
Reuse of Software in Distributed Embedded Automotive
Systems

Bernd Hardung
AUDI AG
I/EE-93

Ingolstadt, Germany

bernd.hardung@audi.de

Thorsten Kölzow
Audi Electr. Venture GmbH

I/AEV-22
Gaimersheim, Germany

thorsten.koelzow@audi.de

Andreas Krüger
AUDI AG
I/EE-93

Ingolstadt, Germany

andreas.krueger@audi.de

ABSTRACT
Until recently, in the automotive industry, reuse of software has en-
tirely been a typical activity of suppliers. They try to reduce the
increasing software development costs that stem from rising com-
plexity and size of software in the modern automobile. Lately, also
the automotive manufacturers began to develop specific software
with competitive relevance. Now they have to deal with the prob-
lem of reuse, too. Nevertheless, there is a difference between the
manufacturers’ and the suppliers’ point of view because the man-
ufacturers have to integrate the networked hardware components
to one automotive system. Therefore, the manufacturers have to
deal with additional problems compared to the supplier. At the be-
ginning of this paper, the specific problems of reuse of software
in the automotive domain are shown from the perspective of auto-
motive manufacturers. After that, a framework is proposed to deal
with these problems. Moreover, the application of this framework
is shown in a realistic application example.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Reuse mod-
els; D.2.13 [Software Engineering]: Software Architecture—
Domain-specific architectures

General Terms
Design, Standardization

Keywords
Reuse, Automotive, Software, Architecture, Product Line

1. INTRODUCTION
At the beginning of the third millennium, the automotive indus-

try is facing a new challenge. Electronics make 90 % of the inno-
vations, 80 % out of that in the area of software. This fact means
a big change for the development of electronics. More and more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’04September 27–29, 2004, Pisa, Italy
Copyright 2004 ACM 1-58113-860-1/04/0009 ...$5.00.

highly connected functionality has to be brought into series pro-
duction while development time is getting shorter and shorter. The
importance of software in the automotive industry is shown very
impressively in a study of Mercer Management Consulting and Hy-
povereinsbank [16]. According to this study in the year 2010, 13 %
of the production costs of a vehicle will be software (Fig. 1).

Figure 1: Rise of Importance of Software in the Car

To consider this, a changed development process has to be es-
tablished and also the methods of developing software for the auto-
motive domain have to be changed. In parts of this field intensive
work has been done covering for example requirements engineer-
ing, quality of software or model based software development, to
name only a few. The goals are to shorten the software development
time and to increase the quality of software. Another challenge to
reach these goals is the reuse of software. The main requirement
for reusing software in the automotive domain is to separate the
hardware of anElectronic Control Unit(ECU) from the embedded
software on it.

Until a few years ago, automotive manufacturers saw the ECU’s
of a car as single units. They specified and ordered them as black
boxes from the supplier. After the delivery of samples, they tested
them as black boxes. For the automotive manufacturer, this proce-
dure has the disadvantage that the software has to be newly devel-
oped for each new project, if the supplier is changed. This not only
causes expenses, but also an increase of development time.

A further important point for the automotive manufacturers is
the responsibility for the whole electronic system. This is different
to the view of the suppliers who see only their part of the system.
The fact of networked units makes it necessary for the automotive
manufacturers to have development processes and methods, which

203

allow them to reuse software on the system level. In addition meth-
ods for the reuse of software enable the manufacturers to develop
competition relevant software on their own in the future.

After this introduction, the recent work in this field is described
introducing the electronic systems in a modern vehicle (Sect. 2).
Then a framework is presented, which supports automotive manu-
facturers to reuse software (Sect. 3). In Sect. 4 an example is given
in which the framework is used on a realistic application of an au-
tomotive electronic system followed by the conclusion (Sect. 5).

2. REUSE OF SOFTWARE IN THE
AUTOMOTIVE DOMAIN

To get an idea of the software reuse issue from the view of an
automotive manufacturer, an introduction to the electronic systems
in a modern car is given here. The innovation in the automotive do-
main is mainly influenced by electronics. Improvements in econ-
omy and power of engines in the last years as well as the existence
of driver assistance systems likeBlind Spot Warning Systemand
Lane Departure Warningare not imaginable without electronics.

