
Microarchitecture Evaluation With Physical Planning

Jason Cong, Ashok Jagannathan, Glenn Reinman, Michail Romesis
Computer Science Department

University of California, Los Angeles
{cong,ashokj,reinman,michail}@cs.ucla.edu

ABSTRACT
Conventionally, microarchitecture designs are mainly guided
by the maximum throughput (measured as IPC) and fail to
evaluate the impact of architectural decisions on the physical
design, and in particular, the impact on the interconnects.
In this paper, we propose MEVA, a system to consider both
IPC and cycle time in the design space search for a given
microarchitectural design. MEVA can consider a variety of
user-specified architectural alternatives that trade IPC and
cycle time in the design, and performs accurate floorplan-
ning and simulation to fully evaluate each alternative. The
resulting solution will maximize the benefit from both IPC
and cycle time to provide a better solution than a design
space exploration based simply on IPC or cycle time alone.
For a sample architectural design, we are able to search a
space of 32 architectural configurations with physical plan-
ning in less than 2 hours to find a processor configuration
that, in terms of BIPS, outperforms the configuration with
the best IPC performance by 14%, and the configuration
with the fastest clock by 27%. This initial exploration only
considers the boundary cases of a much larger design space,
but still features substantial IPC and cycle time variation.

Categories and Subject Descriptors
B.8.2 [Hardware]: PERFORMANCE AND RELIABIL-
ITY

General Terms
Algorithms, Design, Performance

Keywords
Microarchitecture evaluation, physical planning

1. INTRODUCTION
There are a number of hardware challenges that future

architects will need to face in the design of the next genera-
tion of microprocessors. As feature sizes continue to shrink,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

it has become evident that interconnect delay is not scaling
at the same rate as transistor delays. Architects have been
adding a variety of components to the chip to improve pro-
cessor performance. These components have caused the chip
area to increase with successive technology generations [1],
complicating layout and routing. Also, as the clock speed
of the processor continues to increase correspondingly drop-
ping the cycle time of the processor, the interconnect scaling
problem becomes even more severe and the processor may
be unable to communicate across the chip in a single cy-
cle [1, 2]. Agarwal et al. [1] predict that current processor
designs will improve by at best, 12.5% per year in terms of
performance over the next fourteen years due to hardware
scaling concerns.

Prior work [1, 3, 4] has demonstrated the need to con-
sider both cycle time and throughput (IPC) when measur-
ing overall processor performance. However, architects often
have little or incomplete physical design information about
the architectural space they are considering. Accurate area
and delay information for a given logic block can be difficult
to derive without an actual implementation of the architec-
ture. Moreover, without accurate physical planning, design-
ers cannot measure the considerable impact interconnect can
have on a given architecture.

In general, the execution time for a given program is de-
fined as

Texec = num instructions ∗ CPI ∗ cycle time

where num instructions is the dynamic instruction count of
the program, CPI or cycles/instruction is the average num-
ber of cycles required to execute a given instruction, and cy-
cle time is the inverse of the processor frequency (measured
in seconds). Much research has been dedicated to exploring
the interaction between compilers and architectures to bet-
ter improve both the CPI and dynamic instruction count of
a given application space. However, it is equally important
to consider the interaction between architectural design and
physical design (the latter two variables in the execution
time equation). This requires designers to carefully explore
both spaces together, making architectural decisions that
maximize benefits to both throughput and cycle time.

The design space explored by architects during proces-
sor design can grow quite large when considering differ-
ent algorithms (i.e. different branch predictors), compo-
nent sizes and characteristics (i.e. cache size or associa-
tivity), or pipeline depth (i.e. cache access latency). To
better manage and explore this space in the face of future
hardware scaling challenges, we propose a Microarchitec-

3.4

32

uArch P hysical
P lanning

uArch
template

.cfg

Cycle time

S P E C 2 K

uArch Simulator

IPC

P erformance on
S PE C2K

Implementation
Alternatives

IPC
estimator

Figure 1: Overview of the MEVA system

tural EVAluation (MEVA) system to provide a set of flexi-
ble and customizable tools to explore an architectural design
space with both accurate physical planning information and
cycle-accurate architectural simulation. Through this joint
exploration of physical and architectural design, architects
can better study what designs are able to tolerate poor wire
scaling and still achieve high performance.

