
Fast Statistical Timing Analysis By Probabilistic Event
Propagation�

Jing-Jia Liou, Kwang-Ting Cheng, Sandip Kundu†, and Angela Krstić
Electrical and Computer Engineering Department,

University of California, Santa Barbara
†Intel Corporation, Austin

ABSTRACT
We propose a new statistical timing analysis algorithm, which

produces arrival-time random variables for all internal signals and
primary outputs for cell-based designs with all cell delays modeled
as random variables. Our algorithm propagates probabilistic tim-
ing events through the circuit and obtains final probabilistic events
(distributions) at all nodes. The new algorithm is deterministic and
flexible in controlling run time and accuracy. However, the algo-
rithm has exponential time complexity for circuits with reconver-
gent fanouts. In order to solve this problem, we further propose a
fast approximate algorithm. Experiments show that this approxi-
mate algorithm speeds up the statistical timing analysis by at least
an order of magnitude and produces results with small errors when
compared with Monte Carlo methods.

1. INTRODUCTION
Process variations, manufacturing defects and noise are major

factors in determining the timing characteristics of deep sub-micron
designs. Process variations often result in a wide range of possible
device parameters, making circuit performance hard to estimate.
Delay faults caused by interconnect defects and noise sources are
also unpredictable in terms of size of induced delay. All these
factors are statistical in nature and are best modeled using statis-
tical models. Therefore, the use of statistical methods for timing
analysis to incorporate statistical timing deviations caused by these
sources seems to be inevitable.

For statistical timing analysis, the delays of cells/interconnects
are modeled as correlated random variables with known probability
density functions (pdf’s). Given these cell/interconnect delays, the
cell level netlist and the clock period, statistical timing analysis can
derive the probability density functions of the signal arrival times at
internal signals and primary outputs. For large designs with a large
number of delay random variables, determining closed forms for
the probability density functions of the arrival times at the primary
outputs is computationally expensive and impractical. Therefore,

�This work was supported in part by the MARCO/DARPA Gigascale Sil-
icon Research Center (http://www.gigascale.org) and NSF Grant CCR-
9901099. Their support is gratefully acknowledged.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

the popular Monte Carlo based technique is often used to approxi-
mate the probability density functions of the signal arrival times at
the internal signals and primary outputs. Each run of Monte Carlo
simulation consists of two steps: sampling and analysis. In the
sampling step, a single value is chosen from each random variable
according to the law of probability. The analysis step utilizes these
sampled values to derive the arrival times at all signals for the given
circuit instance. The stop (convergence) criteria are decided based
on the desired accuracy of results or the confidence level. Once
the mean or variance converges within the desired precision range,
the procedure terminates. The main drawback of the Monte Carlo
based method is that a large number of runs is required to achieve
a high confidence level. Also, a large number of these runs con-
centrates on values near the nominal value. Statistical methods for
timing analysis have been proposed in [1, 2, 3]. However, due to
their high computational complexity, these methods are rarely used
in practice. A more practical Monte Carlo-based statistical timing
analysis framework applicable to larger designs has been proposed
in [4]. This paper also considers the effects of output capacitance
loads and input transition times to improve the accuracy.

In this paper, we propose a new, fast statistical timing analysis
algorithm. The algorithm targets cell-based designs and all cell de-
lays are modeled using random variables. The goal is to produce
arrival-time random variables for all internal signals and primary
outputs. The algorithm can be applied for vectorless static analysis
as well as for dynamic simulation with given input vectors. The
flow of the algorithm is similar to the compiled-code simulation,
where each cell is evaluated after all the values at its fanins have
become available. At the beginning, the simulation queue contains
only the initial events at primary inputs. After that, the algorithm
enters a loop in which cells are processed in a levelized order to pro-
duce the arrival-time random variables at their outputs. The process
continues until all the cells have been evaluated.