In order to fulfill the increased communication needs of these
electronic systems, the ECU’s communicate via different bus sys-
tems. Common automotive bus systems are for exampleController
Area Network(CAN) [3], Local Interconnect Network(LIN) [14],
Media Oriented System Transport(MOST) [17] andFlexray [10].
An example for the complexity of such a system is the network
topology of the Audi A8, shown in Fig. 2.

Figure 2: Electronic System of the AUDI A8

It was already pointed out in the introduction that the car manu-
facturers see the software increasingly independent from the hard-
ware. This view is necessary to enable the car manufacturers to
reuse software. The reuse of software thereby has a variety of dif-
ferent aspects and unresolved problems. In [8] requirements for
the reuse of software within the automotive range are presented as
follows:

• Reusable application software components must behard-
ware independent.

• Interfaces of the software components must be able to ex-
change data both locally on an ECU and/or via a data bus.

• Developing reusable software, future requirements to the
function have to be considered.

• Code sizeand execution timeof the software components
must be minimized during the development of reusable soft-
ware. Both resources are expensive due to mass production
of parts in the automotive industry.

Additionally, further aspects have to be considered. The individual
software modules must have an optimalmodularity. That means
that a functionality (for example central door looking system or ex-
terior light) might consist of different individual sub components.
Building sub components improves the reusability, since a func-
tional change can imply only changing a single sub component.

The partitioning of functionality into sub components however
can cause repetitions of code. For example, multiple variable dec-
larations lead to a higher memory consumption of all sub modules
together in comparison to a module developed as single unit. In
addition, the execution time might be worse.

The interface definition of the software modules must be spec-
ified once, that means statically. It should not change during the
reuse in a new car model or on a new micro controller1. The inter-
faces must be maintained in a database over all type series.

A further requirement is the existence of a database in which the
individual reusable software components and/or sub-components
are stored. Auniform data formatis thereby the requirement for
the data exchange of the different software development depart-
ments of a manufacturer and for the data exchange with the sup-
plier. In order to fill and use the information and the reusable soft-
ware components from the database,processesmust be defined,
which enable a standard development process. In particular this
processes must describe the integration process of software of dif-
ferent sources and the role allocation between manufacturer and
suppliers.

For the support of the processes atool chainas seamless as pos-
sible is necessary. An important aspect thereby is the use ofuni-
form modeling guidelines. Likewise, standards should be defined
between suppliers and the manufacturer to facilitate the exchange-
ability of software modules effectively. From the view of a manu-
facturer, there existdifferent kinds of reuse, depending on the usage
in an electronic system. According to the kind of reuse of a soft-
ware component – on the same type series or over different type
series – different aspects must be considered.

Of course, the safety aspect must be taken into consideration. In
[23] requirements for the development of safety critical functions
are stated. Simonot-Lion gives an overview on several aspects, for
example verification process, time triggered architectures, and soft-
ware architecture models.

3. FRAMEWORK FOR THE REUSE OF
APPLICATION SOFTWARE COMPO-
NENTS FOR AUTOMOTIVE
MANUFACTURERS

In this section, a framework for the reuse of application software
in the automotive domain is introduced. It is based on the process
model namedProduct Line Practice(PLP) [4] developed by the
Software Engineering Institute of the Carnegie Mellon University
in Pittsburgh.

The termproduct lineis thereby defined as follows [5]:
“A software product line is a set of software-intensive systems

sharing a common, managed set of features that satisfy the specific
needs of a particular market segment or mission and that are devel-
oped from a common set ofcore assetsin a prescribed way.”
1This applies only if the software component is not hardware inde-
pendent.

204

The terms and the processing model of the PLP are applied on
reuse of software by an automotive manufacturer. Figure 3 shows
the components of the presented framework. As it can be seen, the
framework is divided into five parts. In the process part (Sect. 3.1),
the general processes of the PLP are explained. This is followed by
an explanation how to perform the modularization of the core assets
(Sect. 3.2). Thereby the core assets are stored in a database called
Function Repository(Sect. 3.3). The last part of the process is to
develop products out of the Function Repository by using a stan-
dard software core (Sect. 3.4). The tools are necessary to support
the process (Sect. 3.5).