The rest of the paper is organized as follows: In Section 2,
we present an overview of the MEVA system. Section 3
discusses the physical planning engine. Experimental results
are presented in Section 4 and the paper is concluded with
some suggestions for future work in Section 5.

2. OVERVIEW OF MEVA
Figure 1 shows the overall picture of the MEVA system. In

the following section, we briefly discuss the inputs, outputs
and the various components of this system.

Inputs to MEVA
The MEVA system takes two inputs – (a) an architectural
template, which is essentially a block-level netlist that cap-
tures connectivity of the major functional blocks and (b) a
library of architectural alternatives for the different blocks in
the template. Together, the architectural template and the
library of alternative block implementations capture a class
of microarchitectures where the underlying connectivity is
fixed, while the individual block properties such as area,
timing, latency can vary significantly. Such alternative ar-
chitectures for the blocks affect the IPC through varying la-
tency properties, and also affect the cycle time as they have
different area/timing characteristics. It is important to note
that it is impossible to represent all classes of microarchitec-
tures using a single template. Thus, one can come up with a
variety of templates and corresponding library files to model
any architectural space, and use the MEVA system to evalu-
ate each class of microarchitectures with physical planning.

Since the choice of any architectural alternative on the
physical design space is measured by its impact on the achiev-
able cycle-time, the area and timing properties of these al-
ternatives should be modeled in sufficient detail. Each al-
ternative is characterized with the following information:
(i) Area of the block.
(ii) Longest delay D of any combinational path inside the
block.
(iii) Input-to-clock time (Tsu): For each input pin on the
block, this value specifies the maximum delay from this pin
to any flip-flop inside this block.
(iv) Clock-to-output time (Tco): For each output pin on
the block, this value specifies the maximum delay to this pin
from the output of any flip-flop inside this block.

The Tsu and Tco values are very important in deciding the

freedom available for the interconnects that are connecting
this block to the rest of the design. We believe that the
above mentioned information is good enough for careful in-
terconnect planning.

In MEVA, we use structural Verilog to represent a given
architectural template and a Synopsys .lib like format for
our library of architecture alternatives.

Components of MEVA
The MEVA system consists of three main components which
are (a) physical planning engine, (b) IPC estimator and (c)
cycle-accurate microarchitectural simulator.

The physical planning engine takes as input the architec-
tural template and the library of architecture alternatives
and performs a floorplanning of the design with intercon-
nect planning to optimize a given cost function, which can
include a combination of objectives from the architectural
and physical design spaces such as IPC, cycle time, power
etc. During this process, the planning engine also chooses
different alternative implementations for each block from
the library to achieve the best set of block implementations
for the given objective. The planning engine also considers
various layout related issues such as pin-assignment for the
blocks, routability of the floorplan etc., when it attempts to
find the best microarchitecture in terms of the given con-
straints. This planning engine is presented in Section 3.

The goal of the IPC estimator is to provide the planning
engine with a quick and accurate IPC estimation for any
configuration of block alternatives chosen by the planning
engine at any point of time. In this work, we use a cycle-
accurate simulator to generate IPC values for any given ar-
chitectural configuration as discussed in [5].

Once the planning engine determines the best configu-
ration for each block based on the IPC estimates and the
results of the floorplan, this result can be fed to a cycle-
accurate microarchitecture simulator. The simulator per-
forms a detailed simulation of the underlying architectural
model for a given set of benchmark programs, and provides
accurate IPC information characterizing the microarchitec-
ture.

