. 
However, simulation speed is inversely proportional to detailed 
modeling. For early stage performance estimation, it is advisable 
to work with abstract models that provide reasonable accuracy 
without delving into intricacies. 
Performance analysis approach proposed in this paper is still in 
the initial stages of development, however, we expect it to be 
useful for performance researchers working on improving 
performance analysis tools and methods. Challenges presented in 
the paper could provide a foundation for new exciting results in 
the model creation and analysis. 
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