
Realization of a Programmable Parallel DSP for High
Performance Image Processing Applications

Jens Peter Wittenburg Willm Hinrichs Johannes Kneip Martin Ohmacht
Mladen Bereković Hanno Lieske Helge Kloos Peter Pirsch

Laboratorium für Informationstechnologie, Universität Hannover
Schneiderberg 32

30167 Hannover, Germany
Tel: +49 511 762 5018

E-mail: wittenburg@mst.uni-hannover.de

ABSTRACT
Architecture and design of the HiPAR-DSP, a SIMD controlled sig-
nal processor with parallel data paths, VLIW and novel memory de-
sign. The processor architecture is derived from an analysis of the
target algorithms and specified in VHDL on register transfer level.
A team of more than 20 graduate students covered the whole design
process, including the synthesizable VHDL description, synthesis,
routing and backannotation as the development of a complete soft-
ware development environment. The 175mm2, 0.5�m 3LM CMOS
design with 1.2 million transistors operates at 80 MHz and achieves
a sustained performance of more than 600 million arithmetic oper-
ations.

1. INTRODUCTION
The ongoing trend towards growing complexity in communication
and image processing systems calls for the development of flexible
signal processors. Monolithic architectures capable to process a
wide range of algorithms and a performance sufficient to meet real
time conditions will form the core of future multimedia platforms.
An ideal processor platform has to meet a number of sometimes
contradicting requirements: For a maximum of efficiency, the de-
sign has to be adapted to the target algorithms, should be generic to
allow the porting of a high level language compiler - mandatory for
the minimization of implementation cost of complex applications.
Parallelization potential of the algorithms should be exploited as far
as possible to boost performance, but keeping hardware cost as low
as possible. Some fundamental problems, as the high bandwidth
parallel access to shared memory segments, are not yet satisfacto-
rily solved in currently available DSP architectures.

The target of the design project described in this paper is two-
fold: First, this design is an innovative processor architecture, prov-
ing that a parallel, homogenous DSP architecture can achieve a pro-
cessing power hitherto addressed only by dedicated designs. This
was achieved by an appropriate combination of measures known
from standard processors with a novel controlling and memory con-
cept. Second, it served as an ambitious tutorial project for graduate
students, which worked on the project for 6-12 months during their
final thesis in microelectronics or information technology. During
the design process, all aspects of VLSI design from architectural

specification, HDL description, synthesis, verification, routing and
backannotation were actively performed by the students, making
the project a highly valuable contribution towards a more practi-
cally oriented university education.

In this paper, we provide an overview of the architecture and
the design it has undergone during the four year lasting realization
phase. We start with a brief description of the architecture, it's
specialities and the basic considerations that lead to it. Section 3.
describes the HDL design on RTL and the synthesis on an 0.5�m
3 layer metal CMOS standard cell technology. Section 4. covers
verification aspects while section 5. describes the backend design
process and the problems students had to cope with during routing,
backannotation and final verification of a complex sub-� design.
Section 6. gives an overview of the HiPAR-DSP's software devel-
opment environment, also developed within the project. Finally,
we present the layout and performance data for a selected number
of algorithms for the processor, which is currently manufactured.

2. ARCHITECTURE
Fig. 1 shows a block diagram of the HiPAR-DSP architecture. The
homogenous core consists of four (in a future version 16) identical
16 bit data paths, each containing a local register file, an ALU, a
shift/round unit and a 36 bit multiply/accumulate unit. The data
paths are centrally controlled by a RISC control unit, operating on
a 96 bit very long instruction word (VLIW), which is read from an
instruction cache assigned to the control unit. A two stage memory
hierarchy was implemented. First, data paths have concurrent ac-
cess to shared data in shape of a matrix (Fig. 2), which are stored
in an on-chip memory, the matrix memory. Second, each data
path may address private data autonomously, which is stored in a
cache memory assigned to each data path. An autonomously oper-
ating DMA control unit serves all cache misses and may perform
prefetch data transfers to the matrix memory. A test and debug in-
terface is used for thein systemsoftware debugging by accessing
all internal registers via the fabric scan chains and test access port,
while the processor is halted.