The most important characteristic of the new algorithm is that it
is deterministic. The final results produced by the algorithm can be
determined completely by inputs , i.e., the same inputs will produce
the same results, as opposed to the random process used by Monte
Carlo methods. Another special feature of the algorithm is that it
uses discrete delay random variables to model cell delays. There-
fore, it is possible to control the behavior of the algorithm by con-
trolling the discretization of pdf’s of random variables. The smaller
the number of samples of discrete random variables is, the less ac-
curate the results are and the faster the algorithm runs. We will
describe each of these features in detail in later sections. Apply-
ing the algorithm to circuits with reconvergent fanouts could result
in exponential time complexity. Therefore, we propose a fast ap-
proximate algorithm for these circuits. Experiments show that this
approximate algorithm speeds up the process by at least an order of

40.4

661

*

2 3 4 511 0

Arrival time Arrival times

1 0

2/10

3/10 3/10

2/10
1

(a) a probablistic event (b) a probablistic event group

2 3 4 5
Arrival times

1 0

The probability of arriving at time 2
= 2/(2+3+3+2)=2/10

2

3 3

2

(c) probability ratios

Figure 1: Probabilistic events.

magnitude and produces results with small errors when compared
with Monte Carlo methods.

2. SIGNAL ARRIVAL TIME EVALUATION
FOR A CELL USING PROBABILISTIC
EVENTS

The new algorithm takes a cell-level netlist and the pin-to-pin
and wire cell delays (as random variables) as inputs and produces
signal arrival times for every node and wire. The basic operation is
processing of an individual cell. This requires evaluating the prob-
abilistic events at the output of the cell given the events at the cell’s
inputs. Starting from a description of the probabilistic events, the
following sections will explain how to obtain signal arrival times at
the output of a cell.

2.1 Probabilistic events
A probabilistic event, which is described by a triple (s;t; p), is a

signal s scheduled with an arrival time t and the probability p that
the signal will arrive at this time. Figure 1 illustrates the concept
of the probabilistic events. Figure 1(a) shows a single probabilistic
event for a signal which is scheduled at time 1 and has a probability
of 1, i.e., this is a deterministic event. A signal could have more
than one event associated with it. All the events at the same signal
together form an event group. Figure 1(b) shows an event group
with four events. The signal’s arrival time has 20% of probability
to be 2, 30% probability to be 3, etc. The sum of the probabilities
in an event group has to be 1. In the rest of the paper for simplicity,
the events will be indicated by the numerators of their probability
fractions (which are integers) rather than the real probability values
(Figure 1(c)). We denote such integers as probability ratios.

In statistical timing analysis, the cell delays are random vari-
ables. We apply the ”fixed time unit” concept to discretize the
delay random variables which can tremendously reduce the com-
plexity of statistical timing analysis. Based on a chosen time unit,
all pdf’s of random variables are discretized and represented in dis-
crete forms, in which any two adjacent delay data points are spaced
by the chosen time unit. This discretization process is described in
the next section.

2.2 Discretization of delay random variables

∆

Assuming triangle-shaped distribution
∆ is the sampling step

Figure 2: Discretization of random variable.

The discretization of delay random variables is used to generate
discrete probability distributions based on a time unit (also called

1 2 3 4

2 3 4 5

Discrete cell
delay distribution

1 1 0

1 1 0

2

3 3

2

2

3 3

2

1

Figure 3: Propagating a single event.

a sampling step). The sampling step is a user specified fixed time
unit to be used for discretizing all random variables. The sampling
step is also used as the time unit for the signal arrival time evalua-
tions during simulation or timing analysis. Figure 2 illustrates the
discretization process with a sampling step ∆ for a random variable
having a triangle-shaped distribution. A smaller sampling step will
result in more data points in the discrete distribution. Therefore,
the sampling step controls the resolution and the run time of the
algorithm.

