
A Metrics System for Quantifying Operational Coupling
in Embedded Computer Control Systems

DeJiu Chen, Martin Törngren
Division of Mechatronics, Department of Machine Design, Royal Institute of Technology

 SE-100 44 Stockholm, Sweden
+46-8-7906000

chen@md.kth.se, martin@md.kth.se

ABSTRACT
One central issue in system structuring and quality prediction is
the interdependencies of system modules. This paper proposes a
novel technique for determining the operational coupling in
embedded computer control systems. It allows us to quantify
dependencies between modules, formed by different kinds of
relationships in a solution, and therefore promotes a more
systematic approach to the reasoning about modularity. Compared
to other existing coupling metrics, which are often
implementation-technology specific such as confining to the
inheritance and method invocation relationships in OO software,
this metrics system considers both communication and
synchronization and can be applied throughout system design.
The metrics system has two parts. The first part supports a
measurement of coupling by considering individual relationship
types separately. The quantification is performed by considering
the topology of connections, as well as the multiplicity,
replication, frequency, and accuracy of component properties that
appear in a relationship. The second part provides a methodology
for combining coupling by individual relationship types into an
overall coupling, where domain specific heuristics and technology
constraints are used to determine the weighting.

Categories and Subject Descriptors: D.2.m
[Software Engineering]: Miscellaneous—Embedded computer
control; D.2.8 [Software Engineering]: Metrics; K.6.4 [System
Management]: Quality assurance; D.2.11 [Software
Architecture]: Domain-specific architectures

General Terms: Measurement, Design, Verification

Keywords
System Functions, Coupling Measure, Modularization and
Components.

1. INTRODUCTION
Embedded computer control systems (ECS) are computer-based
systems for advanced control, diagnostics, and monitoring in

machinery [1]. Typical application areas include vehicles,
avionics, and robotics. Because of the dynamics under control,
such systems differ from other general-purpose computer systems
in the aspects of real-time and safety criticality.
In ECS, computer software and hardware together constitute the
physical embodiments of system functions for the purpose of
system realization. Issues that are of particular concern in the
software system design include: identification and classification
of requirements and constraints, definition of components and
relationships, assessment of feasibility and product qualities, and
trade-offs between solution alternatives. Normally, the design is
performed at different refinement levels, repeating a means-end
pattern in the sense that an allocation of requirements to solutions
will in turn derive some new requirements for the underling
solutions (e.g., a hierarchy of mapping from end-to-end timing of
control loops to code level timing) [2]. From a system engineering
point of view, it is the design in the large, targeting pre-code
artifacts at levels higher than detailed implementation, that has the
key impacts on product qualities, complexity control, costs and
time-to-market, see e.g., [3][4][5]. For example, [5] states that the
front-end design in general determines 80% of system cost with
only 20% of total product development costs spent. For ECS,
there is currently a paradigm shift from a “traditional” software
design that focuses on coding and testing to a model-based
software design that emphasizes quality assessment and
optimization using system descriptions at levels higher than code
details, see e.g., [28].
One important property of complex ECS, besides the mandatory
functionality, real-time timeliness, and dependability, is
modularity, indicating the extent to which a system is
decomposed and classified into parts. This system property forms
a key factor in complexity control, concurrent engineering and
product flexibilities (including reusability and modifiability), see
e.g., [6][7]. As a rule-of-thumb, software systems with good
modularity should exhibit low coupling and high cohesion, where
the coupling indicates the strength of interconnections (i.e., the
“wiring”) between modules and the cohesion shows the strength
of holding a module together (i.e., the “glue”) [8][9].
For complex ECS, there is a need to support objective and
repeatable measurement of coupling throughout the design at
different levels of design refinement. Given the importance of
design in the large, the designers must be able to verify high-level
(e.g., architectural) solutions and perform tradeoffs between
solution alternatives by taking modularity into consideration.
However, little support exists in this area. Existing approaches to
quantitative coupling measurement mainly target detailed
software design and consider only program specific dependencies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’04, September 27–29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009...$5.00.

184

(e.g., calls). Due to their restrictions to implementations details,
such approaches have very limited usability in the system level
design.
This paper proposes a technique for measuring the operational
coupling in ECS, hence providing information for quantitative
assessment of modularity in the system design. The metrics
system transforms various communication and synchronization
relationships, derived from a system meta-model of ECS, into
quantitative coupling measures by considering parameters such as
frequency and accuracy that affect the strength of dependencies.
This paper includes 7 major sections. In the next section, we
discuss the aim of this work and the solution strategy. Section 3
introduces the system model and concepts underlying the metrics
system. Section 4 presents the metrics system that supports the
measurement by considering individual relationships separately.
Section 5 describes a methodology for combining these individual
relationships. Finally, Section 6 describes related work and
Section 7 concludes and discusses further work.

2. AIM AND APPROACH
The ultimate goal of our work is to provide an effective means of
quantifying modularity, and hence a more complete engineering
basis for model-based design and optimization of ECS. We
consider coupling as a measure of dependency among system
parts, established by the relationships connecting these parts in a
system solution. See Figure 1.

Dependency Coupling

Systems
characteristics

Domain of
subjective and
qualitative
estimation

Domain of
objective and
quantitative
measurement

... Relationships

Modifiability

Attributes model for
quality predictions

Reusability

Figure 1. Central terms and their relations.

For this purpose, it is necessary to define the system parts, which
can be composed to form modules, and the relationships between
these parts, each of which provides information about a kind of
dependency. Thereafter, a transformation from dependency to
quantitative coupling measures by identifying and combining
parameters characterizing the strength is necessary. The metrics
system focuses on the operational relationships that are
established by communication, synchronization, and
implementation. So our approach includes three steps: (1)
providing a meta-model that articulates and formalizes various
system features of concern into system parameters; (2) elaborating
and classifying relevant operational relationships; (3) defining a
metrics system that transforms operational dependencies into
quantitative coupling figures. This paper focuses on the last step.
A detailed description of the meta-model and classification of
relationships is given in [10]. The system model refines our
previous work in modeling [11][12][13].
Figure 2 depicts the steps of our approach. One of the major
points here is that the measurement should support earlier phases
of software design, using information from models independent of
implementation and technology details. The design in the large
can therefore be evaluated for modularity and optimized by
tradeoffs with respect to multiple quality attributes. See also
Figure 3. A module is a system function that has a single
implementation and its own lifecycle, and hence can be modified

and replaced independently.