The HiPAR-DSP architecture meets the special requirements
of image processing algorithms implemented in parallel. By com-
bining instruction word level parallelism (VLIW), data parallelism
(multiple data paths, split ALU capability) and transfer parallelism
(autonomous DMA unit), a high degree of concurrent processing
can be achieved for various algorithms [1][2]. The SIMD control-
ling principle leads to low hardware implementation cost compared
with MIMD or multithreaded approaches. The required flexibility
for more complex algorithms is achieved by the implementation
of a three stage autonomous controlling scheme for the data paths,
providing as addressing and execution autonomy as the concurrent

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 98, June 15-19, 1998, San Francisco, CA USA
ISBN 1-58113-049-x/98/06…$5.00

56

MATRIX MEMORYMATRIX

ADDRESS

DMA/MEMORY
CONTROL

I/O–BUS
CONTROL

DATA PATH
ARRAY

DP 0 DP 3� � �

INSTRUCTION

CACHE
� � �

Caches

LC 0 LC 3

256 x
16bit

256 x
16bit

ADDRESS
CACHE

48 * 48 words / 16 bit
TEST AND DEBUG

INTERFACE

Registerfile

ALU MAC

LOAD/STORE

S&R

DP

Figure 1: HiPAR-DSP architecture and structure of a data path (S&R: Shift-and-Round unit)

h

v

4 OVERLAPPED SEGMENTS

PEL

DP
0

DP
1

DP
2

DP
3

DP
0

DP
1

DP
2

DP
3

DP
0

DP
1

DP
2

DP
3

DP
0

DP
1

DP
2

DP
3

Figure 2: Concurrent access of data paths to the matrix memory.
The matrix memory has a virtual 2D address space and provides a
conflict free access to the data stored in it.

evaluation of local conditions.
The requirement of a high bandwidth access to shared data is

solved by the matrix memory architecture. Internally, the data are
distributed to nine single ported memory banks by use of a dis-
tribution function that provides a conflict free access to data from
any address of it's virtual 2D address space [3]. The generic struc-
ture of the processor and the implementation of a stack mechanism
made the porting of the GNU C++ compiler feasible. The archi-
tecture was derived from a thorough analysis of the targeted image
processing algorithms. Available high-level design tools focus on
mainly dedicated realizations, but were not of much help in the de-
sign of a generic programmable architecture. So, our experience in
the parallel implementation of image processing application and in
VLSI design were the driving forces leading to the final structure
of the HiPAR-DSP.

3. FRONTEND
VHDL was chosen as hardware description language for design
entry and verification at RT-Level. On one hand, technically the
preference of VHDL to Verilog turned out to be slightly disadvan-
tageous, because of nonexisting VHDL (VITAL) gate level models
of the standard cells, which forced us to employ different simula-
tors for functional and gate-level sign-off simulations. On the other
hand, in Europe the number of commercial VHDL installation ex-
ceeds the number of Verilog installations by far, which justifies the
preference of VHDL at European universities.

For designs with a complexity of more than several hundred

thousand gates complexity a hierarchical design approach becomes
absolutely mandatory. The SYNOPSYS DESIGN COMPILER
used for RT-Level synthesis and timing optimization in this project
is hardly able to optimize more than 5 to 10 thousand gates at a
time, depending on regularity. On physical level, the routing tools
enable efficient routing of blocks up to about 30 thousand gates
without losses in gate density for the chosen 0.5�m 3 LM stan-
dard cell library. Thus, logic- and physical hierarchy are not neces-
sarily identical. Nevertheless, it is reasonable to take the physical
level into account when defining the logic hierarchy, e.g., VHDL-
modules to be designed independently. Conversely, logic hierar-
chies usually provide a certain degree of locality for interconnec-
tions, which lead to better routing results and lower delays caused
by wire capacitances on the physical level.

Partitioning started from an initial logic hierarchy derived from
the processor's block diagram and a black box floorplan based on
course estimations of the silicon effort. After first synthesis steps
with much more accurate area calculation, we were able to derive
a logic partitioning of the processor. All major parts of the archi-
tecture were designed independently, while none of the resulting
blocks in the floorplan exceeded the size of 30.000 gates. The sub-
units: data path, controller, data cache controller, instruction cache
controller and DMA were VHDL-designed, synthesized and veri-
fied as independent design projects by graduate students. A project
management of two to three research assistants was responsible for
the supervision of design constraints (clock speed and area) and the
definition and specification of the interfaces.