2.3 Signal Arrival Time Evaluation for A Cell
In this section, we describe the propagation process for the prob-

abilistic events and the signal arrival time evaluation for a cell. We
start by describing propagation of a single event. Then, we de-
scribe the propagation of an event group and finally, propagation of
multiple event groups.
Propagating a single event. Propagation of probabilistic events
through the circuit can best be illustrated by examples. Figure 3
shows the case of propagating a single event through an AND gate.
In this example, the event is a falling transition arriving at time
t = 1 to the input of the gate. The discrete random variable of
the delay for the AND gate is also shown above the gate in the
figure. The final events at the output of the AND gate are obtained
by shifting the cell delay by one time unit since the deterministic
input event arrives at time t = 1. Since this is a deterministic event
propagation (the probability is 1), the four events in the event group
at the output of the AND gate will have the same probability values
as the corresponding events in the discrete distribution of the cell
delay.
Propagating an event group. Propagating an event group through
a cell requires two operations: shift with scaling and group. Shift
with scaling shifts the cell delay according to each input event and
scales the cell delay probability distribution by multiplying it with
the probability ratio assigned to this event. The shift with scaling
operation is illustrated in Figure 4. It results in 16 events at the
output of the AND gate. Group operation adds the probabilities of
events at the same arrival time and forms a single event for each

1 2 3 4

Cell Delay

1 0

1 1 0

1 1 1 1

1 2 3 4

1 1 1 1

2 3 4 5 6 7 8

4 5 6 7

5 6 7 8

2 3 4 5

3 4 5 6

1
2

3
4

3
2

1G
ro

u
p

in
g

Shift with scaling

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Figure 4: Propagating one event group.

662

1 2 3 4

Cell Delay

1 0

1
1 0

1 1 1 1

1 2 3 4

1 1 1 1

2 3 4 5 6 7 8

1 2 3 4 5 6 7

0 1 2 3

1 1 1 1
0 1 2 3 4 5 6 7

Minimum Operation
Combining with

1
2 3 4 3 2

1

1
2 3 4 3 2

1

16

45
6570

42

15 3

Figure 5: Propagating two groups.

arrival time. We use ”+” sign to denote a group operation in the
following discussion. After grouping the events at the output of the
AND gate in Figure 4, the number of events in the event group is
reduced from 16 to 7. Note that we can use these two propagation
rules to propagate arrival time events through wires/interconnects
whose delays are also given as random variables.
Propagating multiple event groups. When two or more event
groups appear at the inputs of a cell, we first generate the output
events for each fanin signal using shift with scaling and group op-
erations. Then, we combine the output events into a single event
group at the output. To combine the output events from different
inputs, we use either a minimum(min) or maximum(max) operation
depending on the transition type (rising or falling) and the cell type.
Figure 5 illustrates the process of combining the events at the out-
put of an AND gate. In this case, we use the minimum operation
since the output of the AND gate has a falling transition and the ear-
liest event should dominate the result (the dominating events define
the final transition of the signal at the output if there are multiple
transition types at the inputs). The minimum operation compares all
possible pairs of events at the output and produces the earliest arriv-
ing events. The probability of the event at the output is the product
of the two probabilities associated with the pair of events which are
compared to form the final event. For example, the event arriving
at time t = 1 in the lower group shown at the output of the AND
gate in Figure 5 is compared with all the events in the upper group.
Since this event dominates all other events (its arrival time is earlier
than all events in the upper group), the final event at time t = 1 will
have a probability ratio 16=1+2+3+4+3+2+1. Next, the two events
arriving at time t = 2 are combined together with a probability ratio
45= 1�(3+4+3+2+1)+2�(2+3+4+3+2+1)+1�2. The
term 1� (3+ 4+ 3+ 2+ 1) represents the probability ratio of the
output when the event at time 2 in the upper group (with a probabil-
ity ratio 1) dominates (i.e., its arrival time is earlier than events at
the lower input). The number in parenthesis (3+4+3+2+1) re-
flects the probability of this assumption being true (by counting the
probabilities of the events in the lower group whose arrival times
are later than 2). The term 2� (2+ 3+ 4+ 3+ 2+ 1) is obtained
by assuming the event at time 2 in the lower group dominates. The
last item 1�2 represents the output event obtained by assuming the
events at both groups arrive at the same time (time 2). The process
continues until all the events have been processed. The maximum
operation in done in a similar way.

3. STATISTICAL TIMING ANALYSIS AL-
GORITHM

The previously discussed evaluation process for a single cell can
be extended to handle circuits of tree-like structure by levelized
simulation, where each cell is evaluated after all its fanin cells have
been evaluated. However, for circuits with reconvergent fanouts,
events propagated from the same fanout stem will converge at the

same cell. When converging, the events at different inputs of the
cell are not independent. Therefore, they require a special handling
during the combining process (different from the minimum or max-
imum operation). In the following sections, we will give details of
the signal reconvergency problem and the solution by circuit parti-
tioning.