Alt. 2

a

Alt. 1

X
X Y

Y
d

b

e

c

a b

c

d e

Figure 3. A conceptual illustration of structuring for modu-
larity. Which alternative has a tighter coupling and which

parameters affect this assessment?

3. PRELIMINARIES
3.1. Systems model
A system is a synergetic integration of “things” for certain
purposes. See e.g., [3][4][5]. We refer to such things as system
means. Figure 4 depicts system aspects that are of particular
concern in the solution domain of ECS. Each system has a
boundary. The internal aspect is concerned with means inside the
boundary (e.g., functions, objects or processors) and how they are
consolidated into a whole. The external aspect is concerned with
means constituting the system context, such as environmental
objects, physical conditions (e.g., friction), or restrictions (e.g.,
operational ranges and forbidden scenarios). From a design-
oriented view, a system is discerned along two orthogonal
dimensions: content and level. The content consists of structure
and behavior, representing “what a system is” and “what the
system does” respectively [4][16]. The levels represent the
degrees of preciseness and detail of a design with respect to the
final realization. There are two major domains of such levels:
functional levels and implementation levels. See e.g., [3][5]. At

Figure 2. Context and major steps of our work.

Figure 4. An illustration of system aspects.

ECS Systems; Process;
Design (E.g., Structuring,
Component creation and
Integration).

Internal vs.
External Aspects

Structure vs.
Behavior

Functional vs.
Implementation-
specific means

 Relationship Types\Patterns

 A Metrics System for Couplings

Quantifying

System verification, Modeling,
Documentation (e.g., Assessments of
modularity; Tradeoffs; Management of
 Views and levels.)

Communication Synchronization Implementation
sharing

Parameterizing

Supporting

 Meta-model: System Ontology (system means
and relationships)

Supporting

Functions/blocks,
variables;

Communication
topology, composition,

layering, etc.

Physical resources,
signals; Platform

topology, composition,
layering, etc.

Im
pl

.

Level

Int.
Ext. Boundary

Transformations, activation
and persistence, timeliness.
(High-level) protocols for

communication and
synchronization, behavior

composition, etc.

Execution, performances,
errors, protocols,
composition, etc.

Fu
nc

.

Content
Behav. Struct.

185

functional levels, the structures and behaviors, as well as the
internal and external means, are considered in terms of
abstractions independent of implementation details. We refer to a
system solution at functional levels as a “functional solution”. For
the system realization, a functional solution is embodied in an
“implementation solution”, consisting of software programs and
electronics hardware.
In our system model [10], a system solution is defined as follows.
DEFINITION 1 (System solutions). The solutions of a system Sol
is a pair Sol=(Means, Rel), where
– Means represents the set of things that constitute a system.

Means={Means1,…, Meansn}, n∈Ζ+.
– Rel represents the relationships between system means. It is

a subset of binary relations on Means: Rel ⊆ Means×
RelTyp×Means, where RelTyp is a finite set of vocabulary
representing the types of relationship.

 The relationship types RelTyp consists of {COMP, COMM,
SYNC, IMPL, SHAR, REFIN, CRIT, REPL}, denoting whole-parts
composition, communication, synchronization (execution order-
ing and timing), implementation (mapping functions to
application software and the system platform), sharing of
common features or resources, design refinements, system safety
specific relationships, and replication. Accordingly, the triple (m,
RelTyp, n) denotes a relationship of means m with respect to n,
and Rel(M) denotes the set of triples representing the
relationships of a set of means M. We refer to the functional
means as “system functions” (denoted by the set, Func)
A relationship between system functions is established by
connecting one property of a system function to a compatible
property of another system function or an environmental means.
Table 1 summarizes the properties of system functions. Some of
these properties target other properties. For example, the error
property can be applied to any other property such as IO and
timing features. We also distinguish properties according to their
“direction”. For a system function, an “incoming property” is a
feature determined by other means, such as a data input. An
“outgoing property” is a feature determined by the system
function for other means or the entire system, such as a data
output. Properties not belonging to these two categories are
considered inherent, such as an internal variable.
By means of relationships, the properties of individual system
functions are combined, resulting in properties of a system
solution as a whole. We refer to the communication,
synchronization, as well as implementation-sharing as
“operational relationships” since such relationships are concerned
with the system behavior. For system functions, we have
identified 26 types of operational relationships, summarized in
Table 2 and formally defined in [10]. The implementation sharing
relationships introduce additional dependencies when a functional
solution is partitioned and allocated. In their definitions, the
concept of implementation parameters describe artifacts such as
logical communication channels and operating system services.
DEFINITION 2 (Operational relationships and interactions). For
a system function f∈Func, let OpRel(f) be its operational
relationships

OpRel(f)=Interact(f)∪SImplPRel(f)∪SImplMRel(f)∪
DImplMRel(f)

Where: Interact(f) is the interactions. Interact(f)=CommRel(f) ∪

SyncRel(f), and
– CommRel(f) = {ICRel(f), IDRel(f), IDCRel(f), ORel(f),

OERel(f), IDERel(f), ICERel(f), IDCERel(f), IDLRel(f),
ICLRel(f), IDCLRel(f), IDELRel(f), ICELRel(f), IDCELRel(f),
IDLERel(f), ICLERel(f), IDCLERel(f)}

– SyncRel(f) = {RBehRel(f), PBehRel(f), RBehERel(f),
PBehERel(f), TimRel(f), TimERel(f)}

Note that these relationships are defined from a single system
function point of view. Each relationship constitutes an agreement
or a contract that a system function has within a system solution
by specifying the features that the system function depends upon
or is obligated to produce. E.g., the data input communication
relationships of a system function f are: IDRel(f)={(f, r,
e)∈InRel(f)f∈Func ∧ r=COMM ∧ e∈Func\{f} ∧ (∃p∈O(e):
∃q∈ID(f): p⇒q)}, where: InRel – incoming relationships, O –
communication output, ID – communication data input.

Table 1. An overview of system functions' properties.

Table 2. Operational relationships of system functions.