Outputs from MEVA
The output from MEVA includes the selected architectural
alternative for each block in the template along with the
best possible cycle time information that it can derive us-
ing its physical planning engine, subject to the cost function
specified to the planning engine. The latency of the archi-
tectural alternative for each block can then be fed to a cycle-
accurate architecture simulator for that template to generate
an accurate IPC value. The cycle time information from the
physical planning engine and the accurate IPC value from
the simulator can then be used to get a good estimate of
the performance of the microarchitecture on the given set of
benchmarks.

3. PHYSICAL PLANNING ENGINE
The physical planning engine in MEVA has been devel-

oped to address the following goals: (i) Optimize the perfor-
mance of the system measured as the number of instructions
executed per second – i.e., IPC/cycle time, subject to other
physical design constraints such as area. (ii) Consider differ-
ent architectural alternatives for the blocks when searching

33

for the architecture with the best performance. (iii) Con-
sider interconnect planning during the floorplanning stage.

The inputs to the engine are (a) an architectural template,
(b) a library file that contains area and timing information
for different architecture alternatives of each block and (c) a
list of allowed architectural combinations along with the IPC
for that configuration. The output of the engine is a layout
of the blocks with a selection of an architecture combination
such that the performance of the system is maximized under
given area constraints. Below, we explain how we address
each of the three main goals:

Objective function: The objective function for our plan-
ning engine is as follows:

�n
i=1 w(i)wl(i)

IPC(c)

where w(i) is the weight of a net i, wl(i) is the wirelength of
i, and IPC(c) is the IPC of the current configuration c. The
weights for the nets are computed according to the slacks of
their pins. We use a traditional simulated annealing engine
and at every temperature we perform static timing analysis.
The delays for every pin-to-pin connection are computed by
the IPEM estimator [6] for the 0.10µm technology which
considers optimal buffer insertion, sizing and wire sizing.
Using static timing analysis, we can estimate the cycle time
for the current layout and the slack time of each pin. For
a net n , suppose that the slack time of its source pin is
s picoseconds. If the total cycle time is c picoseconds, the
weight of the net n is computed as: (1 − s/c)a. The expo-
nential factor a is initialized to 1, and is gradually increased
as we move to lower temperatures.
Alternative Block Selection: We introduce a new type
of move in the simulated annealing engine, called the config-
uration selection. When a new configuration is selected, the
dimensions and the timing characteristics of some blocks
change, as well as the IPC of the floorplan. This is usu-
ally a significant change to the floorplan, therefore, in or-
der to evaluate it we first perform a small number of low-
temperature additional moves on the new configuration, and
we then decide to accept or reject the new configuration.
Interconnect Planning: As mentioned earlier, we use the
interconnect performance estimator IPEM [6] for estimating
the wire delays under optimal buffer insertion, sizing and
wire sizing. Currently, we perform a simple pin assignment
alogrithm. The algorithm is initially computing a location
of the pins while ignoring the spacing constraints. The pins
then are spread out until they satisfy the width and spacing
requirements. For the immediate future, we plan to inte-
grate pin assignment with global routing according to the
algorithm described in [7]. For the global router, a good
candidate is the L-Z router presented in [8], as it is very fast
and can provide congestion information.

We have implemented a version of our physical planning
engine extending the floorplanner PARQUET [9] to support
timing optimization, alternative block selection and inter-
connect planning. Table 1 shows the quality of our physical
planning engine compared to existing state-of-the-art floor-
planners [10][11] on a set of MCNC benchmarks.