3.1 Signal Reconvergency and Supergates
If a circuit has reconvergent fanouts, then propagating the event

group at the stem forwards to its fanout cone using a minimum or
maximum operation at each cell would result in mixing unrelated
events. To illustrate, consider the circuit in Figure 6. Consider
gate SG1 with inputs a and b and assume there are two events (e1
and e2) at stem S1. Let e1 produce an event group E1a at a and
event group E1b at b. Similarly, e2 produces E2a and E2b. The
correct events at SG1 should be max(E1a;E1b)+max(E2a;E2b).
However, simply propagating e1+ e2 would lead to an incorrect
result, max(E1a + E2a;E1b + E2b). In the latter equation, E1a
should not be compared with E2b because they are produced by
two events e1 and e2 which do not happen at the same time.

To solve the problem, we propose a circuit partitioning algorithm
with a sampling technique for events at fanout stems. We first sim-
plify the problem by partitioning the circuit into a set of super-
gates [5]. A supergate is a single-output sub-circuit with all inputs
being independent from each other. Therefore, to obtain the arrival
time for the output cell of a supergate, it is sufficient to solve the
problem on the subcircuit defined by the supergate. In other words,
to obtain the signal arrival times for a cell, we have to first detect
if the current cell is a reconvergent gate (i.e., the output cell of a
supergate) and then derive the arrival time for the supergate using
the algorithm described in the next section. For the example circuit
in Figure 6, there are two supergates, SG1 and SG2, in the circuit.
SG1 is defined as the intersection of fanin cone of SG1 and fanout
cones of S1 and S2. Inside the region defined by the supergate SG1,
there are two other stems: S3 and S4. Therefore, four fanout stems
S1, S2, S3 and S4 are contained inside the supergate SG1. Likewise,
supergate SG2 contains three stems S2, S3 and S4. Please note that
supergates could overlap with each other (e.g., SG1 overlaps with
SG2).

3.2 The Exact Algorithm
To derive the events at the output of a supergate, several tech-

niques are needed. Next, we illustrate these techniques using first a
supergate with only one stem, two stems, and finally a general case
of multiple stems.
Sampling-evaluation process for a stem. For a supergate with
only one stem, we process the events at the stem one-by-one. Each
time we take only one event from the group of events at the stem
(sampling) and propagate it forward to the output of the supergate.
Next, since there is no reconvergent problem, events produced by
this single event at fanins of the reconvergent gate are combined by
applying a minimum or maximum operation. Finally, the probabil-
ities of the combined event group are scaled with the probability
of the sampled stem event. This sampling-evaluation process is re-
peated for each event at the stem and the resulting event group is
continuously accumulated by applying the group operation. When
all events at the stem have been processed, the accumulated event
group represents the signal arrival time of the supergate.
Sampling-evaluation process for two stems. In this case, there
are two possible configurations: (1) no stem is in the fanout cone
of the other stem (S1 and S2 in Figure 6 for SG1), and (2) one stem
is in the fanout cone of the other stem (S2 and S3 in Figure 6 for
SG1).

663

S1

S2

S4

S3

SG1

SG2

a

b

Figure 6: Multiple stems in supergates.

For the first case, the sampling-evaluation process is similar to
the single stem case. The only difference is that the process starts
with a sampled event pair. The sampled event pair is formed by
taking one event from each event group. For a complete sampling-
evaluation process, all possible pairs of events at the two stems
should be considered. For example, assume there are two initial
events at S1 (e1S1;e2S1) and also two events at S2 (e1S2;e2S2).
Therefore, there are four possible pairs: (e1S1;e1S2), (e1S1;e2S2),
(e2S1;e1S2) and (e2S1;e2S2) and the sampling-evaluation process
will be done for each pair. At the end of each process, the prob-
abilities of the resulting event group are scaled with the probabil-
ity of the sampled event pair, which is the product of probabilities
of two sampled events. We use the term cross-product sampling-
evaluation to name this process.