 Property Definition
Form Features concerning structure (e.g., layering, topology).
IO Communication inputs and outputs (e.g., data).
Trans Functional transformations, each of which consists of a domain, a range, and a

transformation rule.
Mode Application specific mode logic consisting of states and transitions.
Var Variables that appear in transformations and modes.
Exe Executional behavior features of other properties (e.g., IO, Trans, Mode, and Var)

such as in terms of triggering, execution modes, persistence, and computation-models.
Tim Timing of other properties (e.g., Exe, IO, Trans, and Mode) such as in terms of

triggering frequency, time stamp, delay, and deadline.
Err Features concerning erroneous conditions of other properties (e.g., Tim, Exe, and IO,)

 Relationships Definitions
ORel, OERel Communication relationships by outputs (O) to other system functions

or environmental means (E).

IDRel, ICRel,
IDCRel

Communication relationships by inputs (I) of: 1. Data (D), i.e., variables
in domains of functional transformations; 2. Control (C), i.e., variables
used as conditions for transitions between application specific modes; 3.
Hybrid data& control (DC), i.e., variables that are involved in both
functional transformations and mode transitions, from other system
functions

IDERel, ICERel,
IDCERel

Communication relationships by inputs (I) of: 1. Data (D); 2. Control
(C); 3. Hybrid data&control (DC), from environmental means (E).

IDLRel, ICLRel,
IDCLRel

Communication relationships by inputs (I) of: 1. Data (D); 2. Control
(C); 3. Hybrid data&control (DC), from other system functions and the
inputs are looped (L) (i.e., which can be traced back to the output(s) of
the same system function by communications of some system functions)

IDELRel, ICELRel,
IDCELRel

Communication relationships inputs (I) of: 1. Data variables (D); 2.
Control variables (C); 3. Hybrid data&control variables (DC), from
environmental means (E) and the inputs are looped (L).

IDLERel, ICLERel,
IDCLERel

Communication relationships by inputs (I) of: 1. Data variables (D); 2.
Control variables (C); 3. Hybrid data&control variables (DC) with other
system functions and the inputs are looped (L) via some environmental
means (E).

RBehRel, PBehRel
Synchronization relationships in terms of precedence/ordering by: 1.
requiring executional behavior feature (RBeh), 2. providing executional
behavior feature (RBeh), from/to other system functions.

RBehERel,
PBehERel

Synchronization relationships in terms of precedence/ordering by: 1.
requiring executional behavior feature (RBeh), 2. providing executional
behavior feature (RBeh), from/to environmental means (E).

TimRel Synchronization relationships by timing features (Tim) with other
system functions.

TimERel Synchronization relationships by timing features (Tim) with
environmental means (E).

SImplPRel
Implementation specific relationships due to sharing (S) an
implementation parameter (ImplP), such as a task, an inter/intra-node
communication channel, a clock service) with other system functions.

SImplMRel
Implementation specific relationships due to sharing (S) an
implementation means (ImplM), such as a device and a CPU, with other
system functions.

DImplMRel
Implementation specific relationships due to dependencies (D) between
the implementation means (ImplM) on which the system functions are
allocated, such as by means common failure modes.

186

3.2. Measurement
3.2.1. Context
The target of coupling measurement is a single system function.
From a requirement assignment point of view, we distinguish
between the core and the adaptation of a system solution as well
as a system function. The core refers to the fundamental portion
that accounts only for mandatory system requirements (i.e.,
functionality, (RT)performance, and dependability). Often,
however, when other more “soft” qualities such as maintainability
and modifiability are of concern, there is normally a gap between
what the core inherently grants and what is expected. Under the
circumstances, adjustments on the core in terms of restructuring
(targeting relationships) and tuning of system parameters
(focusing on system means and their properties) have to be
performed given that such actions will not violate the mandatory
requirements. The results constitute to as the adaptation of a
system solution. Examples of parameter-tuning in system design
can be introducing additional system means in a system solution,
changing execution frequencies, or increasing implementation
resources. Accordingly, the coupling of a system function can be
either “intrinsic”, i.e., the dependency is within the core, or
“extrinsic”, i.e., if the dependency is within the adaptation.
The system function under measurement should exist in a “stable”
system solution in terms of a “static” configuration. In the case of
dynamic configuration, we view the system as composed of
several static configurations. In our system model, the mapping
between two stable configurations in a design hierarchy is given
by the refinement design relationship. In the development, the
measurement can be performed several times at different design
levels, targeting abstract functional solutions as well as
technology specific implementation solutions. By evaluating the
results, problems due to implementation technologies (e.g., due to
inconsistent emergent properties in implementation) can be
revealed.
3.2.2. Parameters affecting coupling
Coupling is a measure that quantifies the strength of the
dependency a system function has with respect to its operational
context. In our approach, two parameters are chosen to
characterize the strength: intensity and target-cardinality. The
intensity is a factor that aggregates the magnitude per time unit
and the accuracy of features being utilized in a relationship. The
target-cardinality is concerned with the scope of dependencies,
e.g., in the cases of fan-in and fan-out topologies.
An agreement (or a contract) is considered strong under the
following conditions: a large magnitude of features per time unit
being used (e.g., received/provided variables); a high accuracy is
required by the context of a system with respect to value,
ordering, and timing; and a large amount of partners are involved.
Note that some of these parameters can also be involved in other
system quality attributes (e.g., performance and reliability). Since
such parameters affect multiple quality attributes simultaneously,
they are often considered as the sensitive points of a system
solution, see e.g., [18].
In system design, it would be convenient to have an overall
coupling figure for a system function taking all individual
relationships into account. To this end, a methodology has been
developed. To make the cross type combination of coupling
possible, the problem due to the lack of a common basis has to be
resolved (e.g., a communication coupling in numbers of variables
per time unit vs. a synchronization coupling in number of

behavior features per time unit are not directly comparable). For
this reason, we normalize the measured couplings and combine
the results using a linear combination technique (i.e., weighted-
sum).

