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Abstract

Single-chip multi-processor embedded system becomes
nowadays a feasible and very interesting option. What is
needed however is an environment that supports the designer
in transforming an algorithmic specification into a suitable
parallel implementation. In this paper we present and
demonstrate an important component of such an environ-
ment - an efficient design space exploration algorithm. The
algorithm can be used to semi-automatically find the best
parallelization of a given embedded application. It employs
functional pipelining [13] and data set partitioning [16]
simultaneously with source-to-source program transfor-
mations to obtain the most advantageous hierarchical
parallelizations.

1 Introduction

As the application area of the embedded processors widens,
the demands on their performance are constantly growing.
Until now, instruction level parallelism has been successfully
exploited to satisfy these high performance requirements.
Practice shows however that increasing the number of con-
currently operating functional units of typical ILP (instruc-
tion level parallel) architectures above a certain level does
not necessarily lead to significant performance gains [9]. In-
stead, high hardware costs and inefficient use of this hard-
ware occurs. The advent of sub-micron processing, allowing
integration of millions of transistors on a single carrier, has
brought new opportunities in the embedded system design. A
multi-processor embedded system becomes nowadays a very
interesting alternative. This both in terms of the hardware
cost and performance. Especially, if the system consists of

several (different) ASIPs (application specific instruction set
processor), each with functionality optimized for the subtasks
which they have to perform. Code partitioning among the
processors leads then to exploitation of the course-grain par-
allelism (task parallelism and parallelism in loops [4]), while
the fine-grain (instruction level) parallelism [9] is exploited
locally by each of the processors.

In the past several environments for the embedded system
design have been realized (a lot of references can be found
in [7, 8, 12]). Also a number of papers specifically about
multi-processor system design have been published [3, 2, 15].
None of them however addresses the problem of the auto-
matic extraction of the parallelism from the system specifi-
cation.

In this paper we propose a new approach to mapping of an
embedded application written in ANSI C onto a cost-efficient
heterogeneous multi-processor. Its uniqueness lies in a com-
bination of the state of the art automatic ASIP synthesis soft-
ware with a coarse- and fine-grain parallelism exploitation
methodology.

The paper is organized as follows. Section 2 states the
problem. Section 3 is devoted to the introduction of different
parallelization methods. The system design space exploita-
tion algorithm is presented in section 4. The performance of
the algorithm is demonstrated on the frequency tracking sys-
tem in section 5. Section 6 concludes the paper.

2 Problem statement

Multi-processor system design involves finding a mapping�
of a program graph GP (V;E) onto an architecture template
graph GA(P;C), such that the resulting hardware-software
solution satisfies the price-performance specification for the
design. In these graphs, V is the set of program statements,
E the set of data and control dependencies between the state-
ments, P the set of processing elements and C the intercon-
nection network between them. An example multi-processor
architecture can include a set of ASIPs, possibly with local
memories, communicating via a combination of fast interpro-
cessor links and/or shared memory. In our case the ASIPs
are designed using the MOVE framework [5]. The architec-
tural variables defining the design space are shown in table 1.
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Our goal is to find a design trade-offs curve �, connecting
a set of Pareto points in the 2-dimensional cost-performance
space [11] for a given application (see example in figure 10;
as the cost usually the chip area, power dissipation or number
of packaging pins is used). Having it, we can select a cost-
efficient and feasible (satisfying the constraints) solution.

Symbol Description
N Number of processors
� Set of parallelization methods used
� Set of parallelized program parts (i.e. loops)
� Mapping of partitions to processors
� Mapping of data transfers to inter-

processor communication hardware
	 Hardware configuration of ASIPs

Table 1: Variables in the design space of the heterogeneous
multi-processors.

3 Parallelization methods

Basically, we can distinguish two parallelization modes.
They can be defined as follows:

Definition 1 In operation-parallel mode different opera-
tions of a single threaded program are executed in parallel.
The data-parallel mode involves applying one or more oper-
ations to many data items in parallel.