Due to the pipelined nature of the architecture, we were able
to achieve a clock frequency of about 100 MHz from initial syn-
thesis, with wiring capacities calculated from a heuristic wire load
model delivered with the standard cell library. The arithmetic units,
especially 32 bit adders and the 17x17 bit multiply & accumulate
(MAC) unit required special treatment, since simple synthesized
versions of the adders (riple carry) and multipliers (brown array)
did not fulfill the timing requirements. Following two measures to
increase arithmetic performance were investigated first:

� Instantiation of advanced hierarchical architectures (fast carry
lookahead in case of the adders, booth coded wallace tree for
the multipliers) from the SYNOPSYS DESIGN WARE li-
braries.

� Generation of Arithmetic Macro Cells using the COMPASS
data path compiler, which allows to generate layout opti-
mized cells from bit slice descriptions.

57

VHDL Design Entry

Synthesis

Floorplanning

Place & Route

Functional

Timing Verification

Physical Verification

EDIF

Verification

PDEF
PDEF
SDF

Parasitics

SDF

Behavioral Model
(C ++)

Synopsys

Compass

Figure 3: Simplified design flow and interfaces. SYNOPSYS tools
(VSS, DESIGN COMPILER) were used for all frontend tasks,
while COMPASS tools (PATHFINDER, CHIP TIME, QSIM) were
employed for all backend activities [5][6].

Both methods lack the flexibility to insert pipeline stages at
user defined places. This leads to inefficient realizations, where
a complete second adder has to be introduced in case of the mul-
tiply/accumulator To solve these problems we designed own ad-
vanced arithmetic architectures by structural VHDL description.
Instead of elements from the standard cell library we used generic
cells from the SYNOPSYS GTECH library. Then we used DE-
SIGN COMPILER to map and optimize the modules, which al-
lowed us to keep the designflow consistent. This approach not
only kept the required flexibility but surprisingly also by far out-
performed all DESIGN WARE instantiations for multiplier, 32 bit
adders and barrel shifters in terms of effciency (A * T product).

4. VERIFICATION
The processor design started with a high level behavioral model
written in C ++. This model served as cycle precise simulator
with the possibility to simulate complete algorithms. In addition
it enabled access to all logical registers and memories. C ++ has
been chosen as modeling language due to the high performance
and portability. Because the abstraction level of this model was
much too high for direct breakdown to RTL level by refinement,
HDL-modeling would not have been of advantage anyway. The
behavioral model has been extensively verified against the speci-
fication. Graphical user interface and efficient interfaces to object
code enabled simulation of several image- and signal processing
algorithms (e.g., complex FFT of variable length, grey level his-
togramming, hough transform) with realistic input data. Addition-
ally synthetic command sequences were generated to verify rarely
used special cases. Thus the verification coverage of the behav-
ioral model could be judged as high enough to classify the model
as "known good device" for all subsequent verification steps.

Functional verification of the RT-level VHDL-code took place
using SYNOPSY's VSS VHDL simulator. Verification strategy fol-
lowed the typical bottom up approach, starting in the lowest levels
of the hierarchy and ending at top level with simulation of the com-
plete architecture using the same stimuli already employed for veri-
fication of the behavioral model. The existence of this known good
reference model significantly simplified verification on all levels of
hierarchy.

As already mentioned, sign-off verification of the employed li-

brary using VHDL is impossible due to the lack of suitable standard
cell models. COMPASS' proprietary QSIM is the alternative. Un-
fortunately QSIM does not support flexible testbenches and there-
fore does not allow text-I/O as we used for functional verification.
To solve this problem we inserted certain VHDL tasks dumping
logic levels at I/O interfaces (of complete design or submodule) for
each executed clock cycle into a file. Such interface dumps repre-
senting stimuli and expected results can be converted to a format
importable to COMPASS. Even though this seems to be a standard
problem, we had to write our own conversion utilities (C++) for
this purpose. Another challenge during sign-off simulation was the
propagation of unknown logic levels due to uninitialized registers
with feedback. Because of incompletely modeled standard cells (a
multiplexer always propagating unknown when its select input is
undefined - even if all inputs are equal - is the most common case)
it can become impossible to initialize such registers. Controlled by
attributes synthesis of a working synchronous reset can be forced
for problematic registers. However, uninitializable registers can
(and usually do) occur after each resynthesis, since implementing
resets to all registers would cause non neglectable overhead. The
major amount of work during sign-off verification related to those
uninitializable registers.

After sign off simulation the final netlist had been fully verified
against the behavioral description. This verification also covers all
timing information including the asynchronous interfaces of the on
chip memories, which represent the only timing of the design not
fully synchronous with respect to the master clock.