4. INDIVIDUAL COUPLING
The operational coupling of a system function is a union of
coupling by each type of interaction defined as follows.
DEFINITION 3 (Operational coupling of system functions by
individual relationships). For each f∈Func and r(f)∈Interact(f),

Coupling(f) = U {(r(f), κ(r(f)))}
 ∀r(f)∈Interact(f)

Where: κ - coupling factor of a type of relationships.
We write κ(r(f)) for the coupling factor of a system function
f∈Func for one type of its relationships r(f)∈Interact(f). The
coupling factor is the measure of dependency strength defined as
follows.
DEFINITION 4 (Coupling factor). For each r(f)∈Interact(f)

κ(r(f))= ρ(r(f))⋅ δ(r(f))C δ
where: ρ – intensity factor

δ – target-cardinality
Cδ – coefficient relating δ toρ

4.1. Intensity factor -ρ
The intensity factor quantifies the magnitude of features per time
unit that appear in a type of relationship by considering the
number, the frequency, and the accuracy of involved properties.
DEFINITION 5 (Intensity factor). For f∈Func, r(f)∈Interact(f),
and r(f)∈r(f), let the properties forming r(f) be Prop(r(f)). The
intensity of r(f) is

∑ ∑ R r(f)(p) ⋅ F r(f)(p) ⋅ sA r(f)(p)

ρ(r(f)) =
∀p∈Prop(r(f)) ∀r(f)∈r(f)

Where: R r(f)(p) – number of replications of p in r(f)
F r(f)(p) – frequency of p in r(f)
sA

 r(f)(p) – accuracy factor of p in r(f).

In Definition 5, the outer summation distinguishes different
properties that appear in a type of relationship. E.g., in the
configuration shown in Figure 5, the system function f1 has data
variables p1, p2, p3, p4 in its data input relationships,
Prop(IDRel(f1))={p1, p2, p3, p4}, and control variables p5 and
p6 in its control input relationships, Prop(ICRel(f1))={p5, p6},
and properties p7 and p8 in its output relationships,
Prop(ORel(f1))={p7, p8}. The system function f1 thus has
properties belonging to three different relationship types. The
inner summation identifies the relationship instances that use each
of these properties. It covers the cases where one property appears
in multiple instances of a single relationship type. E.g., in Figure
5, the data output of f1 has two instances: ORel(f1)={r′, r″},
where: r′ =(f1, COMM, f2) and r″ = (f1, COMM, f3). (See also
Definition 1). The output variable p7 is involved in both r′ and r″.

:Data for functional transformations

f1

 P1
 P2
 P3
 P4
 P5
P6

 P7

 P8

f2

f3

r′

r″

:Control for mode logic :System function
Figure 5. An example configuration of three system functions.

187

4.1.1. Number of replications – R
Given a property in an interaction, the parameter R describes the
redundancy that the property has each time when it is involved in
the interaction, R∈Z+ (i.e., a positive integer). The default value is
1, meaning there is no redundancy. A duplication has R=2, a
triple-redundancy has R=3, and so on. The redundancy can be
either spatial or temporal, where a property is replicated for the
reasons of dependability. For example, consider f1 in Figure 5, the
data variable p8 may need to be sent to function f3 twice at each
occurrence of communication compared to its nominal frequency.

4.1.2. Frequency – F
Given a property in an interaction, this parameter describes the
rate at which this property has to be provided or produced. We
assume that the system under consideration is deterministic in the
sense that interactions are either periodic or aperiodic, where the
frequency in the latter case is the rate necessary to handle burst
conditions (i.e. the worst case).

4.1.3. Accuracy factor – sA
The accuracy factor, sA, accounts for the strength of coupling
related to the required and provided quality of properties within
their compatibility range. It differentiates relationships that are
based on properties of the same type and with the same magnitude
per time unit, but of different accuracy. This factor is defined as
follows.
DEFINITION 6 (Accuracy factor sA). The accuracy factor for
property p in relationship r(f) is

1
sA

 r(f)(p)= 1 − CRM
 r(f)(p) ⋅ ln (1− RMA

 r(f)(p))

Where: RMA
 r(f)(p) – relative accuracy margin of p in r(f). 0≤

RMA
 r(f)(p)<1.

CRM
 r(f)(p) – constant for tuning the effect of the RMA.

CRM
 r(f)(p) >0.

The relative accuracy margin, RMA, indicates the freedom to
further change the quality of connected features (e.g., deceasing
the quality of data sent to a system function).
DEFINITION 7 (Relative accuracy margin RMA). The relative
accuracy margin for property p in relationship r(f) is

RA0
 r(f)(p) − RA r(f)(p)
RegA

 r(f)(p) , if RAr(f)(p)≠ RA0
 r(f)(p)

RMA

 r(f)(p)=

 0, if RAr(f)(p)=RA0
 r(f)(p).

Where: RA r(f)(p) – inherent relative accuracy of p in r(f),
0<RAr(f)(p)≤ 100%.

RA0
 r(f)(p) – context provided or assumed relative

accuracy of p in r(f), 0<RA0
r(f)(p) ≤ 100%.

RegA
 r(f)(p) – length of accuracy compatible region for p

in r(f), 0<RegA
 r(f)(p)≤100%.

If p is an incoming property: RA0
 r(f)(p)≥ RA r(f)(p), and RegA

r(f)(p)
= RA0

 r(f)(p). Otherwise: RA0
 r(f)(p)≤RA r(f)(p) and RegA

r(f)(p) = 1−
RA0

r(f)(p).

Both RA and RA0 are defined in terms of the agreement of a
property to its nominal value in percentage. The relative accuracy,
RA, is the accuracy determined by the system function itself. For
example, a data input can have a RA of 99.5%, meaning 0.5% of

deviation to the nominal value can be tolerated (i.e., either
ignored or handled by the system function). The reference relative
accuracy, RA0, is the required accuracy given by the context. For
example, the data input mentioned above can have RA0 =99.9%,
meaning that data sent to the system function has 0.1% of
deviation. The case RA=100% and RA0=100% represents an ideal
condition where the accuracies are not of concern or not taken
into account, for example when the design is at an early stage.
The length of the accuracy compatible region, RegA, indicates the
amount of permissible difference between the accuracy of a
property and its required value in a relationship. For an incoming
property (e.g., input data), the region is (0, RA0], meaning that any
value of RA from RA0 down to 0 is acceptable. When RA>RA0, the
connection is considered INCOMPATIBLE since errors of the
incoming feature can no longer be controlled and will eventually
result in system failure. For an outgoing property (e.g., output
data), the region is [RA0, 1], meaning that any value of RA from
RA0 up to is 100% acceptable. If RA<RA0, an outgoing connection
becomes INCOMPATIBLE since the provided feature does not
meet the required quality. See also Figure 6.