Figure 1 demonstrates these modes when applied to a sin-
gle FOR loop with 9 iterations containing three operations
A;B;C. Notation Ai denotes an instance of the operation
A executed in iteration i. Parallelization can be obtained by
either partitioning the execution of this loop in horizontal or
vertical direction. In the first case iterations i = 1::3 would
be executed on processor 1, iterations i = 4::6 on the sec-
ond one, etc. (data-parallel mode). Alternatively, the verti-
cal partitioning may result in the operation-parallel mode in
which operationsA;B;C may be executed in parallel (A on
the first processor, B on the second one, etc.). Note that not
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Figure 1: Operation-parallel and data-parallel parallelization
modes - vertical and horizontal partitioning.

only the loops of a program suit well for parallelization. Also
straight-line code sections can often be parallelized (coarse-
and fine-grain).

Often direct parallelization is not advantageous. A series
of code transformations [16] are necessary to enable efficient

parallelization. For example, to allow a better index set parti-
tioning of a loop nest, a combination of loop interchange and
tilling can be used. If we take these code transformations into
account then parallelization methods can be defined as fol-
lows:

Definition 2 A parallelization method is an element of the
following set:

fPg = fTg� 
 fMg;

where T is the set of the code transformations and M the set
of the parallelization modes.

4 Design Space Exploration

Our design space exploration algorithm takes as input the
system specification in ANSI C, accompanied by several pa-
rameters, as for example the maximal number of proces-
sors available and a set of parallelization methods to be at-
tempted (as defined section 3). Pushing the design in a certain
direction is possible as well, for example by specifying that
some program fragments have to be parallelized in a certain
way. Such extra directives prune the search space. In addi-
tion, the algorithm requires providing profiling information.
It can be obtained by code profiling on an oversized ASIP
architecture and with software compilation options for max-
imal ILP exploitation (the performance metrics obtained in
this way represent optimistic bounds).

To explain the algorithm, we define the following:

Definition 3 A context graph C(V;E) of a program is a
directed graph with tree kinds of vertices (procedure, loop
and block). Block vertices represent code segments between
loops and procedure calls. There is an edge between two ver-
tices if they are nested within each other, or if one calls an-
other. The root vertex of C(V;E) is the procedure main().
With every vertex a coefficient l(v) is associated. It repre-
sents the total number of clock cycles (latency) required to
execute its code (including successor vertices). Also every
edge carries one coefficient - f(e), which takes a value differ-
ent than 1 in case it targets a procedure vertex for a procedure
called from more than one place in the program. In such case
this value represents a fraction of the vertex latency which is
due to that calling site.

Definition 4 A speedup function SFv(N) of vertex v gives
the local speedup at this vertex as a function of the number
of processors used at v (example speedup functions can be
seen in figure 8).

4.1 System design space exploration algo-
rithm

The algorithm for system design exploration is shown in fig-
ure 2. It has been optimized to avoid repeatedly performing
the most time consuming tasks in every step. Therefore the
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general code transformations1 and data dependency analysis
are done at the very beginning. For the same reasons the final
parallelization and code generation is performed at the end
only.

The algorithm performs the following four major steps:

1. After some initialization code, calculate the speedup
function for the main procedure: for each number of
available processorsN , find a set of applied paralleliza-
tion method(s)� and a set of parallelized program frag-
ments � which optimize the overall speedup. As side
effect the speedup functions for all other vertices in
C(V;E) are calculated.

2. Code partitions for each point in the speedup func-
tion, which are the result of the parallelization, are
mapped onto available processors, data transfers onto
inter-processor communication links (�;�). The code
partitions are mapped onto the processors using the as-
sumption that the serial parts of the program are always
executed on processor 1. At barriers (moments when
parallel execution is started or terminated) the code par-
titions are assigned to available processors.

3. For each point in the speedup function SFmain(N),
a design trade-offs curve �N between the cost and
the performance is calculated (by exploring the design
spaces of all processors, see figure 9).