Figure 3: Modules of the Framework for the Reuse of Software
Components for Automotive Manufacturers

3.1 Processes
According to [4] the process in a product line is divided into

three different areas:

• Core asset development: Within the development of core as-
sets, first a list of the products that are desirable from today’s
view is created. This list is defined as theproduct scope.
Thus, it contains also products which may be realized in the
future and which are not a goal of the current development.
The list of products represents a boundary, which should be
thought over very carefully: If the scope of production is
spread out too much, many of the core assets can be used
only once. This can be equated with the conventional devel-
opment. If the product scope is chosen too small the future
variety of product is limited.

• Product development:In addition to theproduct scopeand
thecore assets,there are also product specific requirements.
With the core assets, the development of a new product
within the product scope is equal to combining some of the
core assets. The description of the process of combination
is called theproduction plan. The production plan is a gen-
eral description and the product development should fulfill
the product specific requirements. Depending on the accu-
racy of the production plan the product must be developed
under consideration ofvariation points. In Fig. 4 [4] core as-
sets are shown as rectangles and the correspondent processes
as triangles. String together these processes result in the pro-
duction plan, from which the product can be developed.

• Management:The managementis divided into a technical
and an organizational part. The organizational management

must provide the right form of organization and the needed
resources (this includes also the training of the employees).
The technical management is responsible for the realization
of the core asset development and the product development.

Figure 4: Product Development in the Product Line Practice

The engineering tasks of the processes within the presented
framework contain on the one hand the production and archiving of
reusable software components into a database. On the other hand it
contains the use of this software components from the database to
develop new products.

In [25] a practical application example of the automotive do-
main is discussed. In the article of Thiel and Hein a method is de-
scribed, which allows controlling the variability of a product within
the product development process.

The focus of the work described in this paper is put on distributed
and networked applications, which is not covered yet. Furthermore
here the focus is on the modularization of the functional software
and the connection to the standard software core.

3.2 Development of Modularized Software
Components

Figure 5 shows the process for developing the complete elec-
tronic system of a new type series2.

Figure 5: Product Development Process for a Electronic Auto-
motive System

Thereby the three main elements must be gone through itera-
tively, since each element depends on the other one. Therefore, a
distribution of the software modules must take place on the ECU’s
2The term new type series here also covers a new model of the
same type series.

205

for example after a definition of the hardware system. However,
this depends on the memory and processor capacity of the ECU’s
exactly the same and also on the question whether the necessary
signals between the individual software modules can be transferred
across the bus system due to bandwidth limitations.

This process requires modularized software components to sep-
arate hardware dependent and independent parts. The modular-
ization of software components according to definitions of mov-
ability and reusability also enables reuse in this process. To sup-
port the classification of software according to their movability and
reusability, the following terms shall be introduced:firmware, ba-
sic software, adaptation softwareandfunction software.

• Firmware is the hardware dependent part of the ECU soft-
ware. Examples are the communication drivers.

• Basic softwareis software that is independent from applica-
tion and hardware. Examples are interaction layers which
are not dependent from the hardware since they are using the
Application Programming Interface(API) of the communi-
cation drivers.

The two groups basic software and firmware are reused already
nowadays. They are called standard software although the parti-
tioning of the components is not only made due to the reusability
(Sect. 3.4). Another reason for decomposing the standard software
is the possibility to fulfill the needs of different classes of ECU’s
by removing standard software components that are not needed.

Here the definition for the remaining two classes of software:

• Adaptation softwareis the application specific part of the
software that adapts the function software to the type series
and builds the connection from the function software to the
firmware and the basic software. In general it is

• Function softwareis the function specific part of the software
that is not dependent from the type series where it is used in.

With these new terms, the types of components can be separated
according to the type of movability and reuse. Considering this
abstract model three terms of reuse can be instituted.

• Reuse over different ECU’s

• Reuse over different micro controller platforms

• Reuse over different type series

The classification of the types of software and the according types
of reuse are shown in Tab. 1. This classification gives guidance how
the modularization can be performed in order to get the maximum
movability and reuse effect.

Table 1: Overview of the Classified Types of Software
Reuse over different ECUs µC-Platforms Type Series

Firmware + - +
Basic Software + + +

Adaptation Software - + -
Function Software - + +

3.3 Function Repository
The Function Repositorycontains thecore assets(Fig. 3). The

question, what the core assets are, is essential for reuse of software.
In [4] information is given which items in general form the set of
core assets. In the following, the set of the core assets for a Function
Repository of an automotive manufacturer is discussed considering
the special requirements as described in Sect. 2. It has to contain
more than only descriptions about software, but also hardware and
bus system description.