f e

RAr(f)(p)

RA0
r(f)(p)

p

RA < x

0

RA>RA0 (INCOMPATIBLE):

100%

AMA

x

RA=RA0 −AMA,
RMA =(RA0 − RA)/ RA0:

RA0 = x

f e p

RA > x

RA0 = x

0

RA<RA0 (INCOMPATIBLE):

100%

AMA

x

RA=RA0 +AMA,
RMA =(RA− RA0)/ (1-RA0) :

RA0 = x

RA0
r(f)(p)

RAr(f)(p)

RA0 = x

0 100% x

RA > x
RA < x

100% x
Reg Reg (I) (II)

Figure 6. An illustration of accuracies of (I) input (II) output.
The relative accuracies, RA and RA0, are both concerned with
permissible errors of a property from single system functions’
point of view. By definition, an error is a condition where a
feature deviates from its nominal value [14]. RA and RA0 are
derived from two tolerances respectively: RE and RE0. While the
relative error (RE) describes the degree of permissible errors
inherent in a system function, the reference relative error (RE0)
describes what is supported/required by its context. For property p
in r(f), RAr(f)(p) =1−RE r(f)(p) and RA0

r(f)(p)=1−RE0
r(f)(p).

The accuracy factor, sA, has a range of (0, 1]. Plot-I of Figure 7
depicts its relationship to the relative accuracy margin, RMA,
given as the inverse of a S-curve. When RMA=0, meaning that the
accuracy provided by a system function precisely matches what is
required by the context, sA has a value of 1. As the margin
increases, sA approaches 0 asymptotically. Plot-II of Figure 7
depicts the relationships between sA and the relative accuracies of
a property, RA and RA0, when CRM=1. As indicated by the plots,
to reduce the quality dependencies of a system function, one
needs to increase the relative accuracy margin of its properties.
This can be achieved by decreasing the RA or increasing the RA0
of its incoming properties, and by increasing the RA or decreasing
the RA0 of its outgoing properties (e.g., by applying a more robust
design).

188

The constant CRM is introduced to shape the curves. For example,
as shown in Plot-I and III of Figure 7, if a decrease of RA has a
large impact on the coupling, a large CRM should be chosen. The
choice of value depends on several factors in system development
(see Section 7 for a discussion).

The accuracies have their semantics given by the targeting
properties.
Communication relationships. For communication relationships
(i.e., CommRel), the accuracies RA and RA0 are concerned with
permissible value deviations of communication variables. The
relative errors, RE and RE0, are then the ratio of permissible value
deviation of a variable (i.e., the absolute error (AE) or value
tolerance) to its nominal value range. See Figure 8. For example,
consider the environmental temperature input of a system function
with a required tolerance of ±1°C over 0~200°C. Assume the
environmental data has a tolerance of ±0.5°C in a range over
−50°C~350°C, reflecting the constraints of sampling device (e.g.,
temperature sensor and A/D converter) that will eventually
implement the communication. Then, we have RA in 99.5% (i.e.,
(1 − 1/200)⋅100%) and RA0 in 99.875% (i.e., (1 − 0.5/400)⋅
100%)). If CRM=1, the relative margin (RMA) and accuracy factor
(sA) for the data input will be in 0.375% and 0.9963 respectively.
Replacing the system function by a new one with a tolerance of
±2°C, RA becomes 99%. This will contribute to a lower coupling
by reducing the quality dependency in terms of sA to 0.9913.

N
2⋅AE

Max Min

N – Nominal value; AE – absolute error; Min – minimum value; Max – maximum value.
Figure 8. Relative and absolute error of values.

Synchronization relationships by executional behavior
features. For ordering relationships (i.e., PBehRel, RBehRel,
PBehERel, or RBehERel), the accuracies RA and RA0 are
concerned with permissible errors of executional behavior
features in the connections. The relative errors, RE and RE0, are
the ratio between the number of permissible occurrences of errors
(e.g., a combination of omission and commission) to the number
of its nominal occurrence over a time duration. Note that an
executional behavior feature is “binary” in nature, e.g., a
triggering is either successful or not. For example, consider a
system function that is required to read its data input periodically
sent by another system function at a rate of 100Hz. Assume the
sender (as well as the communication link) has one omission of its

sending action over 10s. If one omission of this receiving action
over 1s is tolerable, we have RA=99% and RA0=99.9%. If
CRM=1, the relative margin (RMA) and accuracy factor (sA) for the
input behavior will be 0.88% and 0.9913 respectively.
Synchronization relationships by timing features. For timing
relationships (i.e., CoTimRel and CoTimERel), the relative
accuracies are concerned with permissible errors of timing
features in the connections. The relative errors, RE and RE0, are
given by the ratio of permissible deviation (i.e., jitters) to the
nominal interval of a timing feature (e.g., periodicity or delay).
For example, consider a system function (f) that performs data
output at a rate of 100Hz. Assume the output can be traced back to
an input of another system function (f ′). The timing of the output
can be written as t2=t1+τex+τin, where: t2 – time instant of the
output, t1– time instant of the input, τex– delay until the input data
propagates to an input of f, and τin– computational delay of f
(which also may include estimated operational interference).
Assume an end-to-end timing requirement as follows; t2= t1 +
10±0.5(ms). Given τex=6±0.3(ms), it will be required that
τin=4±0.2(ms). If the system function f provides τin= 4±0.1(ms),
we have RA=97.5% for the output (i.e., (1 − 0.1/4)⋅100%) and
RA0=95% (i.e., (1 − 0.2/4)⋅100%). With CRM=1, the relative
margin (RMA) and accuracy factor (sA) for the output timing will
be 50% and 0.5906 respectively.

4.2. Target-cardinality - δ
The target-cardinality describes the number of other system
means connected to a system function by relationships of a
particular type, defined as follows.