4. The �N curves are combined to form a single design
trade-offs curve � (see figure 10).

Apply a set of general code transformations;
Do data dependency analysis;
Build the context graph C(V ;E);
for ( all v 2 V and N = 1 : : : Nmax ) SFv(N) = 1;

SFmain=SPEEDUP(main);
Map code partitions to processors, data transfers
to communication links for points in SFmain;

Do design space exploration of the processors
for points in SFmain;

Combine results into a design trade-offs curve �;

Figure 2: System design space exploration algorithm

SpeedupFunction SPEEDUP(v)f

for ( all f w j w = succ(v) ^
l(w)

l(main)
� �g )

SFw=SPEEDUP(w);
PARALLELIZE(v;SFv);
Return SFv;

g

Figure 3: The SPEEDUP function

1A transformation is general if it can be applied to most loops, indepen-
dent of their structure.

The function called SPEEDUP is presented in figure 3. As
can be seen, the speedup functions for all vertices in the pro-
gram are calculated recursively. Only vertices with p(v) =
l(v)

l(main)
� � are considered. The value of the coefficient �

should exclude vertices which form a marginal part of the to-
tal computation time. Accelerating vertices with low p(v) is
very unlikely to deliver any significant speedup even if many
processors are used.

4.2 Parallelization

After the speedup functions of the successors are calcu-
lated (first loop inside the SPEEDUP procedure), the paral-
lelizations at the vertex v are attempted. Three different sit-
uations are possible (see figure 4; notation Partv(R;N) de-
notes a solution obtained forN processors and parallelization
p with R partitions at the vertex v, R � N ):

1. Vertex-only parallelization: only the vertex v itself is
parallelized (top-left); i.e. R = N .

2. Successors-only parallelization: only the successor ver-
tices of v are parallelized (top-right); i.e. R = 1.

3. Hierarchical parallelization: the vertex v itself is paral-
lelized, in combination with successor vertices (bottom-
left and bottom-right); i.e. 1 < R < N .

v

2

v

the bottleneck
partition

v v

Part  (1,2)

Part  (2,4)Part  (2,3)

Part  (3,3)
v

v

v

v

1 1 1 2 1 2

1 1 2 2 2

Figure 4: Parallelizations at v

Figure 5 presents the space of the possible parallelizations,
together with a speedup function for v. The hierarchical par-
allelizations (the third situation) lie within the shaded trian-
gle, the parallelizations of the first group on the diagonal,
while the successor-only parallelizations on theN -axis. The
dashed lines point to the points in the speedup function which
are defined by taking maximum over the points lying on these
lines in the parallelizations space.

At v we consider only hierarchical parallelizations in the
operation-parallel mode2. This is not an essential limitation;
it is expected that in most cases hierarchical data-parallel
mode parallelizations do not deliver better results than the
single level ones.

2A parallelization of a loop nest with n loops is not considered a hierar-
chical parallelization and is attempted.
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The number of processors used at vertex v, Nproc(v) can
be calculated using the following formulas:

Nproc(v) =
X

b2B(v)

Nproc(b) (1)

Nproc(b) = max
fwjw=succ(v)^w�bg

Nproc(w) (2)

where B(v) is the set of partitions at the vertex v and
Nproc(b) the number of processors used inside successor
nodes of the partition b.

To obtain exact results for the hierarchical parallelizations
a substantial number of alternatives (combinations of the
points in the speedup functions of the successor vertices)
would have to be considered. It can be shown that the num-
ber of alternatives K can be calculated using the following
formula:

K =

NmaxX

N=2

[2 +

N�1X

R=2

(N �R + 1)z] (3)

where R is the number of partitions at v and z the number of
successor vertices of v. For example if z = 6 andNmax = 6

then, using this formula, we obtain K = 26270 combina-
tions. In practice this number will be slightly smaller since
some alternatives cannot result in a legal parallelization, but
still we would have to run our parallelization algorithms for
the majority of them. This can very easily result in unaccept-
ably long run times.

The following example shows a more practical method of
obtaining a legal parallelization:

Example 1 Suppose that we are at a point to find optimal
parallelization of a vertex v onto 4 processors, with two par-
titions at v (i.e. Partv(2; 4)). We can start with the previ-
ously obtained parallelization Partv(2; 3) (see the bottom-
left part of figure 4). Since the parallelization method p is

operation-parallel both partitions at v will be executed in par-
allel. One of these partitions will probably have larger la-
tency (in the figure it appeared to be the right one). Only by
accelerating this “bottleneck” partition further speedup can
be obtained. Therefore we allocate one extra processor to
one of the successor vertices of that partition (bottom-right
part of figure 4).