• Software components: An important content of the Func-
tion Repository are the reusablesoftware componentsthem-
selves. It is necessary to differentiate the software according
to the different kinds of software and the different kinds of
languages they are implemented with.
A meaningful distinction of the kinds of software can be
made between firmware, basic software, adaptation software
and function software as described in Sect. 3.2.
In addition, the characteristics of the software components
must be stored in the Function Repository. For example, the
code size and the worst case execution time of the individual
software components and subsystems are important informa-
tion for a proper real time integration in an operation system.
The worst case execution times could be determined for
each supported hardware platform of the software compo-
nent. This could be done for example with model based au-
tomatic approaches like in [12]. Another possibility is to get
this value during the integration process. This procedure has
the advantage that the environment can be taken in account3.
This approach in general will derive worst case execution
times which are tighter to the real execution time.
In order to further optimize the software reuse specifications,
test plans and test cases should be stored as well.

• Interfaces: The interfacesmust be part of the Function
Repository. In an automotive system, the communication of
the software components between each other can take place
by a data bus or internally on the ECU. The interfaces of
the software components must be defined globally. Possibly,
new software components must use the available interface
definitions. If done so, a compatibility of the interfaces of
different software components can be achieved.
The number of needed interface is very huge in a modern ve-
hicle. To be able to manage the complexity it is necessary
to specify interface types. The interface instances can be de-
rived from them.
The description of interface types is thereby not only meant
as storage of the bit size and the name. Also further descrip-
tions have to be stored. One point is the supported com-
munication types that allows the system designer to map the
signals on communication busses correctly. Once the inter-
face instances are mapped to software components, timing
requirements have to be specified which also influence the
decision if a certain communication bus system is suitable.
The semantics of the interface types are an additional very
important point. For example, once a user presses the remote
key the signal of the type remote key is ON as long as the
key is pressed but at least 50 ms. Further research should be
performed on the description of this semantics in a formal
way.

3For example in a certain type series some function will never be
used and therefor the worst case execution time gets smaller.

206

• Functional network: The functional networkcombines the
software components with each other. A support of hierar-
chical decomposition is recommended in order to be able to
reduce the complexity.
An add-on for the interface definition of software compo-
nents is theerror matrix. This error matrix can help with the
trace of errors in the automotive system after production in
the field. The error matrix contains information which output
of a software component depends on which input. With that,
it is easier for the service to find software errors. A more
detailed description can be found in [22].

• Hardware platform and bus system description: The com-
plete software can not been seen independently from the
hardware although this is necessary for reuse. The execution
of software depends on the type of processor, the amount of
memory, the clock cycle or even the used compiler. There-
fore, ahardware platform descriptionmust be stored in the
Function Repository.
As mentioned before, parts of the communication between
the software components in functional networks use bus sys-
tems. These bus systems can be distinguished in different
ways, for example speed of data transfer, used protocol, and
so on. Thus for the development of a new type series it is
necessary to store also the relevant data in thebus system
descriptionof a Function Repository.

• Implementation: For the implementation (orbehavior de-
scription) of the software components, model based methods
and tools can be used. From these models C code can be de-
rived. This C code normally has performance disadvantages
in comparison to hand-written C code. The advantage of the
model based software components is the ability to more eas-
ily adapt to different hardware platforms. For this reason, it
could be useful to be able to store both variants in the Func-
tion Repository depending on the kind of software.

3.3.1 Standards for the Storage of Data
All the mentioned data for the Function Repository has to be

stored in a database. Therefore, a standardized data model has to
be used.

Within the EAST-EEA project [7] anArchitecture Description
Language(ADL) [26] has been developed in order to be able to
specify functions separately from the hardware. An ADL allows
the description of the structure (and not necessarily the behavior)
of software in a functional approach as described in this section.

A further example for such a data model is MSR MEDOC [18,
9]. It defines how the data has to be stored in the data model. The
data model is specified in aneXtentable Markup Language Data
Type Definition(XML DTD).

Another promising project isAutomotive Open System Architec-
ture (AUTOSAR) [1]. This project is currently defining a modular
software architecture. Thereby the aspect of integration of software
components from different software suppliers is considered as well.