For the second case, when one stem is in the fanout cone of the
other stem (S3 is in the fanout cone of S2 in Figure 6), the sampling-
evaluation process starts from the stem closer to the primary inputs
(i.e., stem S2). First, one event at S2 is sampled, evaluated and
propagated until S3 is reached. Then, the event group of S3 is also
sampled and propagated to the output of the supergate repeatedly
until all events at S3 are processed. After the simulation of events
at S3 is done, the remaining events at S2 are re-visited for another
round of sampling-evaluation phase. This process continues until
there is no event left un-processed at S2. Each time events reach
SG1, the probabilities of these events are scaled with probabilities
of the two sampled events of S2 and S3, and accumulated at tem-
porary storage at SG1. At the end of the process, final results are
obtained at SG1. This recursion-like process is named as recursive
sampling-evaluation.
Sampling-evaluation process for a general case. For a super-
gate with more than two stems, the sampling-evaluation should be
further generalized. The evaluation sequence is the combination of
two processes: cross-product and recursive sampling-evaluations.
All stems of a supergate are first levelized according to their evalu-
ation dependency, i.e., we check if one stem is in the fanout cone of
the other stem. Stems are put in the same level if they do not depend
on each other in the sampling-evaluation process. A cross-product
sampling-evaluation is applied to these stems with a sampled event
tuple formed by taking one event from each event group. When-
ever another level of stems are reached by a previous sampling-
evaluation process, a new cross-product sampling-evaluation phase
starts for the new level. The process continues until all possi-
ble pairs of events are evaluated for the current level. Then, the
sampling-evaluation returns to the previous level (recursive sampling-
evaluation). For example, for the four stems S1, S2, S3 and S4 of
supergate SG1 in Figure 6, two stems S1 and S2 are in the first level
and the other two stems are in the next level. Assume there is a total

of three initial events: one at S1 (e1S1) and two at S2 (e1S2;e2S2).
Also assume that e1S2 produces two events, e1S3;e1S2 and e2S3;e1S2 ,
at S3 and similarly another two events, e1S4;e1S2 and e2S4;e1S2 , at S4.
The complete sequence of computations to obtain the event group
representing the signal arrival times at SG1 is:

1. cross-product sampling-evaluate for S1 and S2 with (e1S1;e1S2)

2. cross-product sampling-evaluate for S3 and S4 with
(e1S3;e1S2 ;e1S4;e1S2); accumulate the event group at SG1

3. cross-product sampling-evaluate for S3 and S4 with
(e1S3;e1S2 ;e2S4;e1S2); accumulate the event group at SG1

4. cross-product sampling-evaluate for S3 and S4 with
(e2S3;e1S2 ;e1S4;e1S2); accumulate the event group at SG1

5. cross-product sampling-evaluate for S3 and S4 with
(e2S3;e1S2 ;e2S4;e1S2); accumulate the event group at SG1

6. repeat steps 1-5 with replacing e1S2 by e2S2

As it can be seen, the time complexity increases rapidly with
increasing number of stems. The estimated run time is proportional
to O(NNs

e) (Ne is the number of events and Ns is the number of
stems), which is apparently not feasible for practical applications.
In order to reduce the time complexity, we propose an approximate
algorithm in the next section.