DEFINITION 8 (Target-cardinality). For r(f)∈Interact(f),
f∈Func, the target-cardinality of the relationship is1

δ(r(f)) ={g∈Func∃(f, R, g′)∈r(f), g′ ∈Func\{f}, R∈RelType:
g = g′ }

The coefficient Cδ is introduced due to the fact that the intensity
(ρ) and target-cardinality (δ) of a relationship can have different
effects on dependency. The choice of value depends on several
factors in system development (see Section 7 for a discussion).
We assume Cδ =2 for all communicational relationships, meaning
that target-cardinality has a much larger effect on communication
coupling than intensity. For all synchronization relationships, we
assume Cδ =1, meaning that target-cardinality and intensity have
the same effect on the coupling. For example, consider two
system functions: f1 and f2. Both of them receive data. While f1 is

Figure 7. (I) sA and RMA, with varying CRM. (II) sA and RA, with varying RA0 and CRM=1. (III) sA and RMA for an incoming property,
with varying CRM and RA0=100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RA0=100%

RA(Relative Accuracy)

S
A

(A
cc

ur
ac

y
fa

ct
or

)

CRM=30

CRM=10

CRM=5

CRM=3

CRM=1

CRM=0.5

CRM=0.3

CRM=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CRM=1

RA(Relative Accuracy)

S
A

(A
cc

ur
ac

y
fa

ct
or

)

 RA0=100%

 RA0=60%

 RA0=20%
 RA0=90%

 RA0=30%

 RA0=60%

 Incoming Property Outgoing Property

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RMA(Relative Accuracy Margin)

S
A

(A
cc

ur
ac

y
fa

ct
or

)

 CRM=30

 CRM=0.5

 CRM=0.3

 CRM=0.1

CRM=3

CRM=1

CRM=10

CRM=5

(I) (II) (III)

189

connected to 5 other system functions (δ=5) in 1 Hz, f2 is
connected to one other system function (δ=1) in 25 Hz. Assume
R=1, sA=1, and Cδ=1, then these two system functions will have
the same coupling value. However, in most cases, f1 is normally
more difficult to modify or replace than f2, indicating a stronger
dependency on the external functions. In f2, the compatibility
(both operational and analytical) concerns only two system
functions and is easier to manage.

4.3. Example
Assume there are six system functions shown in Figure 9. Assume
the accuracies equal to 100%.

f1 P1

P5

f3 f2
P1

P5

r1

r2

r3

r4

r5

 r

f4 r f5 P

r1

r2

r3

f6
P

r

P r

P

f1 has 5 data input connections
with 5 different system func-
tions in 10Hz

f3 has one data input
connection with one
single function in 50 Hz

f2 has 5 input connections
with one single function in
10 Hz

f5 has one redundant data
input connection with three
system functions in 10 Hz

f4 has one data input connec-
tion with one single function
in 10 Hz

f6 has one redundant
data input connection
with one single system
function in 10Hz

Figure 9. Example: six configurations of data input.

The coupling of these system functions are: κ(r(f1))=1250,
κ(r(f2))=50, κ(r(f3))=50, κ(r(f4))=10, κ(r(f5))=270, and
κ(r(f6))=30. The following shows how the computation is
performed:

For f2: r(f2)=IDRel(f2) ={r}, δ(r(f2))=1, and Prop(r(f2))={P1,
P2, P2, P4, P5}. For each property, we have

 P1: R r(P1)=1, F r(P1)= 10; P2: R r(P2)=1, F r(P2)= 10;
P3: R r(P3)=1, F r(P3)= 10; P4: R r(P4)=1, F r(P4)= 10;
P5: R r(P5)=1, F r(P5)= 10;

Hence, ρ(r(f2))=50 and κ(r(f2))= 50.
Although f1 and f2 have the same input intensity, f1 has a much
tighter coupling due to its high target-cardinality. The
configuration in f2 can be considered as a result of modularizing
the configuration of f1 where the sender functions to f1 are
composed into a single module. For the same reason, f6 has a
much lower coupling than that of f5, although inputs to these
system functions have the same intensity. The relationships of f3,
f4, f6 have the same amount of variables and target-cardinality. f3
has a higher coupling than f4 and f6 because of its frequency. f6 has
a higher coupling than f4 due to its replicated inputs.

5. INTEGRATED COUPLING
In the previous section, the coupling of a system function is a
collection of couplings by individual relationships. In this section,
we describe the approach to an integrated measure where the
coupling of individual relationships are normalized, weighted, and
summed together. This coupling is defined as follows.
DEFINITION 9 (Overall coupling of system functions). For

1 A- cardinality of set A; A\B - exclusion of set B from A.

f∈Func and r(f)∈Interact(f), the overall coupling is

 ∑ ω(r) ⋅ κ′ (r(f))

Overall_Coupling(f) =
∀r(f)∈Interact(f)

 Where: ω(r) – weighting factor of relationship r.
κ′ (r(f)) – relative coupling factor of r(f).

5.1. Relative coupling factor - κ′
The relative coupling factor κ′ for a type of relationship is
obtained by normalizing the coupling of a system function as
follows.

DEFINITION 10 (Relative coupling factor). For f∈Func and
r(f)∈Interact(f), the relative coupling factor is

 1
κB(r(f)) 2Cs(κB(r(f)− κ(r(f)))

1+ (κ(r(f)))
When κ(r(f))≤κB(r(f))

 1
κU(r(f))-κ B(r(f)) 2Cs(2κ(rU(f)) − κB(r(f))− κ(r(f)))

κ′ (r(f)) =
1−

1+(κU(r(f))-κ(r(f)))
 When κ B(r(f))≤κ(r(f))≤κ U(r(f))

Where: κ(r(f)) – coupling of r(f).
κB(r(f)) – baseline coupling of r(f).
κU(r(f)) – upper bound coupling of r(f).
Cs – constant for tuning slope of the curve κ′ (r(f)) at

κB(r(f)), Cs>0.
This definition is derived from the general-purpose standard
scoring function (SSF) of Wymore [5], by assuming that the
lower bound of a coupling factor is 0. The baseline, κB(r(f)),
represents the design goal or the condition in an initial solution
(from which other solution alternatives are generated). The
relative coupling, κ′ (r(f)), of the baseline coupling is always 0.5.
The upper bound, κU(r(f)), represents the maximum value and has
κ′ =1. Figure 10 depicts the shape of the curve and the effect of
Cs

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k(f)

k(
f0

)

 Cs=1.6e-3

 Cs=0.8e-3

 Cs=1.2e-3

Figure 10. κ′ and κ with varying Cs , when κB=3000, κU=4000.