3.4 Development of an ECU with the Standard
Software Core

For the product development, based on the modularized soft-
ware components and the other stored assets, aStandard Software
Core (SSC) is used. Beside the application, the micro controller
must fulfill further tasks. Controlling the hardware drivers, recog-
nize and store errors and controlling the network connection can
be named as examples. These functions are realized in separate,
reusable modules and are calledstandard software. The sum of

all standard software components represents thestandard software
core.

It supports not only a hardware independent interface, but also a
complete infrastructure to the actual application at the micro con-
troller. This makes it possible to develop the application indepen-
dently from the used micro controller platform.

The interface between SSC and the function software is not
unique. The link to the SSC modules is typically performed
throughApplication Programming Interfaces(API). An example
therefore is the OSEK COM [19] specification. The Function
Repository in the described form contains all necessary informa-
tion to configure the API’s of standard software modules.

Thus, the combination of standard software modules represents
the basis for an efficient reuse of the application as already ex-
plained in Sect. 3.2.

Figure 6 shows the structure of the standard software core of the
VOLKSWAGEN AG. A more detailed explanation can be found in
[13].

The standard software core is the part of the ECU software,
where reuse is already performed nowadays – even once the ECU
supplier changes. The degree of reusability of a software compo-
nent is dependent from the kind of software it is (Sect. 3.2). Since
the architecture of the standard software core is not only made due
to reuse aspects, the reuse effect can still be improved. Neverthe-
less, they play an important role for reusing function software and
have to be taken into account for further developments.

3.5 Tools
Obviously, for all these processes tool support is necessary. Nev-

ertheless, the view changes if the concept of the Function Reposi-
tory is taken into account. In past days the goal of tool users was
to get a seamless tool chain by developing conversion filters be-
tween them. This approach cannot work. For every pair of tools
(and version) used somewhere in a company or department a filter
has to be developed which translates the data from the database to
the tool and vice versa. Since the language coverage is different
for every tool, there is also a loss of information coming with every
conversion. That is no issue as long as going along the V model
[2] in one direction only. As soon as the development takes place
in different locations of the V model at the same time (simultane-
ous engineering), the data cannot be kept consistent automatically
anymore. The solution for this problem is a standard data model
as required in Sect. 3.3. The tools are then the editors for the data
in the Function Repository. With this understanding a tool chain is
a set of tools working on a common database whereby no manual
step is necessary.

3.5.1 Tools Required for the Core Asset Development
There is a need for tools supporting different levels of system

descriptions in the field of the core asset development:

• Requirementsare the textual description of what the user ex-
pects from the vehicle. In order to manage the requirements
it makes sense to use tools likeDOORS[24], which provide
features like automatic requirement key generation, an ex-
tended search engine and document generation possibilities.

• Interfacesare all points within an application or module
where information is coming from or going to outside of it.
A tool is needed to manage these external interfaces. Also
internal data might be interesting for debugging purposes.
With the Data Dictionary [21], it is possible to man-
age external interfaces and internal data in one tool.

207

Figure 6: Example of a Standard Software Core (SSC)

• System architectureis the functional network, the hardware
architecture plus the mapping between themselves. The sys-
tem architecture can be described for example with UML
tools or automotive specific tools likeDaVinci [8].

• The behavior descriptioncan be either C code or mod-
els in various modeling languages like UML. Another op-
tion very common for the automotive industry is the use of
Matlab/Simulink/Stateflow [15]. Targetlink
[6] could be used for generating C code out of the model even
if the target platform does not support floating point code.

3.5.2 Tools Required for the Product Development
In addition, for the product development there is a need for tools.

Most of the standard software components like network drivers for
the CAN bus [11] or the OSEK Operating System [20] have to be
adapted to the specific network node and hardware platform.

For a tool supported component configuration, information about
the communication between the several control units is needed.
Each component needs specific information, which is important for
the function of the component. The variety of nowadays configura-
tion tools results in the fact that every tool expects its information
in a specific data format. For the system integrator, as the only one
who knows about the overall communication between the control
units, this means a great effort in handling the several data formats
and a potential risk of failures. For this reasons, a unique database
for the communication information, like in Sect. 3.3 has to be cre-
ated.