3.3 An Approximate Algorithm
The approximate algorithm combines several techniques to jointly

improve the run time. They are described in the following several
paragraphs.
Dropping low probability events. In the process of event propa-
gation, it is possible to produce events with very low probabilities.
These events will only produce events with even lower probabil-
ities. Therefore, it is desirable to set a minimum probability to
screen out these events as early as possible. The events with prob-
abilities lower than the set minimum probability are dropped from
the event group whenever they are propagated to the output of a
cell.
Filtering out unnecessary stems. Although some stems produce
reconvergent events, the arrival times of the events caused by them
are so early that they will never affect the arrival time at the out-
put of the supergate. By some simple analysis, we can identify
such stems and eliminate them from the sampling-evaluation pro-
cess and thus speed up the algorithm. Our method for identifying
such stems is through the use of the simple event group propagation
(Section 2.3) for each stem while assuming there is no event group
at other stems. In this way, the range of arrival times of events
(generated by the stem under consideration) at the output of the su-
pergate can be estimated with low computing resources. A stem
is removed from consideration in the sampling-evaluation process
if the estimated range of the arrival time at the supergate output
caused by events on this stem does not overlap with the range of
the arrival times at the supergate caused by the events from other
stems.
Choosing effective stems. Stems do not produce equally signif-
icant reconvergent events. Therefore, we can find the more impor-
tant stems using the results obtained by sampling-evaluating each
stem. The method compares the results of the sampling-evaluation
process for each stem with those without considering any stems.
Thus we can estimate how sensitive the signal reconvergency is to
an event group produced by a stem. We propose to choose one or
two most sensitive stems for each supergate to estimate the final
event group at the output of the supergate (single-stem or two-stem
estimation). This single-stem or two-stem technique is the most

664

effective method to improve the efficiency of the algorithm with
minimum loss of accuracy.
Limiting the circuit depth of supergates. The size of a super-
gate is an important factor in the run time of the algorithm. This is
because there is generally fewer stems in a supergate with a smaller
number of gates and it takes less time to apply sampling-evaluation
for each stem. This observation motivates the concept of limiting
the circuit depth of supergates, i.e., limiting the number of logic
levels between stems and the output of the supergate when build-
ing the supergate structure. In this way, the size of supergates can
be reduced. However, if we limit the logic level of a supergate,
the inputs of the limited-level supergate will no longer be indepen-
dent. Thus, the results will no longer be accurate. However, the
effects caused by signal correlations are weaker if the reconvergent
gate is farther from the stem source (the distance is measured by
the number of logic levels between the source and the reconvergent
gate) [6]. Therefore, the error caused by this heuristic can be min-
imized if the limit of supergate depth is not too small (say, larger
than 10). In the next section, we will present results of experiments
conducted in order to observe how accuracy changes by varying the
depth of supergates.

4. EXPERIMENTAL RESULTS
In the following, we demonstrate that by using the approximate

techniques discussed above it is possible to speed up the arrival
time estimation process by at least an order of magnitude and at
the same time maintain small error percentages as compared with a
Monte Carlo-based static timing analyzer. All experiments utilize
the techniques for ”filtering unnecessary stems” and ”single-stem
estimation”.

First, we demonstrate the effectiveness of the ”dropping low prob-
ability events” heuristic. Next, we show that by varying the number
of data samples of each random variable, it is possible to select an
optimal parameter for discretizing random variables to balance be-
tween run time and accuracy. Similarly, it is also possible to find
the optimal logic depth limit for constructing the supergates. Since
all these techniques are orthogonal to each other, we can apply all
of them for a fast statistical timing analysis.

We use the combinational parts of ISCAS89 benchmark circuits
for our experiments. These circuits were first optimized for per-
formance by Synopsys Design Compiler [7]. The means of all cell
delays are assumed to be a function of the number of inputs/outputs
of the cells. The standard deviation (σ) is in the range of (4%, 10%)
of the mean (the value of σ is fixed for each cell).

In the following experiments, a Monte Carlo process for tradi-
tional static timing analysis with 105 runs is used as a compari-
son target. The number of runs, 105, is selected to balance the
accuracy and the run time of the Monte Carlo method. The er-
ror percentage of the sample mean obtained by Monte Carlo meth-
ods is bounded by c � s=(

p
n �m) [8], where c is the solution of

the equation, T (c) = (1+ γ)=2 (T (c) is the Student t distribution
with a parameter c and γ is the confidence level), s2 is the sample
variance, m is the sample mean and n is the number of samples
(runs). Therefore, we can estimate the error percentage with 105

runs as bounded by c � s=(
p

n �m) = 3:0 � 0:10=
p

105 = 0:095%
with c = 3:0, γ = 0:99 and s=m = 0:10.

Before comparing the new algorithm with the Monte Carlo method,
we need to select three parameters for the approximate techniques:
the minimum probability of events (Pm) for filtering, the number of
data samples for discretizing cell delay random variables (Ns) and
the depth limit of supergates (D). Note that only D is treated as
a circuit-dependent parameter, while the other two parameters are
kept the same for all circuits.