4. EXPERIMENTAL RESULTS
In this section, we report results to support the viability

of the proposed approach. For the purpose of this study,

Circuit Sim-Tempering TCG MEVA
Area WL Area WL Area WL

ami33 1.29 48.6 1.24 50.3 1.28 47.7
ami49 39.24 715.8 38.20 663.1 38.47 646.8

hp 9.58 114.9 9.49 151.8 9.96 101.2
xerox 20.50 417.4 20.42 385.0 21.02 384.3
apte 48.50 223.8 48.48 378.0 49.58 276.6

Average 0.99 1.03 0.97 1.19 1 1

Table 1: Comparison of MEVA with existing floor-
planners on MCNC benchmarks.

we developed an architectural template [5] which represents
a 4-way out-of-order superscalar processor. This template
has been carefully chosen to allow us to study many of the
interesting architecture alternatives available to a micropro-
cessor designer. The architecture simulator used is a cycle-
accurate simulator built on the SimpleScalar [12] tool set.
We perform simulations on 20 randomly selected SPEC2000
benchmarks and use the arithmetic mean to obtain the IPC
for any architectural configuration. We have chosen to vary
the size and latency of the branch predictor, instruction win-
dow and the instruction and data caches primarily due to the
fact that variation in these block characteristics will result
in significant change in the IPC of the architecture, leading
to interesting design tradeoffs. All our area/delay estimates
are generated using CACTI [13] and are based on the 100nm
technology parameters built within the tool. Based on the
delay values, we derive a minimum and maximum latency
value for each of the blocks based on the cycle-time of exist-
ing state-of-the-art microprocessors. We assume that these
blocks can be pipelined using a given number of flip-flops,
such that the delay of each stage inside the block is the same.
It is important to note that the minimum and maximum
latency options will imply different longest combinational
delays and Tsu/Tco requirements, which will siginificantly
affect the freedom during physical planning. We generate
32 architecutral combinations, 16 for the minimum latency
values and 16 for the maximum latency values, as presented
in [5].

Figure 2 presents three data points for each of the 32
configurations derived – (a) the average IPC number for
each architectural configuration obtained using our cycle-
accurate simulator, (b) the cycle time of the best floorplan
obtained using our physical planning engine and (c) the cor-
responding BIPS rating. It can be seen from Figure 2 that
configuration #16 has the best IPC and configuration #18
has the best cycle time. However, configuration #24 has
the best performance in terms of BIPS, underlining the fact
that it is important to look at both the architectural and
physical design spaces together to draw conclusions on the
overall performance of any microarchitecture. Also, despite
the relatively lower IPC of the maximum latency configura-
tions (17-32), we see a dramatic increase in BIPS for these
configurations due to the cycle time we are able to achieve
with the deeper pipelining. The extra data cache latencies
and larger branch misprediction depth are particularly hard
to tolerate, as shown in [3], and have a large impact on
IPC for these configurations. This again, demonstrates the
importance of examining both IPC and cycle time when ex-
ploring a design space. Ultimately, these results emphasize
the importance of taking interconnect effects into account
when exploring an architectural design space. The latencies

34

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

IPC cycle time BIPS

Figure 2: IPC, cycle time and BIPS results for the 32 configurations.

in the architectural alternatives impact the IPC of the con-
figuration, and can be tuned for a desired cycle time, but
the true cycle time is only known once the floorplanning is
complete. This can have surprising results, as in the case
of configurations #2 and #3. Despite a comparable IPC,
the wirelength impact of the larger branch prediction logic
has a significant impact on BIPS (nearly a 10% reduction in
BIPS from configuration #3 to #2).

It should be noted that these results only represent the
performance of the boundary cases (corresponding to the
minimum and maximum latencies of the blocks) in our driver
architecture design space. A configuration with latency be-
tween the boundary configurations should provide the most
beneficial tradeoff between IPC and cycle time, as the mini-
mum latency alternatives do not provide an aggressive enough
clock speed and the maximum latency alternatives are too
heavily pipelined (impacting IPC) relative to the impact of
wirelength.