5. BACKEND
The backend tasks were performed using the CAD-tools of COM-
PASS DESIGN AUTOMATION. Main feature of the tool is the
tight interaction with PASSPORT standard cell libraries also de-
veloped by COMPASS and qualified by the ASIC vendor. The
netlists generated by the synthesis tool SYNOPSYS were trans-
ferred via an EDIF interface to the COMPASS tools. All on-chip
RAMs were generated by COMPASS RAM compilers. The re-
sulting macro cells as well as boundary scan and pad cells were
added in COMPASS schematic editor to complete the netlist for
the HiPAR-DSP. Scan logic for test purposes was automatically in-
serted by the COMPASS tools following a two step approach. First
all D-Flipflops were exchanged by scanable counterparts. The cell
order in the scan paths had not defined at that point. This task was
performed later after cell placement but before routing. This two
step approach minimizes the routing overhead of scan logic signif-
icantly.

The final layout of the HiPAR-DSP is shown in Fig. 4. On-chip
RAM cells for the matrix memory, data cache and instruction cache
are placed close to their corresponding controllers. Each memory is
served by the DMA/memory controller. Main silicon area is occu-
pied by the global RISC controller including a base register file and
the four data paths with local register files. Due to the wide inter-
nal data and address busses of the load/store architecture between
data paths, matrix memory and data caches, a large vertical rout-
ing channel runs through the chip. The power pads are evenly dis-
tributed in the pad ring to handle simultaneously switching outputs.
20 power pad pairs are provided for core supply and six AC/DC
pads for padring power.

Placement & route of the HiPAR-DSP were carried out using
the COMPASS PATHFINDER tool. Starting from the final floor-
plan, placement was controlled by high-level timing constraints
(e.g., targeted clock frequency). Therefore the placement tool has
to employ its own static timing analysis engine. Clock tree com-
pilation takes place after the placement has been completed. Since
the position of the registers is not finally fixed at an earlier level,
this ensures the best possible delay estimation to achieve a prop-

58

Data Paths

Data Cache Control / TagsDebug Interface

Data Cache
RAM

Instruction
Cache RAM

DMA Control
Businterface

Matrix Memory
RAM

Matrix Memory Control

Control

Instruction
Cache Control

Figure 4: Layout of the HiPAR-DSP

32

LOAD

IMMEDIATE I

ALU

SFT/

MUL A
C

C

36

32

32

16

16

RND

32

32

R14/R15

R0/R1

�

�

�

IMMEDIATE II

�

�

�

32

32

32

32

16

16

32

16

16

32

R16/R17

STORE

WRITE PORTS READ PORTS

Figure 5:a) Typical segment of registerfile layout. Only the narrow horizontal strips represent active cell areas

b) Schematic overview of data paths using less register file ports. The number of register file read ports has
been limited to two 32bit- and three 16bit read ports.

erly balanced clock tree. After clock tree compilation and 2nd step
of scan path insertion, the bin based PATHFINDER router is in-
voked to connect the placed cells. A completely flat routing ap-
proach showed best results in terms of gate density, since global
optimization saved block wiring overhead. Routing of the DSP re-
quired about one week CPU-effort on a 200 MHz Ultra SPARC
Workstation equipped with 1 GByte main memory.

The RISC-typical registerfiles were one of the most critical el-
ements concerning die size and clock frequency [4]. Especially the
number of the register file ports necessary to distribute data accord-
ing to the VLIW concept of the data paths, caused large hardware
costs. Full custom optimized blocks of any kind were not avail-
able. The enormous amount of wiring between the standard cell
rows of the data path layout is shown in Fig. 5a. In a straight for-
ward implementation register file ports according to in- and out-
put of arithmetic/logic- and I/O-units would result in five 32bit and
three 16bit read ports respectively two 32bit and one 16bit write

ports. Achieving acceptable register file size and speed while not
drastically decreasing performance required careful evaluation of
each possible measure. A proper balance had to be found between
software requirements, performance and silicon area. The result is
shown in Fig. 5b. The general purpose character has been kept with
the exception that the two16bit operands of the MAC must not be
both even or odd. Some further combinations of concurrent opera-
tions are no longer possible (e.g., ALU operation and 32bit Shift)
but are rarely found in the targeted applications anyway. VLIW
restrictions can be easily handled by the compiler. The improve-
ments in size and speed for the implemented register file are shown
in Table 1.