0.0944 0.106 0.114 0.114

0.18
0.196

0

0.05

0.1

0.15

0.2

Errors of arrival time means (%)

3.15 3.35 3.39 3.24
8.19

36.8

0

10

20

30

40

Errors of arrival time σs (%)

293 249 211 174 139 91

1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001

The minimum probability of events

0
500

1000
1500
2000
2500
3000

Run time (s)

Figure 7: The error percentages and the run time v.s. the min-
imum probability for s15850.

0.128 0.129
0.0892 0.0908 0.0939 0.104

0.174

0.05

0.1

0.15

0.2

0.25
Errors of arrival time means (%)

5.25
4.04

2.93 2.75 3.03
4.62

12.8

0

4

8

12 Errors of arrival time σs (%)

398

279
222

176
143

101
71

10203040

The number of data samples of random variables

100

200

300

400
Run time (s)

Figure 8: The error percentages and the run time v.s. the num-
ber of data samples of cell delay random variables for s15850.

Figure 7 shows the effects of dropping low probability events on
the error percentages for arrival time mean and variance and run
time for circuit s15850, which is chosen for demonstration because
the size of the circuit is appropriate for experimenting various con-
figurations and it actually has the worst performance among the
tested benchmarks (Table 1). The error percentages are obtained
by comparing the results of using different Pm for filtering against
the results obtained without dropping low probability events. As
it can be seen, with the increasing Pm, the errors for the mean and
variance increase and the run time decreases. Using the plot in
Figure 7, we choose Pm = 10�5 which gives reasonably low errors
(0.114% for mean and 3.24% for variance) while it has a fast run
time (174). Note that all error percentages used in this paper are
jMej+3�σe , where Me and σe

2 are the mean and the variance of
error percentages of signal arrival times of all signal nodes in the
circuit. This error percentage bound can cover more than 99% of
all cases by its 3σ range.

Figure 8 shows the effects of the number of data samples of ran-
dom variables (Ns) on the error percentages for arrival time mean,
variance and run time for circuit s15850 with Pm = 10�5. The com-
parison target in this experiment is the Monte Carlo process. This
plot demonstrates an interesting property of varying Ns: a bathtub
shape of error graphs. A larger number of samples for discretizing
cell delay random variables does not necessarily give lower errors.
The reason is because with a fixed Pm more events are filtered out

665

0 0 0.00821 0.0096 0.0173

0.155 0.172
0.205

0.299

0

0.2

0.4

Errors of arrival time means (%)

0 0 0.776 0.643 0.945

7.15
8.22

9.54

11.9

0
2
4
6
8

10
12

Errors of arrival time σs (%)

128
112 101 91

73
47

23 12 7

51015202530

The depth of supergates

0

50

100

150

200

Run time (s)

Figure 9: The error percentages and the run time v.s. the depth
of supergates for s15850.

due to the larger number of samples, where events have lower aver-
age probabilities than those with a smaller number of samples. Us-
ing this plot, we derive that Ns = 20 matches best with Pm = 10�5.

The effects of the supergate depth limit on the error percentage,
variance and run time are shown in Figure 9 with Pm = 10�5 and
Ns = 20. The experiment shows that with a lower limit of logic
level for supergates the run time will be lower, but the error will be
larger. For s15850, D = 22 seems to be the best choice. The best
values of D for different circuits depends on their circuit structure.