Finally, to validate the alternative architecture selection
part of our physical planning engine, we tried to search the
combined solution space using the method explained in Sec-
tion 3. Since the tool is searching a very large solution
space, we measure the effectiveness of the tool by the qual-
ity/runtime tradeoff – i.e., what is the quality of the best
configuration identified by the tool, given a fixed amount of
computing time? Over several runs, we found that the tool
finds the best configuration (#24 in our case) in about 1/4th
of the total running time required to generate the best pos-
sible floorplan for each of the 32 configurations individually.

5. CONCLUSION AND FUTURE WORK
We have presented a microarchitectural evaluation system

named MEVA that attempts to combine the architectural
design space with the physical design space. A representa-
tive architectural template with corresponding block alter-
natives was presented to demostrate the validity of the ap-
proach. Both IPC values and cycle times for these different
architecture configurations were shown, along with the BIPS
value, to emphasize the need for a combined consideration of
physical planning during microarchitecture evaluation. Ex-
perimental results show the viability of this approach and
the need for better tools to evaluate microarchitectures with
careful physical planning. Future work will also involve a
more efficient search of a much larger design space, beyond
the boundary alternatives and more efficient ways to quickly
estimate the IPC of microarchitectures.

Acknowledgements
This work is supported in part by Semiconductor Research Corpo-
ration under Contract 2001-TJ-910, the MARCO/DARPA Gigascale
Silicon Research Center (GSRC), the National Science Foundation
under Grant CCR-0096383, and a grant from Intel Corporation un-
der the California MICRO program.

6. REFERENCES
[1] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger, “Clock

rate versus ipc: The end of the road for conventional
microarchitectures,” in 27th Annual International Symposium
on Computer Architecture, 2000.

[2] J. Cong, “An interconnect-centric design flow for nanometer
technologies,” in Proceedings of IEEE, pp. 505–527, April 2001.

[3] E. Sprangle and D. Carmean, “Increasing processor
performance by implementing deeper pipelines,” in 29th
Annual International Symposium on Computer Architecture,
2002.

[4] G. Reinman, T. Austin, and B. Calder, “A scalable front-end
architecture for fast instruction delivery,” in 26th Annual
International Symposium on Computer Architecture, May
1999.

[5] J. Cong, A. Jagannathan, G. Reinman, and M. Romesis,
“Microarchitecture evaluation with physical planning,”
Technical Report CSD-030022, University of California, Los
Angeles, Mar. 2003.
http://cadlab.cs.ucla.edu/∼michail/arch/030022.pdf.

[6] J. Cong, and D. Pan, “Interconnect estimation and planning
for deep submicron designs,” in Proc. Design Automation
Conference, pp. 507–510, 1999.

[7] J. Cong, “Pin assignment with global routing for general cell
design,” IEEE Trans. on Computer Aided Design, vol. 10,
pp. 1401–1412, 1991.

[8] C. Chang, J. Cong, D. Pan, and X. Yuan, “Physical hierarchy
generation with routing congestion control,” in Inter.
Symposium on Physical Design, pp. 36–41, 2002.

[9] S. Adya, and I. Markov, “Fixed-outline floorplanning through
better local search,” in Proc. International Conference on
Computer Design, pp. 328–334, 2001.

[10] J. Cong, T. Kong, D. Xu, F. Liang, J. Liu, and W. Wong,
“Relaxed simulated tempering for vlsi floorplan design,” in
Proc. Asia and South Pacific Design Automation Conference,
pp. 13–16, 1999.

[11] J. Lin, and Y. Chang, “Tcg: A transitive closure graph-based
representation for non-slicing floorplans,” in Proc. Design
Automation Conference, pp. 764–769, 2001.

[12] D. C. Burger and T. M. Austin, “The simplescalar tool set,
version 2.0,” Technical Report CS-TR-97-1342, University of
Wisconsin, Madison, June 1997.

[13] S. Wilton and N. Jouppi, “Cacti: An enhanced cache access
and cycle time model,” in IEEE Journal of Solid-State
Circuits, May 1996.

35