To avoid the high computational complexity we decided to
use an approximation algorithm to calculate the best paral-
lelizations at v (the PARALLELIZE procedure in figure 6).
In its body, the apply(v,p,R) procedure applies a paralleliza-
tion method p at v with R partitions at v and returns the ob-
tained parallelization X . The obtained speedup depends on
the parallelization method used and is calculated using the
sp(p,X) procedure.

First, appropriate points from the speedup functions of
the successor vertices are selected and the speedup S cal-
culated (first FOR loop). Subsequently parallelizations p 2
P (recall def. 2) on N = 2::Nmax processors are tried.
In the first inner loop, a parallelization of the vertex v it-
self is attempted. Then, if the parallelization method is
operation-parallel the hierarchical ones are tried. We follow
the methodology from the example 1. The optimal previous
solution Partv(R;N � 1) is used as the starting point (fol-
lowing arrows in figure 5). We identify the bottleneck parti-
tion at v and attempt using an extra processor on its successor
vertices to further speedup v.

PARALLELIZE(v;SFv) f

/***** successors-only parallelization *****/
for (N = 2; N � Nmax; N = N + 1) f

S = l(v)=
P

fwjw=succ(v)g

l(w)

SFw(N)

SFv(N)=max (SFv(N); S);
g

for ( all p 2 P ) f

for (R = 2; R � Nmax; R = R+ 1) f

/***** vertex-only parallelization **********/
for ( all fw j w = succ(v)g ) Select SFw(1);
X=apply(v; p;R);
SFv(R)=max (SFv(R); sp(p;X));
if ( p is operation-parallel ) f

/***** hierarchical parallelization ********/
for (N = R + 1; N � Nmax; N = N + 1) f

Identify bottleneck part. b at v in X;
for ( all fw j w = succ(v) ^ w � bg )

Select next point in SFw;
X=apply(v; p;R);
SFv(N)=max (SFv(N); sp(p;X));

gggg

g

Figure 6: Parallelization of the vertex v

4.3 Computational complexity

The maximal number of the parallelization try-outs necessary
per vertex and per parallelization method is a small constant,
which depends only on the number of points in the speedup
function (equal to the number of points in the area R � 2 in
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figure 5):

Y =

NmaxX

n=2

(n� 1) =
Nmax � (Nmax � 1)

2
(4)

For example for Nmax = 6 we obtain Y = 15 tries, which
is much less than the number of combinations possible (re-
call eq. 3). This together with the fact that each vertex is vis-
ited only once has a positive effect on the total computational
complexity of the algorithm. This complexity is O(N2

max �
jV j � jP j).

5 Case study

In this section we present an example application of our al-
gorithm - the frequency tracking embedded system from [6].
The system specification contains about 2k lines of ANSI C
source code. In its main loop, the program reads a stream
of samples (complex numbers) and uses LMS (adaptive sig-
nal enhancement) to determine instantaneous frequency es-
timates. A 1024-point FFT (fast Fourier transform) is then
used to determine the frequency response of the adaptive fil-
ter every 100 input samples.

In the experiments we used a combination of tools
belonging to the MOVE automatic processor generation
framework [5], and the SUIF parallelizing compiler [1].
For functional pipelining a set of new tools operating on
SUIF (Stanford University Intermediate Format) has been
implemented [13].

First, we compiled the frequency tracking program with
the gcc-move compiler, then scheduled it with the MOVE
scheduler [9]. The options for maximal ILP exploitation
(including software pipelining) and oversized architecture
(large number of move busses and FUs) were used. The gen-
erated code was simulated using the move simulator to ob-
tain detailed profiling information. A number of general code
transformations has been applied to this code. For example
the lms() and fft() functions were inlined inside the FOR loop
bodies F20 and F15. The context graph including computa-
tion distribution information is presented in figure 7. For the
sake of readability, only the loop and procedure vertices are
shown. Vertices which are marked with ’*’ are suitable for
data-parallel mode, while the ones with ’#’ for operation-
parallel mode parallelization. The detailed data dependency
vectors were generated using the combined static & dynamic
methodology described in [14]. Communication overhead
was estimated assuming the availability of fast bidirectional
interprocessor links only.