To determine the baseline and upper bound for each system
function, one needs to take the implementation-sharing
relationships of a system function (i.e., SImplPRel, SImplMRel,
and DImplMRel) as well as the scheduling decisions into
consideration. Each of these implementation-sharing relationships
indicates a special kind of technology constraints.

For example, consider an axis control system within which there

190

are a torque control function (TC) and a power stream control
function (IC). The TC sends a data variable (i.e., current set
point) to the IC at 2kHz. Given a target platform consisting of two
nodes and a CAN-bus, TC and IC can be allocated either to a
single node or to different nodes separately. Accordingly, the
baseline and upper bound for the communication relationships
differ, resulting in different values of the relative coupling.

5.2. Weighting factor - ω(r)
The weighting factor is used to indicate the relative tightness of
dependencies due to different types of relationships. It is based on
the assumption that different relationships can have different
degrees of contribution to flexibility. The weight is obtained as
follows.
DEFINITION 11 (Weighting factor). For each r ∈Interact,

ω(r) = ω(Gr) ⋅ ωGr(r)
Where: Gr – category of interactions, i.e. CommRel and SyncRel.
 ω(Gr) – cross category weights.
 ωGr(r) – cross type weights within the same group.
The values are determined using a binary comparison technique,
i.e., analytical hierarchy process (AHP) [19]. Some useful
heuristics for the weighting is listed in Table 3. One result for the
relationships in a particular system is shown in Table 4.

Table 3. General heuristics taken for the weighting.

 Communication vs.
synchronization

Synchronization is tighter. Such relationships connect dynamic
features that are in general more challenging to manage (e.g.,
requiring careful scheduling and clock synchronization).

Internal vs.
environmental
relationships

Environmental relationships are tighter. Such a relationship
normally involves a mapping from the continuous physical
domain to the discrete digital domain. Moreover, the environ-
ment is often predetermined, with little freedom to be changed.

Outgoing vs.
incoming

relationships

Incoming relationships are tighter. An incoming relationship
indicates a client role, while an outgoing relationship indicates
a server role. A sever can work independently without its
clients, but a client needs the services provided by its servers.

Data vs. control
communications

Communication relationships of control variables are tighter.
Instead of transformations, the targets of control variables are
mode transitions where a small divergence or change to the
expected values may result totally different outcomes.

Simple vs. looped
relationships

Looped relationships are much tighter since a loop indicates a
symmetric or mutual dependency.

Ordering vs. timing
relationships

Timing relationships are tighter than pure ordering. Such
relationships require a fixed timing between executional
behaviors, and are hence more difficult to guarantee.

Table 4. Example of weighting results.
Relationships

- r
Group/category

- Gr
Cross-group

weights
- ω (Gr)

Cross-weight within
a group
- ω Gr(r)

Final weight
- ω (r)

ORel CommRel 0.25 0.008 0.002
OERel CommRel 0.25 0.010 0.003
IDRel CommRel 0.25 0.014 0.004
IDERel CommRel 0.25 0.020 0.005
ICRel CommRel 0.25 0.028 0.007
IDCRel CommRel 0.25 0.033 0.008
ICERel CommRel 0.25 0.040 0.010
IDCERel CommRel 0.25 0.048 0.012
IDLRel CommRel 0.25 0.058 0.015
PBehRel SyncRel 0.75 0.025 0.019
IDELRel CommRel 0.25 0.082 0.021
ICLRel CommRel 0.25 0.116 0.029
PBehERel SyncRel 0.75 0.043 0.032
IDCLRel CommRel 0.25 0.141 0.035
ICELRel CommRel 0.25 0.176 0.044
IDCELRel CommRel 0.25 0.224 0.056
RBehRel SyncRel 0.75 0.080 0.060
RBehERel SyncRel 0.75 0.144 0.108
CoTimRel SyncRel 0.75 0.256 0.192
CoTimERel SyncRel 0.75 0.452 0.339

6. RELATED WORK
Some of the earliest definitions on coupling-and-cohesion for
software have been proposed by Stevens, Myers, Yourdon, and
Constantin in 1970’s, see [20][21]. Their aim is to provide a basis
for modularizing software in a structured programming language
and for evaluating the quality. They distinguish 7 levels of
cohesion and 5 levels of coupling, found in structured software
programs. These basic coupling types have been refined and
extended over the years. For instance, Offutt et. al. [22]
differentiate three ways of information usage: C-uses
(computation uses), P-uses (predicate uses), and I-uses (indirect
uses). In [23], Lounis and Melo have proposed a suite for
identifying and counting various coupling types in C-language. In
this work, the couplings between C-modules are arranged in
two major groups distinguished by the kind of interconnection
mechanism: unit-call interconnection and common
interconnection. These basic coupling types are then sub-
classified according to the type of transmitted information (by
data or by address/reference), the usage of shared information (in
computation or in procedure control as in [22],), as well as some
language specific issues (interconnection by call or by return). To
measure the coupling of each module or in the entire system, the
numbers of import and export connections of each interconnection
type are counted.
There are also efforts in defining metrics of coupling and
cohesion for object-oriented software systems, considering
especially the object-oriented features such as classes,
encapsulation, inheritance and polymorphism. Eder et al. [24]
have identified three dimensions of cross-class coupling by
investigating the configuration and dependencies of OO
programs: interaction coupling, component coupling, and
inheritance coupling. Chidamber and Kemerer [25] have
proposed a metrics suite for object-oriented design based on a
study of the ontology of OO concepts concerning objects and
their relationships. An OO object is a representation of the
application domain, defined by a name and a set of properties in
terms of instance variables and operation methods. Objects are
related to each other by encapsulation, independence and
inheritance. A coupling is established between two classes when
methods declared in one class use methods or instance variables
of the other class. It is referred to as CBO (Coupling between
object classes), and measured by the number of classes a class is
coupled with. In [26], Briand et.al. have proposed an integrated
measurement framework for object-oriented coupling metrics.
This is based on a formal definition of characteristics of such
software programs such as polymorphisms, static and dynamic
method invocations. In [27], Allen and Khoshgoftaar propose an
information-theory based approach to coupling and cohesion
measures, motivated by the need for a more effective assessment
method than counting. For the understanding of coupling and
cohesion a formal framework is used to describe the components
in a system and their relationships. This approach measures the
overall coupling of inter-module and intra-module types by
quantifying the symbolic information content (i.e., entropy) based
on connection patterns.
From an ECS point of view, all the above-mentioned approaches
are delimited by their software engineering based perspective.
The lack of consideration with respect to ECS specific concerns
such as timing and concurrency means that the produced
measures are only partial figures of coupling.