This adaptation is done by configuration tools with integrated
code generators. Here a weakness of today’s standard software
cores can be seen. There is no unique configuration interface for
the whole standard software core, but many component specific
configuration tools. As the result, it is only possible to optimize
the software components, but there is no tool support for optimiz-
ing the overall system. This optimization depends on the experi-
ence and knowledge of the system developer. Nevertheless, there
are already ongoing efforts to integrate the several tools in an open
framework with an unique interface.

4. APPLICATION EXAMPLE
In this section an example is given, how the modularization of

software can enable the reuse of software components. Some high-
lights of the process of modeling the function architecture and im-
plementing it on hardware shall be demonstrated using the function
exterior light. It was chosen because it is quite challenging to reuse
this function over type series without changing the interfaces.

The requirements of this function are taken out of existing spec-
ifications. Apparently, there are differences in the partitioning of
the rear light of cars even in different type series of a single car
manufacturer. Fig. 7 shows how the rear lights behave while com-
binations of turned on light and usage of the brake. Thereby one
car model has one bulb and the other one two bulbs per side. The
brightness differs in the modes normal driving with light on and
braking.

Figure 7: Example for Different Arrangements of Rear Lights

The application exterior light is controlling the bulbs over
interfaces from the standard software core. These are
on the one handrear_light_left_outer, rear_light_left_inner,
rear_light_right_innerandrear_light_right_outerand on the other
hand onlyrear_light_left and rear_light_right. Additionally the
third brake light also can be accessed. The input interfaces are sup-
ported from the underlying layers as well. Some of them come via
network from other ECU’s and some are directly connected to the
same ECU, where the exterior light function is seated. In Fig. 8 two
not reusable software components can be seen.

In Fig. 9 the software component holding the logic of the light
control in it is separated (Exterior Light Common). An adaptation

208

Figure 8: Not Reusable Software Components

software component for each car model is used to connect to get
the same interfaces as in the first case.

Figure 9: Reusable Application Software Component by Adap-
tation

Beside the software also the hardware has to be considered.
Fig. 10 shows that the hardware can differ significantly in differ-
ent scenarios. In the left hand scenario car 1 controls the bulbs with
digital input and output ports. In the right hand scenario the third
brake light is still controlled by a discrete wire. The rear lights are
so called smart actuators which are connected via LIN bus. This
makes sense as the number of wires can be reduced in that cases.

Figure 10: Different Hardware Mappings

This example is simplified since a more detailed example would
extend the scope of this paper. The method is transferable to more
complex applications. To get an impression of the real complexity
of the systems handled in the automotive industry the example of
the backup light shall be explained shortly. In Fig. 11 it can be seen
that 9 ECU are involved to figure out, if the backup lights can be

switched on and which other actions are to undertake after the use
of the reverse gear.

5. CONCLUSIONS
This article gives an overview on the challenge of reusing soft-

ware in the automotive domain from the perspective of an automo-
tive manufacturer. It explains the challenge of reuse explaining the
electronic system in cars and pointing out the difference between
reuse for suppliers and manufacturers. The process model product
line practice is used to collect requirements derived from the reuse
of function software. Additionally, a method is introduced, which
allows classifying software to the possible kind of reuse. This is a
pre-requisite to go from the process of ordering black box control
units to a process where software components are reused even af-
ter a change of supplier in several control units. In conclusion, an
application example is shown applying some parts of the presented
framework.

6. REFERENCES
[1] AUTOSAR. Automotive Open System Architecture.

http://www.autosar.de, Apr. 2004.
[2] Bundesministerium des Inneren. Entwicklungsstandard für

IT-Systeme des Bundes. Vorgehensmodell.
Kurzbeschreibung. Bonn, 1997.

[3] CAN in Automation. Controller Area Network (CAN) - an
overview. http://www.can-cia.de/can/, Mar. 2003.

[4] Carnegie Mellon Software Engineering Institute. Software
Product Lines. http://
www.sei.cmu.edu/plp/product_line_overview.html, Feb.
2003.

[5] P. Clemens and L. Northop.Software Product Lines -
Practices and Patterns. Addison-Wesley, Boston, 2002.

[6] DSpace. TargetLink – Automatic Production Code
Generation for Target Implementation.
http://www.dspace.deU/ww/en/pub/products/targetimp.htm,
Apr. 2004.