Even though floorplanning and thus estimation of wiring de-
lays has been carried out from the beginning of the frontend design,
achievement of timing convergence turned out to be the most chal-
langing part of backend design. Several steps of resynthesis had to
be carried out in addition to the timing driven cell placement:

59

Table 1: Size and speed of port unlimited and implemented register
file based on0:5�m 3LM CMOS. The average gate density for
typical standard cell design is about 4000 gates /mm2

number of ports area
per data
path

gate
density

max clock
speed

2 32bit + 1 16bit
WRITE
5 32bit + 3 16bit
READ

35mm2 910 gates

mm2 55 MHz

2 32bit + 1 16bit
WRITE
2 32bit + 3 16bit
READ

17mm2 1600 gates

mm2 80 MHz

DATA

0
PATH

matrix[2][2] int mat_var = {{ 0, 1 }, { 2, 3 }};

DATA

1
PATH

DATA

2
PATH

DATA

3
PATH

Figure 6: Matrix type variable definition and distribution to data
paths

DP0 DP1 DP2 DP3

matrix
memory

hdh

v

vd
matrix[2][2] int matptr *mp;

{ h, v, hd, vd }

Figure 7: Access to matrix memory

� Resynthesis using custom wire load models generated from
the estimated floorplan

� Reoptimization (rebuffering) of the design using delay in-
formation backannotated from an initial placement. There-
fore clustering information (PDEF), annotated timing (SDF)
and parasitics (RC-Delays) have to be backannotated into the
SYNOPSYS DESIGN COMPILER. The synthesis tools then
start from the annotated timing and uses clustering and para-
sitic information, where nets have to be changed. Due to the
different hierarchy in the SYNOPSYS domain (e.g. missing
memories, pads, scan paths) and differing naming conven-
tions between the tools, backannotation across the interface
between COMPASS and SYNOPSYS is no trivial task.

� In place optimization again using backannotated delay data.
For final placement, positions of inserted buffer trees were
forward annotated to the placement tool, which is able to
place such buffers without having to discard the existing place-
ment.

Figure 8: Screen shot of the interactive simulation environment

6. SOFTWARE DEVELOPMENT
ENVIRONMENT

Starting with the first specification phase of the HiPAR-DSP, con-
cepts for a high level language development environment have been
created. Resulting from this tight cooperation, the HiPAR-DSP ar-
chitecture provides some features, e.g., efficient operations on a
parallel, cache buffered stack, supporting high level programma-
bility for imperative languages like C++ or PASCAL. During fur-
ther specification phases and the beginning of the implementation
phase, we developed an optimizing assembler and adapted a C++
Compiler for the HiPAR-DSP.

The compilation process consists of three phases. The front-
end of the development systems consists of an extended port of the
GNU-C++-Compiler, which supports parallel operations and ma-
trix memory access using language extensions. The scalar variable
types like int, long, etc. have been extended to compound, matrix
types shown in Fig. 67, consisting of a set of scalar variables or-
dered in shape of a matrix. Expressions using variables of this type
result in parallel operation of all data paths on different compo-
nents of this type. This allows existing C or C++ code to be easily
ported to the HiPAR-DSP by simply adapting variable types in time
critical code sections to the new features of the system.

During the second phase of the compilation process, an op-
timizing assembler automatically generates VLIW assembler in-
structions from the sequential code exploiting the VLIW paral-
lelism and the micropipelines, using advanced inter basic block
scheduling and software pipelining. In the last phase, machine
readable binary code is generated.

The correct behavior of programs developed for the HiPAR-
DSP can be verified using an interactive simulator, which is shown
in Fig 8. The simulator operates clock cycle based and allows
the user to inspect and modify all programmable features of the
HiPAR-DSP architecture. Besides standalone debugging, in-circuit
debugging using the JTAG interface is supported, allowing rapid
application development and testing in the target environment.

The compiler, assembler and debugger, combined with the so
far developed application library form a powerful development plat-
form that enables the user to create applications efficiently in a way
he is used from industrial design.

60

Table 2: Performance data for selected algorithms. Data from cycle true simulation of assembler coded programs, cycle time from backan-
notated layout data.