Similar results and graphs are obtained for other benchmark cir-
cuits. The results for several circuits are plotted in Figure 10 (the
compared cpu time for the new algorithm include the time for the
initialization, the circuit partition, and the heuristics.) The approx-
imate algorithm has achieved more than one order of magnitude
speedup over the Monte Carlo process with the errors of means
bounded within 0.095% as compared with the results produced by
the Monte Carlo process, except for the circuit s38584. The value
0.095% is the error bound of Monte Carlo process. By tracing the
sources of larger errors in s38584, we have found that the larger
errors are actually caused by the ”single-stem estimation” heuris-
tic. To further increase the accuracy level, we propose to select a
few supergates which require more elaborate methods than ”single-
stem estimation”. To handle supergates with multiple stems, it is
possible to use a special Monte Carlo process which can directly
take samples from the probabilistic events. By applying the Monte
Carlo method inside a supergate with the same number of runs for
a complete circuit, we can have smaller errors for the supergate
since there is a smaller s=m ratio inside a supergate. This leads to a
somewhat hybrid approach that combines the new method with the
Monte Carlo method. Please note that the new algorithm consumes
about ten times the memory required by the Monte Carlo approach,
since it has to store the probabilistic events for each signal. How-
ever, these probabilistic events actually can be used to construct the
waveform of the arrival time distribution, which is a more accurate
description of the distribution than just with the mean and variance
of the Monte Carlo approach. If the Monte Carlo approach is used

Ckt s5378 s9234 s13207 s15850 s35932 s38584
Ng 6.58 6.97 8.16 9.55 3.59 4.42
Ns 1.33 1.20 1.02 1.43 1.27 0.87

Ng: average number of gates per supergate
Ns: average number of fanout stems per supergate

Table 1: The average number of gates and fanout stems of su-
pergates

58

36
52

11

79 82

0

40

80 Speedup

0.0763
0.095

0.0596
0.0908

0.0462

0.149

0

0.1

0.2 Errors of arrival time means (%)

1.84

2.6

1.59

2.75
2.05

3.92

s5378 s9234 s13207 s15850 s35932 s38584

Benchmark circuits

0

1

2

3

4 Errors of arrival time σs (%)

Figure 10: The speedup and the error percentages for bench-
mark circuits.

to collect the arrival time samples for each signal (for a complete
waveform), the memory requirement will be in the same level as the
new algorithm. And the unused probabilistic events can be deleted
to save the resource when there is no further reference to them.

There is another anomalous circuit (s15850) which has the low-
est speedup factor. This circuit has very complex structures of su-
pergates. Both the average numbers of gates and stems in a super-
gate are the largest among all circuits (Table 1). These two num-
bers indicate that the average time spent on handling each supergate
within s15850 should be the highest among all circuits.

5. CONCLUSIONS
We propose a novel deterministic statistical timing analysis al-

gorithm based on the concept of probabilistic event propagation.
Experiments show that this algorithm is significantly faster than
Monte Carlo methods and produces results with high accuracy.
Therefore, it can be applied to larger circuits. The new method
can also be used as a core engine in many applications for which
it is important to consider statistical delay models such as: yield
estimation and optimization, power/glitch estimation, performance
sensitivity analysis and target selection for delay fault testing.

6. REFERENCES
[1] D. R. Tryon, F. M. Armstrong, and M. R. Reiter. Statistical

Failure Analysis of System Timing. IBM Journal of Research
and Development, 28(4):340–355, July 1984.

[2] H.-F. Jyu, S. Malik, S. Devadas, and K. Keutzer. Statistical
Timing Analysis of Combinational Logic Circuits. IEEE
Transactions on VLSI Systems, 1(2):126–137, June 1993.

[3] H.-F. Jyu and S. Malik. Statistical Delay Modeling in Logic
Design and Synthesis. Proc. DAC, pp. 126–130, June 1994.

[4] J.-J. Liou, A. Krstić, K.-T. Cheng, D. Mukherjee, and
S. Kundu. Performance Sensitivity Analysis Using Statistical
Methods and Its Applications to Delay Testing. Proc.
ASP-DAC, pp. 587–592, January 2000.

[5] S. C. Seth, and V. D. Agrawal. A New Model For Computation
of Probabilistic Testability in Combinational Circuits.
Integration, The VLSI Journal, 7(1), pp. 49-75, April 1989.

[6] D.-I. Cheng, K.-T. Cheng, D. C. Wang, and M.
Marek-Sadowska. A new hybrid methodology for power
estimation. Proc. DAC, pp. 439–444, June 1996.

[7] Synopsys. Design Compiler Reference Manual. May, 2000.
[8] A. Papoulis. Probability and Statistics. Prentice-Hall

International, Inc., New Jersey, 1990.

666