[7] EAST-EEA. Embedded Electronic Architecture.
http://www.east-eea.net, Apr. 2004.

[8] B. Hardung, M. Wernicke, A. Krüger, G. Wagner, and
F. Wohlgemuth. Development Process for Networked
Electronic Systems.VDI-Berichte 1789, VDI Congress
Electronic Systems for Vehicles, Baden-Baden, pages 77 –
97, Sept. 2003.

[9] J. Hartmann, S. Huang, and S. Tilley. Documenting Software
Systems with Views II: An Integrated Approach Based on
XML. Proceedings of the 19th Annual International
Conference on Computer Documentation, Santa Fe, New
Mexico, USA, pages 237 – 246, Oct. 2001.

[10] H. Heinecke, A. Schedl, J. Berwanger, M. Peller, V. Nieten,
R. Belschner, B. Hedenetz, P. Lohrmann, and C. Bracklo.
FlexRay – ein Kommunikationssystem für das Automobil der
Zukunft.Elektronik Automotive, pages 36 – 45, Sept. 2002.

[11] HIS – Hersteller Initiative Software, Volkswagen AG. HIS /
Vector CAN-Driver Specification V1.0.
http://www.automotive-his.de, Aug. 2003.

[12] R. Kirner, R. Lang, G. Freiberger, and P. Puschner. Fully
Automatic Worst-Case Execution Time Analysis for
Matlab/Simulink Models.Proc. 14th Euromicro
International Conference on Real-Time Systems, Vienna,
Austria, pages 31 – 40, June 2002.

[13] A. Krüger, G. Wagner, N. Ehmke, and S. Prokop. Economic
Considerations and Business Models for Automotive

209

Figure 11: Example Reverse Gear

Standard Software Components.VDI-Berichte 1789, VDI
Congress Electronic Systems for Vehicles, Baden-Baden,
pages 1057 – 1071, Sept. 2003.

[14] LIN Consortium. LIN Specification Package Revision 2.0.
http://www.lin-subbus.org, Sept. 2003.

[15] MathWorks. MATLAB and Simulink for Technical
Computing. http://www.mathworks.com, Apr. 2004.

[16] Mercer Management Consulting and Hypovereinsbank.
Studie, Automobiltechnologie 2010. München, Aug. 2001.

[17] MOST Cooperation. MOST Specification Rev., 2.2.
http://www.mostnet.de /downloads/Specifications/, Nov.
2002.

[18] MSR. Development of Methods, Definition of Standards,
Subsequent Implementation. http://www.msr-wg.de, Apr.
2004.

[19] OSEK/VDX. Communication Version 3.0.1.
http://www.osek-vdx.org/mirror/com301.pdf, 2003.

[20] OSEK/VDX. Operating System Version 2.2.1.
http://www.osek-vdx.org/mirror/os221.pdf, 2003.

[21] C. Raith, F. Gesele, W. Dick, and M. Miegler. Audi Dynamic
Steering as an Example of Distributed Joint Development.
VDI-Berichte 1789, VDI Congress Electronic Systems for
Vehicles, Baden-Baden, pages 185 – 205, Sept. 2003.

[22] J. Schuller and M. Haneberg. Funktionale Analyse – Eine
Methode für den Entwurf hochvernetzter Systeme. Vortrag,
VDI-Mechatronik-Konferenz, Fulda, May 2003.

[23] F. Simonot-Lion. In Car Embedded Electronic Architectures:
How to Ensure their Safety.5th IFAC International
Conference on Fieldbus Systems and their Applications -
FeT’2003, Aveiro, Portugal, pages 1 – 8, July 2003.

[24] Telelogic. Telelogic Doors Overview.
http://www.telelogic.com/products/doorsers/doors/, Apr.
2004.

[25] S. Thiel and A. Hein. Modeling and Using Product Line
Variability in Automotive Systems.IEEE Software, pages 66
– 72, July 2002.

[26] T. Thurner, J. Eisenmann, U. Freund, R. Geiger,
M. Haneberg, U. Virnich, and S. Voget. The EAST-EEA
project – A Middleware Based Software Architecture for
Networked Electronic Control Units in Vehicles.
VDI-Berichte 1789, VDI Congress Electronic Systems for
Vehicles, Baden-Baden, pages 545 – 563, Sept. 2003.

210