191

7. CONCLUSIONS AND FUTURE WORK
A metrics system has been developed to support an objective and
repeatable measurement of operational dependencies between
system functions, hence a more systematic approach to structuring
and quality prediction of ECS. Instead of implementation-
technology, the measurement targets the overall system structure
and behavior, existing throughout the refinement hierarchy of a
system. Based on a fine grained classification of such
relationships, the quantification takes ECS specific issues into
concern such as replication and timing.
There are several obvious avenues for further work. In the short
term there is a need to gather more empirical evidence mainly for
studying the influence and tuning of the following parameters part
of the coupling metric: Cδ, CRM, and the cross-type weighting. We
believe that these depend on both human decision factors and
system factors, such as system characteristics, the insight of the
developers, the available modeling and tool support. I.e. we do
not expect that coupling as a soft quality attribute will obey any
natural laws. However, for the purpose of early estimations there
is less of a need for highly precise metrics; the value lies in being
able to reveal the sensitive points and to make multi-attribute
trade-offs possible.

8. ACKNOWLEDGMENTS
The work described in this paper is funded in part by ARTES (a
network for real-time research and graduate education), and in
part by KTH (Royal Institute of Technology) in Sweden.

9. REFERENCES
[1] J. Wikander, M. Törngren, Mechatronics as an Engineering

Science, Proc of the 6th UK Mechatronics Forum Int Conf,
1998.

[2] NG Leveson, Intent Specifications: An Approach to Building
Human-Centered Specifications, IEEE Trans on SW Eng,
VOL.26 (1), 2000

[3] NP Suh, Axiomatic design: Advances and Applications.
Oxford University Press. 2001.

[4] E Rechtin, MW Maier. The Art of System Architecting, CRC
Press. 1997.

[5] WL Chapman, AT Bahill, AW Wymore, Engineering
Modeling and Design, CRC Press. 1992.

[6] JE Cooling, Software Design for Real-time Systems,
Chapman and Hall. 1991.

[7] H Gommaa, Designing Concurrent, Distributed, and Real-
Time Applications with UML, Addisson-Wesley, 2000.

[8] W Stevens, GJ Myers, L Constantin, Structured Design, IBM
Syst Jour, VOL.13 (2) 1974.

[9] EL Yourdon, L. Constantin, (1979), Structured Design –
Fundamentals of a Discipline of Computer Program and Syst
Design, Prentice-Hall, 1979.

[10] DJ Chen, M Törngren, A Systematic Approach for
Identifying Operational Relationships in Embedded
Computer Control Systems, 30th Euromicro Conf. on
Component-Based Software Engineering Track, Aug, 2004.

[11] DJ Chen, M Törngren, Towards A Framework for
Architecting Mechatronics Software Systems, 7th IEEE Int
Conf on Eng of Complex Comp Sys (ICECCS), Jun, 2001.

[12] DJ Chen, J El-Khoury, M Törngren, A Modeling Framework
for Automotive Embedded Control Systems, SAE Tech
Paper Series (2004-01-0721), 2004 SAE World Cong,
Detroit, March 8-11, 2004.

[13] J El-khoury, DJ Chen, M Törngren, A Survey of Modeling
Approaches for Embedded Computer Control Systems,
Technical Report, TRITA-MMK 2003:36 ISSN 1400 –1179,
ISRN KTH/MMK/R-03/11-SE, 2003.

[14] NG Leveson, Safeware – System Safety and Computers,
Addison-Wesley Publishing Company, 1995.

[15] N Storey, Safety-Critical Computer Systems, Addison-
Wesley, 1996.

[16] R Wieringa, A survey of structured and object-oriented
software specification methods and techniques, ACM
Computing Surveys (CSUR), Vol 30(4), Dec, 1998.

[17] SW Kercel, Why should engineers be interested in bizarre
systems?, IEEE International Conference on Systems, Man,
and Cybernetics Volume: 3 , 8-11 Oct. 2000.

[18] MR Barbacci, SJ Carriere, PH Feiler, R Kazman, MH Klein,
HF Lipson, TA Longstaff, CB Weinstock, Steps in an
Architecture Trade-off Analysis Method: Quality Attribute
Models and Analysis, Tech Report, SEI, CMU, 1997.

[19] TL Saaty, Multicriteria decision making: The analytic
hierarchy process. 1980, McGraw-Hill.

[20] W. Stevens, G. J. Myers, L. Constantin, Structured Design,
IBM System Journal, Vol. 13, no. 2. 1974.

[21] EL Yourdon, L. Constantin, (1979), Structured Design –
Fundamentals of a Discipline of Computer Program and
System Design, Prentice-Hall, 1979

[22] AJ Offutt, MJ Harrold, and P Kolte, A Software Metric
System for Module Coupling, Journal on Software and
System, 1993

[23] H. Lounis and W. Melo, Identifying and Measuring
Coupling on Modular Systems, Proceedings of the 8th
International Conference on Software Technology
(ICST’97), Curitiba, Brazil, June 1997.

[24] J Eder, G Kappel, and M Schrefl, Coupling and Cohesion in
Object-Oriented Systems, Tech. Rep., Univ. of Klagenfurt,
1994.

[25] SR Chidamber and CF Kemerer, A Metrics Suite for Object
Oriented Design IEEE Trans.s on Software Eng., vol. 20,
Issue: 6, June 1994.

[26] LC Briand, JW Daly, and JK Wüst, A Unified Framework
for Coupling Measurement in Object-Oriented Systems,
IEEE Trans. on Software Eng., VOL. 25 (1), Jan./Feb. 1999

[27] EB Allen, TM Khoshgoftaar, Measuring Coupling and
Cohesion: An Information-Theory Approach, Proceedings of
the Sixth International Software Metrics Symposium, pages
119-127, Boca Raton, Florida, USA, Nov. 1999, IEEE
Computer Society.

[28] Roadmaps for Embedded Software and Systems, ARTIST
Project IST-2001-34820. < http://www.artist-
embedded.org/Roadmaps/ >

192