Subsequently the SPEEDUP procedure was called to gen-
erate the speedup functions. The following parameters were
used: Nmax = 4; � = 0:01: Several vertices with p(v) < �

were skipped (F57, F91, F121, F72). Total of 297 paralleliza-
tions were attempted. The generated speedup functions for
the most important vertices in the context graph are presented
in figure 8. As can be seen from the speedup function for the
whole program (SFmain), an overall speedup varying from

100%
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0.7%51% 0.1% 0.8% 1%

main

F174F20
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Figure 7: Context graph for the frequency tracking system
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Figure 8: Speedup functions for selected vertices from fig-
ure 7

1.92 to 2.78 could be obtained. The point for Nproc = 2

involves operation-parallel mode parallelization of the F15
loop, while the speedup of 2.78 on 4 processors can be ob-
tained by applying in addition parallelizations to the loops
F19 and F64 in lms, and to the loops F120, F199 and F312
in fft.

Next the design trade-offs curves �N for N = 1::4 were
generated using the Explore tool of the MOVE framework.
Figure 9 presents these curves. To combine them we have to
select Pareto points from each curve. In our case this results
in the design trade-offs curve presented in figure 10. Note
that points for implementations with larger number of pro-
cessors lie to the right of the implementations with smaller
N .

After obtaining the combined speedup function one of the
points had to be selected. The specified timing constraint
was 150 ms (required speedup of 1.48). The point for the
configuration with only 2 processors turned out to be suffi-
cient (marked in figure 10). Note, that none of the single
processor solutions, even with many FUs, meets the timing
constraints. The obtained multi-processor is presented in fig-
ure 11. Besides standard components, processor 1 included
2 ALUs, 1 FPU, 2 Load-Store units and 8 move busses. The
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Figure 10: The combined design trade-offs curve.

second processor turned-out to be smaller - included only 1
ALU, 1 FPU, 1 Load-Store unit and 5 move busses. Both pro-
cessors were equipped with small instruction caches and local
memories. Also a fast bidirectional interprocessor commu-
nication link has been included; each COMM unit contains
a FIFO supporting asynchronous communication. Note also
that the multi-ported (integer) register file can easily be split
into four dual ported register files (see [10]).

I-FETCH

LOCAL
DATA
RAM

LOCAL
DATA
RAM

EXTERNAL
BUS INTERFACE

I-CACHE

I-CACHE INTEGER

REG.FILE

ALU ALU FPULD-ST LD-ST

REG.FILE
IMMEDFLOAT

REG.FILE

Processor 1

Processor 2

LD-STALU FPU

IMMEDFLOATINTEGER

REG.FILE REG.FILE REG.FILE

BOOLEAN

BOOLEAN

COMM

COMM

I-FETCH

IMMED

Figure 11: The instant frequency tracking multi-processor.

6 Conclusions
In this paper we proposed a new design space exploration al-
gorithm for semi-automatic mapping of the embedded appli-
cation onto a cost-efficient heterogeneous multi-processors.
Its uniqueness lies in a combination of the state of the art

automatic ASIP synthesis software with a coarse- and fine-
grain parallelism exploitation methodology. The computa-
tional complexity of the algorithm is linear in the number of
loops in the program and in the number of applied paralleliza-
tion methods. Its applicability was demonstrated on a case
study of the frequency tracking system.

The presented approach can be easily extended to handle
real-time reactive embedded systems with many subtasks.
We can consider each subtask separately when calculating
the speedup functions. After that, perform the mapping of
the task partitions onto the processors and do the processors
design space exploration. Once the trade-offs functions are
calculated we should check them for possible subtask con-
straints violations and then combine them and select points
which satisfy the global constraints.
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