ALGORITHM DESCRIPTION PROCESSING TIME
(fclock = 80MHz)

Normalized 512 x 512 input image size 2.25 s
Correlation 32 x 32 mask size
Gray level 512 x 512 image size, 256 gray level 2.75 ms
Histogram
complex 256 x 2 samples (r,i) 35�s
FFT
3x3 FIR-Filter non-separable, 512x512 pixels 21.4 ms
Edge Detection 512 x 512 pixels, vertical and horizontal sobel filters 11.5 ms

and non maximum suppression
Connected Component 512 x 512 pixels 25.7 ms
Labeling
Skeletonization 512 x 512 pixels 21.2 ms
Parallel Search 1024 elements 625 ns

Table 3: Implementation data of the HiPAR-DSP

Parallel Data Paths 4 parallel data paths (13/32 bit integer)
On-chip memories 9*0.5 kbyte matrix-memory,

4*0.5kbyte data cache, 3kbyte instruc-
tion cache (�:9.5kbyte)

Technology Atmel 0.5 �m CMOS 3LM standard
cell with full custom memories

Transistors 1.2 million
Area 175mm2

Power consumption � 5 watt (estimated)
Clock frequency 80 MHz (typically), 50 MHz (worst

case)

7. DESIGN RESULTS AND
PERFORMANCE DATA

The design process started in 1993 with first architectural consider-
ations. The project was intended to last 3 years until silicon. With
specification completed end of 1993, the HDL design lasted until
end of 1994. A lot of time was lost due to two unexpected changes
in manufacturer and technology, partly requiring overworking of
large sections of the HDL code (which is not so manufacturer-
independent as one might believe, if efficient synthesis has to be
achieved). A high effort of time went into the setup of a work-
ing back end design flow, which was flawed with tool bugs and
incompatibilities. The result was a project delay of more than 18
months. There were 22 student thesis written within the project.
About half of the students worked on the VLSI design, the other
half on the software environment and algorithm implementations.
Together with an average of 3 scientists working on the project, the
total effort was about 32 men year, not too much for a design of
that size and the huge software package developed for it. Table 3.
gives an overview of the final chip data.

We have started practical programming of image processing al-
gorithm cores on the C++ processor model already at a very early
stage of the design to evaluate potential for the further optimiza-
tion of instruction set and controlling scheme. The resulting code
also formed an important part of the later verification on RTL and
gate level. Table 2. shows an overview of the HiPAR-DSP's perfor-
mance, gained from these optimized assembler written implemen-
tations. The performance of C++ written programs varies with the
experience of the programmer and the use of the extended proces-
sor specific data types. In average, about 1.5 times slower execution
is achieved with C++ implemented software.

8. CONCLUSION
A novel programmable DSP architecture has been proposed and
implemented. The innovative parallel architecture reaches high
performance while keeping a flexibility comparable to other com-
mercially available DSPs. All design phases - beginning from the
programming of a first behavioral processor model followed by
VHDL implementation, synthesis, placement, route and backanno-
tation and finally ending with the generation of GDS-II mask tapes
- have been carried out at the university. The complexity of the
architecture required state of the art ASIC technology, design flow
and EDA-Tools. Various difficulties in the establishment of the de-
sign flow have been mastered. Most recent features especially of
the backend tools turned out to be utterly necessary to fulfil the de-
mands of deep submicron design. Currently the HiPAR-DSP is in
production phase at the Atmel Fab in Rousset, France. First sam-
ples will be available by time of DAC' 98. The project impressively
demonstrates the possibility to design programmable digital signal
processors under university conditions. Complexity, performance
and tool support is at least comparable to those of commercially
available counterparts.

References
[1] K. Rönner, J. Kneip: "Architecture and Applications of the

HiPAR Video Signal Processor", Transactions on Circuits and
Systems on Video Technology, 2/1996

[2] J. Kneip, M. Ohmacht, K. Rönner, P. Pirsch: "Architecture
and C++-programming environment of a highly parallel im-
age signal processor", Microprocessing and Microprogram-
ming, Vol. 41 (1995), pp. 391-408.

[3] J. Kneip, K. Rönner, P. Pirsch: "A Data Path Array with
Shared Memory as Core of a High Performance DSP", Proc.
Int. Conf. Application Specific Array Processors (ASAP)' 94,
pp. 271-282, Aug. 1994.

[4] J. P. Wittenburg, M. Ohmacht, W. Hinrichs, J. Kneip, P.
Pirsch: "HiPAR-DSP: A Parallel VLIW RISC Processor
for Real Time Image Processing Applications", Proc. Int.
Conf. on Algorithms And Architectures for Parallel Process-
ing (ICA3PP)' 97, pp. 155-162, Melbourne Dec. 1997

[5] Synopsys Online Documentation, Version 1997.01, Synopsys
Inc.

[6] Compass Online Documentation, Version V9R2, Avant! Inc.

61

